The Effect of Heat Flux to the Fire-Technical and Chemical Properties of Spruce Wood (Picea abies L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. The Mass Burning Rate
- ϑ—absolute burning rate (%·s −1);
- δ (τ)—sample weight in time (τ) (%);
- δ (τ + Δτ)—sample weight in time (τ + ∆τ) (%);
- Δ τ—time interval in which the weight values are recorded (s).
2.2.2. Determination of the Charring Rate of Samples
2.2.3. Chemical Composition of Wood
3. Results and Discussion
3.1. Burning Rate of Test Samples
3.2. Charring Rate of Test Samples
3.3. Changes in the Chemical Composition
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tureková, I.; Marková, I.; Ivanovičová, M.; Harangózo, J. Experimental Study of Oriented Strand Board Ignition by Radiant Heat Fluxes. Polymers 2021, 13, 709. [Google Scholar] [CrossRef]
- Demir, A.; Aydin, I. Investigation of some surface properties and thermogravimetric analysis of veneer sheets treated with fire retardants. Maderas. Cienc. tecnol. 2019, 21, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Igaz, R.; Krišťák, Ľ.; Ružiak, I.; Gajtanska, M.; Kučerka, M. Thermophysical properties of OSB boards versus equilibrium moisture content. BioResources 2017, 12, 8106–8118. [Google Scholar] [CrossRef]
- White, R.H.; Dietenberger, M.A. Wood Products: Thermal Degradation and Fire; USDA Forest Products Laboratory: Madison, WI, USA, 2016; pp. 1–7. [Google Scholar]
- Zachar, M.; Čabalová, I.; Kačíková, D.; Jurczyková, T. Effect of Natural Aging on Oak Wood Fire Resistance. Polymers 2021, 13, 2059. [Google Scholar] [CrossRef]
- Čabalová, I.; Zachar, M.; Kačík, F.; Tribulová, T. Impact of thermal loading on selected chemical and morphological properties of spruce ThermoWood. BioResources 2019, 14, 387–400. [Google Scholar]
- Lowden, L.A.; Hull, T.R. Flammability behaviour of wood and a review of the methods for its reduction. Fire Sci. Rev. 2013, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Makovicka-Osvaldova, L.; Markova, I.; Jochim, S.; Bares, J. Experimental Study of Straw-Based Eco-Panel Using a Small Ignition Initiator. Polymers 2021, 13, 1344. [Google Scholar] [CrossRef]
- Vandličková, M.; Marková, I.; Makovická Osvaldová, L.; Gašpercová, S.; Svetlík, J.; Vraniak, J. Tropical Wood Dusts—Granulometry, Morfology and Ignition Temperature. Appl. Sci. 2020, 10, 7608. [Google Scholar] [CrossRef]
- Taghiyari, H.R.; Militz, H.; Antov, P.; Papadopoulos, A.N. Effects of Wollastonite on Fire Properties of Particleboard Made from Wood and Chicken Feather Fibers. Coatings 2021, 11, 518. [Google Scholar] [CrossRef]
- Martinka, J.; Hroncová, E.; Kačíková, D.; Rantuch, P.; Balog, K.; Ladomerský, J. Ignition parameters of poplar wood. Acta Fac. Xylologiae 2017, 59, 85–95. [Google Scholar]
- Cachim, P.B.; Franssen, J.M. Assessment of Eurocode 5 charring rate calculation methods. Fire Technol. 2010, 46, 169. [Google Scholar] [CrossRef]
- Martinka, J.; Mantanis, G.I.; Lykidis, C.; Antov, P.; Rantuch, P. The effect of partial substitution of polyphosphates by aluminium hydroxide and borates on the technological and fire properties of medium density fibreboard. Wood Mat. Sci. Eng. 2021, 1–7. [Google Scholar] [CrossRef]
- Qin, R.; Zhou, A.; Chow, C.L.; Lau, D. Structural performance and charring of loaded wood under fire. Eng. Struct. 2021, 228, 111491. [Google Scholar] [CrossRef]
- Richter, F.; Atreya, A.; Kotsovinos, P.; Rein, G. The effect of chemical composition on the charring of wood across scales. Proc. Combust. Inst. 2019, 37, 4053–4061. [Google Scholar] [CrossRef]
- STN. EN 1995-1-2–Eurocode 5: Design of Timber Structures-Part 1–2: General; Structural Fire Design. 2008. Available online: https://silo.tips/download/pren-eurocode-5-design-of-timber-structures-part-1-2-general-rules-structural-fi (accessed on 9 August 2021).
- Chu, D.; Mu, J.; Avramidis, S.; Rahimi, S.; Liu, S.; Lai, Z. Functionalized Surface Layer on Poplar Wood Fabricated by Fire Retardant and Thermal Densification. Part 1: Compression Recovery and Flammability. Forests 2019, 10, 955. [Google Scholar] [CrossRef] [Green Version]
- NFPA 921; Guide for Fire and Explosion Investigations; National Fire Protection Association: Quincy, MA, USA, 2021.
- Zhou, A.; Qin, R.; Chow, C.L.; Lau, D. Bond integrity of aramid, basalt and carbon fiber reinforced polymer bonded wood composites at elevated temperature. Compos. Struct. 2020, 245, 112342. [Google Scholar] [CrossRef]
- Fonseca, E.M.M.; Barreira, L.M.S. Charring rate determination of wood pine profiles submitted to high temperatures. Safety and Security Engineering III. WIT Trans. Built Environ. 2009, 108, 449–457. [Google Scholar]
- White, R.H.; Nordheim, E.V. Charring rate of wood for ASTM E 119 exposure. Fire Technol. 1992, 28, 5–30. [Google Scholar] [CrossRef]
- Findorák, R.; Fröhlichová, M.; Legemza, J.; Findorákova, L. Thermal degradation and kinetic study of sawdusts and walnut shells via thermal analysis. J. Therm. Anal. Calorim. 2016, 125, 689–694. [Google Scholar] [CrossRef]
- Chen, T.; Wu, W.; Wu, J.; Cai, J.; Wu, J. Determination of the pseudocomponents and kinetic analysis of selected combustible solid wastes pyrolysis based on Weibull model. J. Therm. Anal. Calorim. 2016, 126, 1899–1909. [Google Scholar] [CrossRef]
- Babrauskas, V. Charring rate of wood as a tool for fire investigations. Fire Saf. J. 2005, 40, 528–554. [Google Scholar] [CrossRef]
- ASTM E119-20; Standard Test Methods for Fire Tests of Building Construction and Materials; ASTM International: West Conshohocken, PA, USA, 2020.
- ISO 834-2; Fire-Resistance Tests—Elements of Building Construction—Part 2: Requirements and Recommendations for Measuring Furnace Exposure on Test Samples; International Organization for Standardization: Geneva, Switzerland, 2019.
- Csanády, E.; Magoss, E.; Tolvaj, L. Quality of Machined Wood Surfaces, 1st ed.; Springer International Publishing: New York, NY, USA, 2015; 257p. [Google Scholar]
- Kučerová, V.; Lagaňa, R.; Výbohová, E.; Hýrošová, T. The effect of chemical changes during heat treatment on the color and mechanical properties of fir wood. BioResources 2016, 11, 9079–9094. [Google Scholar] [CrossRef]
- Sikora, A.; Kačík, F.; Gaff, M.; Vohndrová, V.; Bubeníková, T.; Kubovský, I. Impact of thermal modification on color and chemical changes of spruce and oak wood. J. Wood Sci. 2018, 64, 406–416. [Google Scholar] [CrossRef]
- Ganne-Chédeville, C.; Jääskeläinen, A.-S.; Froidevaux, J.; Hughes, M.; Navi, P. Natural and artificial ageing of spruce wood as observed by FTIR-ATR and UVRR spectroscopy. Holzforschung 2012, 66, 163–170. [Google Scholar] [CrossRef]
- Rantuch, P.; Chrebet, T. Thermal decomposition of cellulose insulation. Cel. Chem. Technol. 2014, 48, 46–467. [Google Scholar]
- Gaan, S.; Rupper, P.; Salimova, V.; Heuberger, M.; Rabe, S.; Vogel, F. Thermal decomposition and burning behavior of cellulose treated with ethyl ester phosphoramidates: Effect of alkyl substituent on nitrogen atom. Polym. Degrad. Stabil. 2009, 94, 1125–1134. [Google Scholar] [CrossRef]
- Poletto, M. Effect of extractive content on the thermal stability of two wood species from Brazil. Cienc. Tecnol. 2016, 18, 435–442. [Google Scholar] [CrossRef] [Green Version]
- ISO 10694; Soil Quality. Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis); International Organization for Standardization: Geneva, Switzerland, 1995.
- ISO 13878; Soil quality. Determination of Total Nitrogen Content by Dry Combustion (Elemental Analysis); International Organization for Standardization: Geneva, Switzerland, 1998.
- ISO 15178; Soil quality. Determination of Total Sulfur by Dry Combustion; International Organization for Standardization: Geneva, Switzerland, 2000.
- ISO 11885; Water quality. Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES); International Organization for Standardization: Geneva, Switzerland, 2007.
- ISO 11925-2; Reaction to Fire Tests–Ignitability of Products Subjected to Direct Impingement of Flame–Part 2: Single-Flame Source Test; International Organization for Standardization: Geneva, Switzerland, 2020.
- ASTM D1107-21; Standard Test Method for Ethanol-Toluene Solubility of Wood; ASTM International: West Conshohocken, PA, USA, 2021.
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass (NREL/TP-510-42618); National Renewable Energy Laboratory: Golden, CO, USA, 2012. [Google Scholar]
- Seifert, V.K. About a new method for rapid determination of pure cellulose (in German). Das. Pap. 1956, 10, 301–306. [Google Scholar]
- Wise, L.E.; Murphy, M.; D’addieco, A.A. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap. Trade J. 1946, 122, 35–44. [Google Scholar]
- Zachar, M.; Mitterová, I.; Xu, Q.; Majlingová, A.; Cong, J.; Galla, Š. Determination of fire and burning properties of spruce wood. Drv. Ind. 2012, 63, 217–223. [Google Scholar] [CrossRef]
- STN ISO 871; Plastics. Determination of Ignition Temperature Using a Hot-Air Oven; International Organization for Standardization: Geneva, Switzerland, 2010.
- Delichatsios, M.; Paroz, B.; Bhargava, A. Flammability properties for charring materials. Fire Saf. J. 2003, 38, 219–228. [Google Scholar] [CrossRef]
- Hagen, M.; Hereid, J.; Delichatsios, M.A.; Zhang, J.; Bakirtzis, D. Flammability assessment of fire-retarded Nordic Spruce wood using thermogravimetric analyses and cone calorimetry. Fire Saf. J. 2009, 44, 1053–1066. [Google Scholar] [CrossRef]
- Makovická–Osvaldová, L.; Kadlicová, P.; Rychlý, J. Fire Characteristics of Selected Tropical Woods without and with Fire Retardant. Coatings 2020, 10, 527. [Google Scholar] [CrossRef]
- Gaff, M.; Kačík, F.; Gašparík, M.; Todaro, L.; Jones, D.; Corleto, R.; Makovická-Osvaldová, L.; Čekovská, H. The effect of synthetic and natural fire-retardants on burning and chemical characteristics of thermally modified teak (Tectona grandis L. f.) wood. Constr. Build. Mater. 2019, 200, 551–558. [Google Scholar] [CrossRef]
- Kačíková, D.; Makovická, L. Wood burning rate of various tree parts from selected softwoods. Acta Fac. Xylologiae 2009, 51, 27–32. [Google Scholar]
- Makovická-Osvaldová, L.M.; Gašpercová, S.; Mitrenga, P.; Osvald, A. The influence of density of test specimens on the quality assessment of retarding effects of fire retardants. Wood Res. 2016, 61, 35–42. [Google Scholar]
- Lipinskas, D.; Mačiulaitis, R. Further opportunities for development of the method for fire origin prognosis. J. Civil. Eng. Manag. 2005, 11, 299–307. [Google Scholar] [CrossRef]
- Martinka, J.; Rantuch, P.; Liner, M. Calculation of charring rate and char depth of spruce and pine wood from mass loss. J. Therm. Anal. Calorim. 2018, 132, 1105–1113. [Google Scholar] [CrossRef]
- Zhang, L.; Li, T.; Quyn, D.; Dong, L.; Qiu, P.; Li, C.Z. Formation of nascent char structure during the fast pyrolysis of mallee wood and low-rank coals. Fuel 2015, 150, 486–492. [Google Scholar]
- Lizhong, Y.; Yupeng, Z.; Yafei, W.; Zaifu, G. Predicting charring rate of woods exposed to time increasing and constant heat fluxes. J. Anal. Appl. Pyrolysis. 2008, 81, 1–6. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Xie, X.; Wu, Y.; Zhao, L.; Li, Y.; Wang, S. Effects of thermal modification on the physical, chemical and micromechanical properties of Masson pine wood (Pinus massoniana Lamb.). Holzforschung 2018, 72, 1063–1070. [Google Scholar] [CrossRef] [Green Version]
- Kačík, F.; Luptáková, J.; Šmíra, P.; Nasswettrová, A.; Kačíková, D.; Vacek, V. Chemical alterations of pine wood lignin during heat sterilization. BioResources 2016, 11, 3442–3452. [Google Scholar] [CrossRef] [Green Version]
- Nuopponen, M.; Vuorinen, T.; Jämsä, S.; Viitaniemi, P. Thermal modification in softwood studied by FT-IR and UV resonance raman spectroscopies. J. Wood Chem. Technol. 2005, 24, 13–26. [Google Scholar] [CrossRef]
- Kačík, F.; Šmíra, P.; Kačíková, D.; Reinprecht, L.; Nasswettrova, A. Chemical changes in fir wood from old buildings due to ageing. Cell. Chem. Technol. 2014, 48, 79–88. [Google Scholar]
- Hrčka, R.; Kučerová, V.; Hýrošová, T.; Honig, V. Cell Wall Saturation Limit and Selected Properties of Thermally Modified Oak Wood and Cellulose. Forests 2020, 11, 640. [Google Scholar] [CrossRef]
- Kučerová, V.; Kačíková, D.; Kačík, F. Alterations of extractives and cellulose macromolecular characteristics after thermal degradation of spruce wood (in Slovak). Acta Fac. Xylologiae 2011, 53, 77–83. [Google Scholar]
- Zachar, M.; Majlingová, A.; Mitterová, I.; Čabalová, I. Influence of an age and damage of the oak wood in its fire risk. Wood Res. 2017, 62, 495–504. [Google Scholar]
- Wikberg, H.; Maunu, S.L. Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohyd. Polym. 2004, 58, 461–466. [Google Scholar] [CrossRef]
- Esteves, B.; Graca, J.; Pereira, H. Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung 2008, 62, 344–351. [Google Scholar] [CrossRef]
Element | C (g·kg−2) | N (g·kg−2) | S (mg·kg−2) | P (g·kg−2) | Ca (g·kg−2) | Mg (g·kg−2) | K (g·kg−2) |
---|---|---|---|---|---|---|---|
Spruce wood | 489 | 1.32 | 299 | 0.151 | 0.702 | 0.044 | 0.621 |
Heat Flux (kW·m−2) | Time of Thermal Loading (s) | Charring Thickness (mm) | Charring Rate (mm·min−1) |
---|---|---|---|
15 | 505 ± 5.50 | 10 ± 0.15 | 1.188 |
15 | 1195 ± 6.20 | 20 ± 0.05 | 1.004 |
15 | - | - | - |
20 | 391 ± 1.40 | 10 ± 0.13 | 1.535 |
20 | 811 ± 4.80 | 20 ± 0.72 | 1.479 |
20 | - | - | - |
25 | 298 ± 3.10 | 10 ± 0.18 | 2.013 |
25 | 726 ± 6.60 | 20 ± 0.25 | 1.653 |
25 | 1364 ± 7.10 | 30 ± 0.51 | 1.424 |
30 | 314 ± 2.50 | 10 ± 0.09 | 1.911 |
30 | 596 ± 3.30 | 20 ± 0.35 | 2.016 |
30 | 977 ± 5.00 | 30 ± 0.46 | 1.842 |
Heat Flux (kW·m−2) | Extractives (%) | Lignin (%) | Cellulose (%) | Holocellulose (%) | Hemicelluloses (%) | C/H * Ratio |
---|---|---|---|---|---|---|
Original | 1.40 ± 0.00 | 25.48 ± 0.08 | 41.23 ± 0.03 | 73.11 ± 0.08 | 31.88 ± 0.11 | 1.29 |
15 | 1.09 ± 0.00 | 26.04 ± 0.04 | 43.24 ± 0.08 | 72.88 ± 0.04 | 29.64 ± 0.12 | 1.46 |
20 | 1.51 ± 0.01 | 26.26 ± 0.01 | 43.14 ± 0.00 | 72.23 ± 0.01 | 29.09 ± 0.01 | 1.48 |
25 | 1.19 ± 0.00 | 26.35 ± 0.33 | 45.90 ± 0.42 | 72.46 ± 0.33 | 26.56 ± 0.09 | 1.73 |
30 | 1.54 ± 0.01 | 27.60 ± 0.23 | 46.92 ± 0.17 | 70.85 ± 0.22 | 23.93 ± 0.05 | 1.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zachar, M.; Čabalová, I.; Kačíková, D.; Zacharová, L. The Effect of Heat Flux to the Fire-Technical and Chemical Properties of Spruce Wood (Picea abies L.). Materials 2021, 14, 4989. https://doi.org/10.3390/ma14174989
Zachar M, Čabalová I, Kačíková D, Zacharová L. The Effect of Heat Flux to the Fire-Technical and Chemical Properties of Spruce Wood (Picea abies L.). Materials. 2021; 14(17):4989. https://doi.org/10.3390/ma14174989
Chicago/Turabian StyleZachar, Martin, Iveta Čabalová, Danica Kačíková, and Lucia Zacharová. 2021. "The Effect of Heat Flux to the Fire-Technical and Chemical Properties of Spruce Wood (Picea abies L.)" Materials 14, no. 17: 4989. https://doi.org/10.3390/ma14174989