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Abstract: To enhance compression stability and fire retardancy of densified wood, a new modification
method i.e., combined nitrogen–phosphorus (NP) fire retardant pre-impregnation with surface
thermo-mechanical densification is used to fabricate a certain thickness of functionalized surface layer
on poplar. This combined treated wood is investigated via vertical density profile (VDP), and the
compression stability is revealed by both soaking test and cone analysis. Results demonstrate that the
combined treatment hardened the surface of wood and reformed the interface combination of the NP
with the wood cell wall, thus making the surface tissue more close-grained. Fire retardancy was also
enhanced; the total heat release and CO generation values decreased by 21.9% and 68.4%, respectively,
when compared with that of solely NP-treated wood. Moreover, surface hardness increased by 15.8%,
and the recovery of surface hardness and thickness were 56.8% and 77.2% lower than that of simply
densified wood. It appears that this NP-involved thermal densification could be considered as an
alternative approach to enhance both the compression stability and fire resistance of wood.
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1. Introduction

Wood has been considered as one natural composite material for a long time, and it is one of the
most popular materials in construction, interior decoration, and the furniture industry mainly because
of its strength-to-weight ratio, renewability, and versatility [1]. Furthermore, small-diameter timbers
or some remains can be transformed into particles or fibers, which are commonly used to manufacture
different composites with other materials like polymers, cement, etc. [2,3].

Since the conservation mandates for natural forests were improved in China, the demand for
plantation trees such as poplar, eucalypt, and pine has increased, making them a reliable alternative for
industrial timbers [4,5]. Nevertheless, the drawback of using plantation timbers is mostly related to
their low density, mechanical strength, and dimensional stability [6]. Densification has been reported for
over a century as an efficient method for enhancing wood mechanical properties by reducing porosity
and increasing density [7]. Densification is proven to improve mechanical properties such as modulus
of elasticity (MOE), surface hardness, and mechanical strength of wood, especially for low-density
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species [8]. Song et al. (2018) successfully created a high-performance structural compressed wood via
partial removal of lignin and hemicellulose and hot-pressing into highly aligned cellulose nanofibers,
resulting in specific strength higher than that of most structural metals and alloys [9].

The conventional wood densification is usually carried out by thermo-mechanical (TM) or
thermo-hydro-mechanical (THM) means [3,10]. Büyüksarı found that the thermally compressed
veneer could be used to laminate with MDF panels for structural purposes due to the improvement
of hardness [8]. Nonetheless, the wood is incompletely densified and the state of compression of
TM/THM wood is sensitive to moisture and temperature that could cause utilization problems [7,11,12].
Researchers have studied different methods such as resin pre-impregnation, steam treatment,
microwave treatment, and pre-acetylation in order to improve the compression stability of densified
wood [13–15].

Recently, researchers focused on the combined effects of heat treatment (HT) and wood densification
on the assumption that the post-thermal treatment could release the inner stresses and increase the
stability of the compressed wood [8,16]. HT has been employed at various temperatures (160–260 ◦C)
and various media reactions such as vacuum, nitrogen, steam, or oil [17,18]. Heat-treated wood (WHT)
relatively enhanced dimensional stability, biological resistance, and aesthetic characteristics [19–22].
The degradation of hemicellulose, conformational arrangement changes of wood biopolymers, and the
plasticization of lignin during HT could result in lower number of hydrophilic groups and, consequently,
improved dimensional stability [20,23,24]. Fang et al. (2011, 2012) combined oil-heat treatment with
wood densification and claimed that the HT could efficiently improve dimensional stability, mechanical
properties, and compression set recovery of THM densified veneers [25,26]. Avila et al. (2012) studied
selected properties of THM wood using nano-indentations analysis and found an improvement of
mechanical properties attributed to an increase in wood density. Furthermore, they reported an
increase in the mechanical properties of the cell wall [27]. Zhan and Avramidis (2016) investigated the
equilibrium moisture content and radial swelling strain ratios of the untreated and surface densification
and thermal post-treatment combined treated wood and discovered that hygroscopicity and radial
swelling deformation are significantly decreased [12].

The HT process requires rigorous conditions; that is, relatively high temperature and long holding
time under the oxygen-deficient environment (oxygen content below 3%). Since HT is a chemical-free
process, the main modification mechanism is the autocatalytic reactions of the cell-wall constituents at
high temperatures. Acetyl groups of the hemicellulose are partly cleaved, which leads to the formation
of acidic intermediate products that further promote the changes of other chemical composition [17,23].
Lastly, the HT process does not make wood fireproof [28,29].

Nitrogen–phosphorus (NP) is an environmentally friendly, non-toxic, relatively inexpensive fire
retardant [30]. Furthermore, the catalytic dehydration and catalytic charring of the NP wood fire
resistance occurs between heating of 115 ◦C and 246 ◦C [31–33]. Hygroscopicity and low leachability
resistance are possible limitations for a practical application of the NP, and studies for enhancing these
properties can be found in published papers [29,31–33]. In former studies, NP has been used as an
acidic-accelerating medium to intensify the effect of HT on wood. It brought about significant property
improvement for the NP pre-impregnated and heated wood at a low treatment temperature for a short
period of time [29,33]. More relevant studies also proved that acid pre-treatments can accelerate the
thermal degradation of wood components and led to a treated wood moisture content lower than
conventional HT, under the same treatment weight loss level [34,35].

There is a research gap regarding the effects of the NP fire retardant on THM densification of
wood. In the present study, the NP fire retardant is used to reinforce poplar wood together with the
thermal densification, aimed at fabricating a functionalized surface layer to enhance fire retardancy and
compression stability of combined treated wood. This study provides a novel combined modification,
which can functionalize the surface layer and endow multiple functions to the treated wood. It will be
useful for promoting the usage of plantation timber.
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2. Materials and Methods

2.1. Treatment

Poplar (Populus beijingensis W. Y. Hsu) at about 10% moisture content was purchased from a timber
supplier in Beijing, China. Defect-free sapwood samples with length, width, and thickness of 300 mm
× 150 mm × 19 mm, respectively, were prepared. All samples were polished with 240-grit sandpaper
to ensure uniform surface roughness prior to modification. Then, they were divided into six groups
(Table 1), each comprised of 15 samples.

Table 1. Treatment classes and the treatment condition of treated samples.

Groups Pre-Treatment Compression Ratios (%) Compression Temperature (◦C)

WNP-TM 10% NP 21 180
WTM No 21 180

WHT-TM HT220 21 180
WHT HT220 No No
WNP 10% NP No No
WC No No No

Note: 10% NP means 10% nitrogen phosphorus fire-retardant aqueous solution impregnation; HT220 means heat
treatment under 220 ◦C for 120 min.

The NP impregnation and HT conduction protocols were kept the same as in former studies [29,33].
Samples in groups WNP-TM, WTM, and WHT-TM were pre-heated using a thermo-compressor (MLG68-S,
Zhengzhou, China) for 5 min, then thermo-mechanically pressed to 14 mm final thickness using a
stopper for 20 min at constant temperature.

2.2. Properties of the Functionalized Surface Layer

The surface colorimetric parameters were evaluated based on the CIELAB color coordinates using
a photometry instrument (Dataflash 110 Datacolor, Lawrenceville, NJ, USA) with illuminant D65 and
10◦ standard observer. The mean values of five positions on each sample were recorded and the total
color difference (∆E*) was calculated.

Five samples (50 mm × 50 mm × thickness) were cut from the middle of each of the untreated and
treated groups. A vertical density profile tester (CreCon’s X-ray densitometer, Martinsried, Germany)
was used to measure the vertical density profile (VDP) of each sample and the average density
profile was calculated. The average density profile accurately reflects density change throughout the
sample thickness.

2.3. Compression Recovery via Soaking Test

Compression recovery was measured by soaking samples in a deionized water bath (20 ± 2 ◦C)
for 120 min and then oven-drying. Their axial surfaces (20 mm × 20 mm × thickness) were covered by
resin before the test. The thickness and surface hardness (HD) of each sample were measured before
and after the soaking test. Thickness was measured three times from each sample at the center by
digital caliper and HD was tested by a Shore D Hardness Tester (TH210, Beijing). All measurements
were conducted after conditioning the samples to 10% equilibrium moisture content. Surface hardness
recovery (HDr) and thickness recovery (Tr) were calculated as follows:

HD = 100 − L/0.025 (1)

HDr = (HDfd − HDfs)/(HDfd − HDbd) × 100% (2)

Tr = (Tfd − Tfs)/(Tfd − Tbd) × 100% (3)
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where L is the displacement of the needle when the pressure foot surface is in full contact with the
sample surface; HDbd and Tbd are the surface hardness and thickness before densification; HDfd and Tfd
are the surface hardness and thickness after densification; and HDfs and Tfs are the surface hardness
and thickness after soaking test.

2.4. Cone Analysis

Cone calorimeter tests were conducted according to ASTM 1354 (2004) with a cone calorimeter
(FTT0242, West Sussex, UK). Three samples in the groups WNP-TM, WTM, WHT-TM, and WC were
selected and wrapped with aluminum foil leaving a 100 mm square surface. During the test, the sample
was exposed to a constant external heating flux, which was located at 250 mm over the surface, at an
irradiance level of 50 kW m−2.

2.5. Clustering and Morphological Analysis

Hierarchical cluster analysis (HCA) was performed using IBM SPSS Statistics 22.0 by between
group linkage method [36]. The heat release and smoke production values from the cone test and
compression recovery values from soaking test were taken into consideration, respectively. Microscopy
and microanalysis of the groups Wc, WNP-TM, WTM, WHT-TM, and WNP were conducted with a
SEM-EDS energy-dispersive X-ray spectrometer (JSM-6510, Tokyo, Japan). Samples were covered by
galvanic gold deposition with an MC1000 ion sputter (FEI, Tokyo, Japan) working at a current of 5 mA
for 45 s. All analyses were performed with 20 kV acceleration voltages.

3. Results and Discussion

3.1. Properties of the Functionalized Surface Layer

Photos and vertical density profile (VDP) curves are shown in Figure 1; the CIEL*a*b* and VDP
values on different regions of the untreated and treated samples are shown in Table 2. It is evident
that the WNP-TM exhibits a uniform light-brown surface whereas the WTM one presents a light surface.
It can be deduced that the combined process could play an important role in the color generation of the
NP-TM-treated wood because the merely NP impregnation process cannot change the surface color
significantly [37].
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Table 2. Color in CIE L*a*b* system and density of the selected samples.

Groups
Color in CIE L*a*b* System Vertical Density Profile (kg m−3)

L* a* b* ∆E* R1 R2 R3 Maximum
(× coordinate)

Average
Value

WNP-TM 54.99 ± 3.41 13.26 ± 1.68 29.19 ± 0.51 33.37 ± 1.38 675.68 365.48 569.97 1030.22
(6.83) 453.67

WTM 80.33 ± 3.76 3.49 ± 0.60 21.40 ± 0.36 6.09 ± 2.03 578.65 410.62 567.90 673.43
(–6.43) 473.61

WHT-TM 44.56 ± 1.07 9.36 ± 0.51 19.40 ± 0.43 40.21 ± 1.56 391.69 386.55 484.60 720.29
(6.66) 420.21

WHT 47.18 ± 4.23 9.87 ± 0.42 20.80 ± 2.02 37.85 ± 2.72 297.25 330.58 313.76 365.29
(–1.74) 324.41

Wc 84.16 ± 5.79 2.95 ± 1.48 16.69 ± 1.83 - 372.18 354.10 331.02 382.76
(5.59) 352.38

According to Table 2, the a*, b*, and L* values of WTM and WHT-TM changed slightly compared
with that of Wc and WHT. That is to say, the only-TM process under 180 ◦C could not change the
surface color of poplar wood. Interestingly, the b* and a* values of the WNP-TM increased by 74.9%
and 349.5%, respectively. The ∆E* values of the WNP-TM are higher than 33.37, further indicating that
NP-TM treatment with relatively a short period (20 min) is quite sufficient for changing the color
of poplar. After the NP-TM, poplar possessed a warmer and more attractive surface color, which is
considered to be essential for furniture and interior decoration materials.

Figure 1b indicates that the VDP of untreated poplar was relatively uniform throughout the
thickness with an average density of 352.38 kg/m3. The average density of WHT decreased by 7.94%
because of the thermal degradation of wood, which is consistent with some previous studies [17,22,38].
All the treated samples were divided into three regions according to the density changes; namely
two surface layers (R1 and R3) and one core layer (R2). After the TM, the VDP values of the surface
layers on WNP-TM, WTM, and WHT-TM increased significantly. The NP-TM process brought the highest
VDP values to the WNP-TM on the surface layers, wherein the VDP value of R1 was 16.77% higher
than that of WTM. Meanwhile, the location of maximum VDP value on the WNP-TM was closer to the
surface and density of the R2 was almost kept the same level as Wc. However, the maximum VDP
values of the WTM and WHT-TM were much lower than WNP-TM, and compression was also affected in
the core section. This indicates that the compression was mostly in the surface layer (about 3 mm).
It has been reported that the NP has a catalytic dehydration effect on wood polysaccharides during
HT [32], and this could also make the wood surface layer more likely to be compressed because of the
softening effect at higher moisture and temperature conditions [25]. From NP fire retardants can be
produced softener-NH3, which reduces glass transition temperature of lignin, i.e., decrease Tg from
approximately 170 ◦C [39]. Furthermore, the impregnated NP partly increased the density as most of it
remained in the surface layer.

3.2. Compression Recovery of the Functionalized Surface Layer during Soaking Test

Normally, the compression state of TM wood is sensitive to moisture, which limits the usage of
it to certain condition [12]. The thickness and surface hardness (HD) change of treated wood before
and after the TM process, as well as compression recovery (HDr and Tr), are displayed in Figure 2.
The NP-TM treatment resulted in a better surface strength and the compression-fixing ability for poplar.
WNP-TM has higher HD value than that of WTM before and after the water soaking test.
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Figure 2. Surface hardness (a) and thickness changes (b) of selected samples.

Because of the TM, the HDfd value of WTM was 65.23, which is 20.59% higher than untreated
poplar; the HDfd value of WHT-TM increased to 69.92, namely 61.66% higher than WHT. After the
NP-TM, the HDfd values of WNP-TM became 75.98, that is, 16.48% higher than WTM. In other words,
the NP-involving compression could cause larger surface hardness improvement on wood.

After water soaking test, all densified samples swelled to some extent, resulting in recovery
of thickness and HD. Even for Wc, the surface hardness after soaking (HDfs) decreased by 10.66%
(Figure 2a). The WTM had a poor compression ability; HDr and Tr were the highest of all. The surface
layer absorbed water and recovered to the status before the TM. While the WHT-TM had the best
compression ability, HDr and Tr values of WHT-TM were the lowest. The reason is that the HT
increased the hydrophobicity and the TM process further enhanced the surface density of WHT-TM.
The compression stability of WHT-TM samples remarkably enhanced due to the NP pre-treatment
and the acceleration effect of NP on wood thermal degradation during the thermo-densification
process [29,33]. When compared with that of WTM, the HDfs value was 31.60% higher and the Tr value
decreased from 26.65% to 6.07%.

3.3. Effect of the Functionalized Surface Layer on Heat and Flue Gas Release via Cone Analyses

As shown in Figure 3 and Table 3, the WNP-TM samples had the most moderate heat and flue
gas release rate. WTM and WHT-TM samples were also enhanced by the TM process to some extent,
especially in the preliminary stage of burning during the Cone test.
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Table 3. Heat release and flue gas release of selected samples during cone analysis.

Item
Groups

WNP-TM WTM WHT-TM WNP Wc

HRR (kW m−2) 122.49 196.54 204.57 131.69 236.08
THR (MJ m−2) 103.50 138.60 138.14 132.44 184.24

HRR (60 s) (kW m−2) 133.74 259.51 254.70 122.00 311.26
HRR (360 s) (kW m−2) 110.27 225.66 217.24 146.72 255.06
Peak HRR1 (kW m−2) 208.84 362.82 353.31 172.83 437.16
Peak HRR2 (kW m−2) 273.71 390.40 555.30 234.94 345.39
Time to Peak HRR1 (s) 30 25 30 45 45
Time to Peak HRR2 (s) 585 415 455 645 520
mean EHC (MJ kg−1) 14.64 21.83 21.03 18.78 27.38

TSP (m2) 0.72 5.81 6.64 0.65 7.86
TSR (m2 m−2) 81.33 657.39 751.48 73.02 888.95

COY/10−3 (kg kg−1) 20.20 19.10 17.80 63.90 20.70
COY (60 s) /10−3 (kg kg−1) 10.70 12.40 12.60 23.00 18.30
COY (360 s) /10−3 (kg kg−1) 10.60 12.90 11.60 16.50 14.60

CO2Y (kg kg−1) 1.29 1.96 1.88 1.59 2.37

Note: HRR, heat release rate; THR, total heat release; HRR (60 s), heat release rate within 60 s; HRR (360 s) heat
release rate within 360 s; Peak HRR1, peak of the heat release rate at lower temperature; Peak HRR2, peak of the heat
release rate at higher temperature; EHC, effective heat of combustion; TSP, total smoke production; TSR, total smoke
release; COY, CO yield; COY (60 s), CO yield within 60 s; COY (360 s), CO yield within 360 s; CO2Y, CO2 yield.

The HRR curve in Figure 3a reveals that the Wc had two sharp exothermic peaks; the burning of
combustible gas emitted by the decomposition of the surface formed the peak HRR1 at 45 s, then the
oxidation reaction of internal wood material formed peak HRR2 at 520 s because of the consuming and
cracking of the surface charcoal layer.

According to Table 3, the THR and TSP values of WTM and WHT-TM were decreased because of
the TM process. However, the HRR curves of WTM and WHT-TM caught up with untreated wood
and then reached the peak HRR2, which was 13.0% and 60.8% higher than that of Wc (Figure 3a,b).
Furthermore, the time to peak HRR2 appeared 105 s and 65 s ahead; meanwhile, the surface cracking
increased the CO release, as shown in Figure 3c. This could be explained that the higher density of
formed charcoal provided a better protection for inner material at the initial stage, but the recovery of
the compressed wood and cracking of surface charcoal under high temperature cause a more violent
combustion reaction. Therefore, the TM treatment may also bring potential risk to the treated wood.
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Compared with that of Wc, the HRR curve of WNP-TM declined remarkably in the whole combustion
process. The peak HRR1 decreased by 52.2% and appeared 15 s ahead, then remained at a continuously
lower HRR value. It points to the fact that the WNP-TM formed a protective surface charcoal rapidly
with less heat release and the resistance of the charcoal layer enhanced. Different from the simply TM
wood, the NP-TM process made the WNP-TM more stable during the burning. The extent of surface
cracking on WNP-TM was much lower; the peak HRR2 decreased by 29.9% and 50.7%, and the relevant
time delayed for 170 s and 130 s, when compared with that of WTM and WHT-TM. It is worth mentioning
that the THR, TSP, and COP values of WNP-TM were also lower than solely NP-treated wood.

The NP-TM made the surface layer of WNP-TM denser, which could be in favor of the oxygen and
heat insulation performances of treated wood. Hence, the generation rate of CO and total smoking
production were the lowest within the first 600 s. The surface cracking occurred at the faint-flame stage
and increased the contact of charcoal with oxygen. The CO release declined sharply at about 600 s
and then kept a relatively lower level after 700 s. In other words, the swelling of densified wood and
cracking of surface charcoal could be effectively controlled by the NP-TM method. The enhancement
could be explained by the synergistic effects of density-increase and carbon-forming by NP fire
retardant. Therefore, it can be concluded that the fire retardancy of the WNP-TM was significantly
improved by the functionalized surface layer.

3.4. Compression Recovery of the Functionalized Surface Layer during Cone Analyses

In order to uncover the surface compression recovery of the treated wood during burning and
its effects on the smoke release, the correlation between the HRR and specific mass loss rate (SMLR),
carbon monoxide yield (CO yield), and smoke production rate (SPR) in different stages were also taken
into account, as shown in Figure 4.
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Equations of the linear statistical dependence of the HHR on the specific mass loss rate are listed
in Figure 4a,b. Under perfect combustion, the HRR is a function of specific mass loss rate only (R2 = 1);
the slope of fitting line was the smallest and the R2 value of WNP-TM was much higher than that of
WNP, showing that the WNP-TM possesses higher combustion efficiency. Considering the lowest mean
EHC (Table 3) and lowest heat release (Figure 3a,b), it can be concluded the combustion reaction of
WNP-TM was the most moderate and stable.

The oxygen-deficient combustion produces more CO; the main emission stage is faint flame
combustion (glowing phase) of surface charcoal, after nearly 600 s (Figures 3c and 4c). The imperfect
combustion causes more smoke release; the main emission stage is the flame combustion stage
(Figures 3d and 4d).

Taking an overall consideration of the cone testing results, we can find that surface cracking
of WTM and WHT-TM occurred at high temperature, resulted in shifting forward of the Peak HRR2
(Figure 3a) and CO release (Figure 3b). Therefore, the surface cracking of WTM and WHT-TM was before
400 s and 450 s. The peak of CO release appeared with the surface cracking, caused by the anoxic
burning of the inner material. Similarly, the surface cracking of WHT-TM was around 600 s, closing to
the glowing phase. As shown in Figure 4c, the CO yield of WTM and WHT-TM started to increase from
the interval of 400–600 s, and it started after 600 s in case of the WNP-TM.

It is worth noting that the CO release of WHT-TM declined sharply after the surface cracking and
kept the same level as Wc, much lower than that of WNP. This could be explained by the fact that
most of the inner materials have transformed into charcoal under protection of the functionalized
surface layer, then the surface cracking of WNP-TM took place in the glowing stage and increased the
oxygen-contact area of char surface. This indicates that the NP-TM process enhanced the compression
stability as well as CO inhibition of the treated wood in the high-temperature condition.

The surface layer of WNP-TM was filled with NP fire retardant and compressed to a high density,
which has an accelerating effect on the formation of charcoal and strengthening effect on the protective
char layer at the early stage of burning. Then, the compression-stable charcoal protected the inner
material from burning because of the heat or oxygen-barrier properties. Therefore, the heat and
CO release of WNP-TM declined and the surface cracking delayed when compared with that of WTM.
At the glowing stage, the surface cracking increased the oxygen contact and reduced CO release from
oxidization of charcoal (Figures 3c and 4c).

3.5. Clustering and SEM-EDS Analysis

Cluster analysis of the NP-TM and untreated samples was done based on values of color in CIE
L*a*b* system (Table 2), heat release and flue gas release (Table 3), and compression recovery (Figure 2);
the dendrogram of those clusters is shown in Figure 5.

The dendrogram of HCA for treated samples in regard to surface color (Figure 5a) shows two
main clusters; the WNP-TM was classified into the first group, which also contains WHT and WHT-TM,
while the Wc and WTM were classified into the second group, further proving that the NP-TM process
can lead to color generation.
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In terms of dendrogram for heat release (Figure 5b) and flue gas release (Figure 5c), it is observed
that the WNP-TM was classified into the same group with the WNP. It verified that the functionalized
surface layer, created by NP-TM process, can endow the treated wood with flame retardant and smoke
suppression properties. However, the only-TM treatment could not render raw poplar or heat-treated
poplar fireproof. This result is in accordance with that of the cone analyses discussed in Sections 3.3
and 3.4. For the compression recovery, dendrogram of HCA are grouped into two blocks: WTM and
other groups. The first cluster was separated into two subgroups (Figure 5d). The compression recovery
improvement of the WNP-TM could elucidate that the NP fire retardant acts as an acid accelerator,
which could intensify the effectivity of HT [29,33], as the WHT-TM and WNP-TM are classified into the
same subgroups.

The SEM micrographs and EDXA spectra of untreated and NP-TM-treated samples are displayed
in Figure 6.
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The wood cell wall structure of Wc was intact and the inner faces are flat and smooth. After the
TM, cell lumens (particularly distinct in the vessels) of WTM and WHT-TM samples were deformed,
and the volume of void spaces declined sharply. However, the lumens of WTM were partly open and
had many fractures on the cell walls. This could increase the water absorption and cell wall swelling,
finally causing compression recovery. The WHT-TM also had some fractures on the cell walls, while the
less hydrophilic caused by HT process could prevent it from swelling and recovery [40].

For the WNP, the NP fire retardant distributed over the inner surface separately, as represented in
Figure 6b. Because of the NP-TM process, it is quite clear that a large number of vessels are almost closed
up and the cell walls are deformed on the WNP-TM. Moreover, there are a few fractures that occurred on
the cell walls (Figure 6e). According to Figure 6g,h, some crystalline particles fill between small gaps
on the cell wall, and the crystallized-substance integrated the compressed and flattened cell lumens of
the WNP-TM. EDXA spectra further confirm that the filler gathered in pore spaces both on transverse
(Figure 6g) and tangential (Figure 6h) sections is composed of NP fire retardant. It is speculated that
the low molecular ammonium polyphosphate (APP) in NP fire retardant decomposed during the TM
process and the intermediate products like H3PO4 further promote the catalytic dehydration of wood
polysaccharides and enhanced the plasticity of the cell walls. Furthermore, the NP entered micro-voids,
forming a connective crystal between the cell walls. Compared to that of WNP, the connection of the
NP and cell walls transform from particle to cementing, which will probably be another nonnegligible
factor for the enhance of fire resistance and compression stability.
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4. Conclusions

This work investigated the fire resistance and compression recovery properties of the treated poplar
with a functionalized surface layer, formed by a novel combined treatment of nitrogen–phosphorus fire
retardant (NP) pre-impregnation and thermo-mechanical densification (TM). Based on the findings of
this study, the combined process could improve the surface aesthetics, fire retardancy, and compression
stability of poplar wood. The NP accelerated the thermal degradation of wood and transformed
to connective crystal between wood cell walls and cell lumens. This functionalized surface layer
is composited by the degradation products of NP and wood. It possesses a superiority of high
density and compression stability. The heat release rate of the combined treated wood is 48.1% lower
than that of untreated wood, and the CO yield is 68.4% lower than that of only-NP-treated wood.
Moreover, the compression recovery in the thickness is 77.2% lower than that of solely TM-treated
wood. This study provides a new approach to enhance both fire resistance and compression stability
of wood by fabricating a functional surface layer. Further studies in terms of controlling the formation
and performance of the surface layer will be of interest in the future.
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