Additive Manufacturing of Ti-Based Intermetallic Alloys: A Review and Conceptualization of a Next-Generation Machine
Abstract
:1. Introduction
2. TiAl Intermetallic Alloy Phases
- ✓
- The fully lamellar or nearly lamellar microstructure consists of the TiAl (-phase) and a small volume fraction of Ti3Al (2-phase).
- ✓
- Near-gamma: the near-gamma alloy consists of a gamma (γ) grain microstructure with a moderate alpha grain.
- ✓
- Duplex: the duplex microstructure consists of gamma (γ) grains, B2 phase, and γ/B2 lamellar colonies.
3. Metal Additive Manufacturing
4. Electron Beam Melting of TiAl-Based Alloys
5. Laser Powder Bed Fusion of TiAl-Based Alloys
6. The Proposed Next Generation LPBF Manufacturing Systems
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cinca, N.; Lima, C.; Guilemany, J.M. An overview of intermetallics research and application: Status of thermal spray coatings. J. Mater. Res. Technol. 2013, 2, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Jozwik, P.; Polkowski, W.; Bojar, Z. Applications of Ni3Al Based Intermetallic Alloys—Current Stage and Potential Perceptivities. Materials 2015, 8, 2537–2568. [Google Scholar] [CrossRef]
- Kablov, E.N.; Lomberg, B.S.; Buntushkin, V.P.; Golubovskii, E.P.; Muboyadzhyan, S.A. Intermetallic Ni3Al-Base Alloy: A Promising Material for Turbine Blades. Met. Sci. Heat Treat. 2002, 44, 284–287. [Google Scholar] [CrossRef]
- Silberglitt, R.S.; Mitchell, J. Industrial Materials for the Future (IMF): R & D Priorities. National Renewable Energy Laboratory (U.S.), Science and Technology Policy Institute (Rand Corporation), 2001. Available online: moz-extension://02c914e7-747b-48fd-b1c0-b070dadcf64f/enhanced-reader.html?openApp&pdf=https%3A%2F%2Fwww.rand.org%2Fcontent%2Fdam%2Frand%2Fpubs%2Fdocumented_briefings%2F2005%2FDB364.pdf (accessed on 2 April 2021).
- Anton, D.L.; Shah, D.M.; Duhl, D.N.; Giamei, A.F. Selecting high-temperature structural intermetallic compounds: The engineering approach. J. Mater. 1989, 41, 12–17. [Google Scholar] [CrossRef]
- McQuay, P.A.; Sikka, V.K.; Khalfalla, Y.E.; Benyounis, K.Y. Casting of Intermetallics. Ref. Modul. Mater. Sci. Mater. Eng. 2016. [Google Scholar] [CrossRef]
- Deevi, S.C.; Sikka, V.K. Nickel and iron aluminides: An overview on properties, processing, and applications. Intermetallics 1996, 4, 357–375. [Google Scholar] [CrossRef]
- Liu, C.T.; Stiegler, J.O.; Froes, F.H. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International: Almere, The Netherlands, 2018; pp. 913–942. [Google Scholar] [CrossRef]
- Subramanian, P.; Mendiratta, M.; Dimiduk, D.; Stucke, M. Advanced intermetallic alloys—Beyond gamma titanium aluminides. Mater. Sci. Eng. A 1997, 239–240, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Aoki, K.; Izumi, O. Improvement in Room Temperature Ductility of the L12 Type Intermetallic Compound Ni3Al by Boron Addition. J. Jpn. Inst. Met. 1979, 43, 1190–1196. [Google Scholar] [CrossRef] [Green Version]
- Wimler, D.; Lindemann, J.; Reith, M.; Kirchner, A.; Allen, M.; Vargas, W.G.; Franke, M.; Klöden, B.; Weißgärber, T.; Güther, V.; et al. Designing advanced intermetallic titanium aluminide alloys for additive manufacturing. InterMet 2021, 131, 107109. [Google Scholar] [CrossRef]
- Dzogbewu, T.C. Additive manufacturing of TiAl-based alloys. Manuf. Rev. 2020, 7, 35. [Google Scholar] [CrossRef]
- Fallis, A. Concise Encyclopedia of Structure of Materials. 2013, Volume 53. Available online: https://www.elsevier.com/books/concise-encyclopedia-of-the-structure-of-materials/martin/978-0-08-045127-5 (accessed on 30 March 2021).
- Angelini, P. Advanced Industrial Materials (AIM) Program Compilation of Project Summaries and Significant Accomplishments FY 1999; Office of Scientific and Technical Information (OSTI): Oak Ridge, TN, USA, 2000.
- Yamaguchi, M.; Shirai, Y. Defect Structures. Phys. Metall. Process. Intermet. Compd. 1996, 1996, 3–27. [Google Scholar] [CrossRef]
- Bewlay, B.P.; Nag, S.; Suzuki, A.; Weimer, M.J. TiAl alloys in commercial aircraft engines. Mater. High Temp. 2016, 33, 549–559. [Google Scholar] [CrossRef]
- Clark, S.F. 787 propulsion system. Aero Q. 2012, 3, 5–13. [Google Scholar]
- Hu, D.; Wu, X.; Loretto, M. Advances in optimisation of mechanical properties in cast TiAl alloys. InterMet 2005, 13, 914–919. [Google Scholar] [CrossRef]
- Kim, Y.-W.; Dimiduk, D.M. Progress in the understanding of gamma titanium aluminides. JOM 1991, 43, 40–47. [Google Scholar] [CrossRef]
- Voice, W.E.; Henderson, M.; Shelton, E.F.; Wu, X. Gamma titanium aluminide, TNB. InterMet 2005, 13, 959–964. [Google Scholar] [CrossRef]
- Polkowski, W.; Jozwik, P.; Bojar, Z. EBSD and X-ray diffraction study on the recrystallization of cold rolled Ni3Al based intermetallic alloy. J. Alloy. Compd. 2014, 614, 226–233. [Google Scholar] [CrossRef]
- Polkowski, W.; Jóźwik, P.; Bojar, Z. Differential speed rolling of Ni3Al based intermetallic alloy—Analysis of the deformation process. Mater. Lett. 2015, 139, 46–49. [Google Scholar] [CrossRef]
- Jóźwik, P.; Bojar, Z. Influence of heat treatment on the structure and mechanical properties of Ni3Al-based alloys. Arch. Metall. Mater. 2010, 55, 271–279. [Google Scholar]
- Burns, D.E.; Zhang, Y.; Teutsch, M.; Bade, K.; Aktaa, J.; Hemker, K.J. Development of Ni-based superalloys for microelectromechanical systems. Scr. Mater. 2012, 67, 459–462. [Google Scholar] [CrossRef]
- Romig, A.; Dugger, M.T.; McWhorter, P.J. Materials issues in microelectromechanical devices: Science, engineering, manufacturability and reliability. Acta Mater. 2003, 51, 5837–5866. [Google Scholar] [CrossRef]
- Jozwik, P.; Karcz, M.; Badur, J. Numerical modelling of a microreactor for thermocatalytic decomposition of toxic compounds. Chem. Process. Eng. 2011, 32, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Sunmola, F.; Dzogbewu, T.; Monaheng, L.; Yadroitsava, I.; Du Preez, W.; Yadroitsev, I. Control chart pattern recognition approach to throughput monitoring in sustainable smart manufacturing. In Proceedings of the Challenges for Technology Innovation: An Agenda for the Future; Informa UK Limited: London, UK, 2017; Volume 2017, pp. 183–188. [Google Scholar]
- Dzogbewu, T.C. Laser powder bed fusion of Ti6Al4V lattice structures and their applications. J. Met. Mater. Miner. 2020, 30, 68–78. Available online: http://jmmm.material.chula.ac.th/index.php/jmmm/article/view/821 (accessed on 2 April 2021).
- Dzogbewu, T.C. Additive manufacturing of porous Ti-based alloys for biomedical applications—A review. J. New. Gener. Sci. 2017, 15, 278–294. [Google Scholar] [CrossRef]
- Dzogbewu, T.C.; Monaheng, L.; Els, J.; van Zyl, I.; Du Preez, W.B.; Yadroitsava, I.; Yadroitsev, I. Evaluation of the Compressive Mechanical Properties of Cellular DMLS. In Proceedings of the 17th Annual Conference of the Rapid Product Development Association of South Africa, Vanderbijlpark, South Africa, 2–4 November 2016. [Google Scholar]
- Dzogbewu, T.; du Preez, W. Additive Manufacturing of Titanium-Based Implants with Metal-Based Antimicrobial Agents. Metals 2021, 11, 453. [Google Scholar] [CrossRef]
- Hiroaki, O. Phase Diagrams for Binary Alloys; ASM International: Materials Park, OH, USA, 2000. [Google Scholar]
- Wu, X. Review of alloy and process development of TiAl alloys. InterMet 2006, 14, 1114–1122. [Google Scholar] [CrossRef]
- Cobbinah, P.V.; Matizamhuka, W.R. Solid-State Processing Route, Mechanical Behaviour, and Oxidation Resistance of TiAl Alloys. Adv. Mater. Sci. Eng. 2019, 2019, 4251953. [Google Scholar] [CrossRef] [Green Version]
- Mphahlele, M.; Olevsky, E.; Olubambi, P. Spark plasma sintering of near net shape titanium aluminide: A review. In Spark Plasma Sintering; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 281–299. [Google Scholar]
- Clemens, H.; Kestler, H. Processing and applications of intermetallic γ-TiAl-based alloys. Adv. Eng. Mater. 2000, 2, 551–570. [Google Scholar] [CrossRef]
- Caprio, L.; Demir, A.G.; Chiari, G.; Previtali, B. Defect-free laser powder bed fusion of Ti–48Al–2Cr–2Nb with a high temperature inductive preheating system. J. Phys. Photon. 2020, 2, 024001. [Google Scholar] [CrossRef]
- Gil, I.; Munoz, M.A.; Morris, D. The effect of heat treatments on the microstructural stability of the intermetallic Ti–46.5Al–2W–0.5Si. InterMet 2001, 9, 373–385. [Google Scholar] [CrossRef]
- Srivastava, D. Microstructural characterization of the γ-TiAl alloy samples fabricated by direct laser fabrication rapid prototype technique. Bull. Mater. Sci. 2002, 25, 619–633. [Google Scholar] [CrossRef]
- Fondjo, A.A.; Dzogbewu, T.C. Assessment of Stress Raiser Factor Using Finite Element Solvers. Univers. J. Mech. Eng. 2019, 7, 367–379. [Google Scholar] [CrossRef]
- Dzogbewu, T.C. Laser powder bed fusion of Ti15Mo. Results Eng. 2020, 7, 100155. [Google Scholar] [CrossRef]
- ASTM. ASTM F2792-12a Standard Terminology for Additive Manufacturing Technologies, (Withdrawn 2015); ASTM International: West Conshohocken, PA, USA, 2012; Available online: https://www.astm.org/Standards/F2792.htm (accessed on 2 April 2021).
- Kok, Y.; Tan, X.; Wang, P.; Nai, M.; Loh, N.; Liu, E.; Tor, S.B. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 2018, 139, 565–586. [Google Scholar] [CrossRef]
- Singh, R.; Gupta, A.; Tripathi, O.; Srivastava, S.; Singh, B.; Awasthi, A.; Rajput, S.; Sonia, P.; Singhal, P.; Saxena, K.K. Powder bed fusion process in additive manufacturing: An overview. Mater. Today Proc. 2020, 26, 3058–3070. [Google Scholar] [CrossRef]
- Carroll, B.E.; Palmer, T.A.; Beese, A. Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater. 2015, 87, 309–320. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Thomas, M.; Malot, T.; Aubry, P.; Colin, C.; Vilaro, T.; Bertrand, P. The prospects for additive manufacturing of bulk TiAl alloy. Mater. High Temp. 2016, 33, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Rastkar, A.; Shokri, B. Surface transformation of Ti–45Al–2Nb–2Mn–1B titanium aluminide by electron beam melting. Surf. Coat. Technol. 2010, 204, 1817–1822. [Google Scholar] [CrossRef]
- Mandil, G.; Le, V.T.; Paris, H.; Suard, M. Building new entities from existing titanium part by electron beam melting: Microstructures and mechanical properties. Int. J. Adv. Manuf. Technol. 2016, 85, 1835–1846. [Google Scholar] [CrossRef] [Green Version]
- Koike, M.; Martinez, K.; Guo, L.; Chahine, G.; Kovacevic, R.; Okabe, T. Evaluation of titanium alloy fabricated using electron beam melting system for dental applications. J. Mater. Process. Technol. 2011, 211, 1400–1408. [Google Scholar] [CrossRef]
- Chahine, G.; Koike, M.; Okabe, T.; Smith, P.; Kovacevic, R. The design and production of Ti-6Al-4V ELI customized dental implants. JOM 2008, 60, 50–55. [Google Scholar] [CrossRef]
- Cormier, D.; Harrysson, O.; Mahale, T.; West, H. Freeform Fabrication of Titanium Aluminide via Electron Beam Melting Using Prealloyed and Blended Powders. Res. Lett. Mater. Sci. 2007, 2007, 034737. [Google Scholar] [CrossRef]
- Murr, L.; Gaytan, S.; Ceylan, A.; Martinez, E.; Martinez, J.; Hernandez, D.; Machado, B.; Ramirez, D.; Medina, F.; Collins, S. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Mater. 2010, 58, 1887–1894. [Google Scholar] [CrossRef]
- Löber, L.; Biamino, S.; Ackelid, U.; Sabbadini, S.; Epicoco, P.; Fino, P.; Eckert, J. Comparison of selective laser and electron beam melted titanium aluminides. In Conference Paper of 22nd International Symposium “Solid Freeform Fabrication Proceedings”; University of Texas: Austin, TX, USA, 2011; pp. 547–556. [Google Scholar]
- Biamino, S.; Penna, A.; Ackelid, U.; Sabbadini, S.; Tassa, O.; Fino, P.; Pavese, M.; Gennaro, P.; Badini, C. Electron beam melting of Ti–48Al–2Cr–2Nb alloy: Microstructure and mechanical properties investigation. InterMet 2011, 19, 776–781. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Wang, H.; Hou, W.; Hao, Y.; Yang, R.; Sercombe, T.; Zhang, L. Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater. 2016, 113, 56–67. [Google Scholar] [CrossRef] [Green Version]
- Yadroitsev, I.; Krakhmalev, P.; Yadroitsava, I. Hierarchical design principles of selective laser melting for high quality metallic objects. Addit. Manuf. 2015, 7, 45–56. [Google Scholar] [CrossRef]
- Yadroitsev, I. Selective laser melting: Direct manufacturing of 3D-objects by selective laser melting of metal powders. Appl. Catal. B Environ. 2009, 75, 229–238. Available online: https://www.amazon.com/Selective-laser-melting-manufacturing-3D-objects/dp/3838317947 (accessed on 5 April 2021).
- Vilaro, T.; Kottman-Rexerodt, V.; Thomas, M.; Colin, C.; Bertrand, P.; Thivillon, L.; Abed, S.; Ji, V.; Aubry, P.; Peyre, P.; et al. Direct Fabrication of a Ti-47Al-2Cr-2Nb Alloy by Selective Laser Melting and Direct Metal Deposition Processes. Adv. Mater. Res. 2010, 89–91, 586–591. [Google Scholar] [CrossRef]
- Li, W.; Liu, J.; Zhou, Y.; Li, S.; Wen, S.; Wei, Q.; Yan, C.; Shi, Y. Effect of laser scanning speed on a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting: Microstructure, phase and mechanical properties. J. Alloy. Compd. 2016, 688, 626–636. [Google Scholar] [CrossRef]
- Gussone, J.; Garcés, G.; Haubrich, J.; Stark, A.; Hagedorn, Y.C.; Schell, N.; Requena, G. Microstructure stability of γ-TiAl produced by selective laser melting. Scr. Mater. 2017, 130, 110–113. [Google Scholar] [CrossRef]
- Bertoli, U.S.; Guss, G.; Wu, S.; Matthews, M.J.; Schoenung, J. In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing. Mater. Des. 2017, 135, 385–396. [Google Scholar] [CrossRef]
- Polozov, I.; Kantyukov, A.; Goncharov, I.; Razumov, N.; Silin, A.; Popovich, V.; Zhu, J.-N.; Popovich, A. Additive Manufacturing of Ti-48Al-2Cr-2Nb Alloy Using Gas Atomized and Mechanically Alloyed Plasma Spheroidized Powders. Materials 2020, 13, 3952. [Google Scholar] [CrossRef]
- Spears, T.G.; Gold, S.A. In-process sensing in selective laser melting (SLM) additive manufacturing. Integr. Mater. Manuf. Innov. 2016, 5, 16–40. [Google Scholar] [CrossRef] [Green Version]
- Gussone, J.; Hagedorn, Y.-C.; Gherekhloo, H.; Kasperovich, G.; Merzouk, T.; Hausmann, J. Microstructure of γ-titanium aluminide processed by selective laser melting at elevated temperatures. InterMet 2015, 66, 133–140. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Everitt, N.; Ashcroft, I.; Tuck, C. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 2014, 1–4, 77–86. [Google Scholar] [CrossRef]
- Colopi, M.; Demir, A.G.; Caprio, L.; Previtali, B. Limits and solutions in processing pure Cu via selective laser melting using a high-power single-mode fiber laser. Int. J. Adv. Manuf. Technol. 2019, 104, 2473–2486. [Google Scholar] [CrossRef]
- Demir, A.G.; Previtali, B. Investigation of remelting and preheating in SLM of 18Ni300 maraging steel as corrective and preventive measures for porosity reduction. Int. J. Adv. Manuf. Technol. 2017, 93, 2697–2709. [Google Scholar] [CrossRef]
- McWilliams, J.; Hysinger, C.; Beaman, J.J. Design of a High Temperature Process Chamber for the Selective Laser Sintering Process. Available online: http://sffsymposium.engr.utexas.edu/Manuscripts/1992/1992-12-McWilliams.pdf (accessed on 5 April 2021).
- Dzogbewu, T.C. Laser powder bed fusion of Ti6Al4V-xCu: Process parameters. J. Met. Mater. Minerals. 2021, 31, 62–70. Available online: http://jmmm.material.chula.ac.th/index.php/jmmm/article/view/1051 (accessed on 2 April 2021).
- Wilkes, J.; Hagedorn, Y.; Meiners, W.; Wissenbach, K. Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting. Rapid Prototyp. J. 2013, 19, 51–57. [Google Scholar] [CrossRef]
- Hagedorn, Y.-C.; Risse, J.; Meiners, W.; Pirch, N.; Wissenbach, K.; Poprawe, R. Processing of nickel based superalloy MAR M-247 by means of High Temperature—Selective Laser Melting (HT–SLM). In High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping; Informa UK Limited: London, UK, 2013; Volume 2013, pp. 291–295. [Google Scholar]
- Kempen, K.; Vrancken, B.; Buls, S.; Thijs, L.; Van Humbeeck, J.; Kruth, J.-P. Selective Laser Melting of Crack-Free High Density M2 High Speed Steel Parts by Baseplate Preheating. J. Manuf. Sci. Eng. 2014, 136, 061026. [Google Scholar] [CrossRef]
- Ali, H.; Ma, L.; Ghadbeigi, H.; Mumtaz, K. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V. Mater. Sci. Eng. A 2017, 695, 211–220. [Google Scholar] [CrossRef]
- Lapin, J. TiAl-Based Alloys: Present Status and Future Perspectives. Available online: http://metal2012.tanger.cz/files/proceedings/metal_09/Lists/Papers/077.pdf (accessed on 30 July 2021).
- Centre for Rapid Prototyping and Manufacturing (CRPM). Available online: https://www.cut.ac.za/crpm.
- Dzogbewu, T.C.; Yadroitsev, I.; Krakhmalev, P.; Yadroitsava, I.; du Plessis, A. Optimal process parameters for in situ alloyed Ti15Mo structures by laser powder bed fusion. In Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 7–9 August 2017; pp. 75–96. [Google Scholar]
- King, W.E.; Barth, H.D.; Castillo, V.M.; Gallegos, G.F.; Gibbs, J.; Hahn, D.E.; Kamath, C.; Rubenchik, A.M. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol. 2014, 214, 2915–2925. [Google Scholar] [CrossRef]
- Dzogbewu, T.C. Direct Metal Laser Sintering of Titanium Alloys for Biomedical Applications. Ph.D. Thesis, Central University of Technology, Bloemfontein, South Africa, 2017. Available online: http://ir.cut.ac.za/handle/11462/1883 (accessed on 5 April 2021).
- Aggarangsi, P.; Beuth, J.L. Localized preheating approaches for reducing residual stress in additive manufacturing. In Proceedings of the 17th Solid Freeform Fabrication Symposium, Austin, TX, USA, 14–16 August 2006; pp. 709–720. [Google Scholar]
- Becker, T.; Van Rooyen, M.; Dimitrov, D. Heat treatment of TI-6AL-4V produced by lasercusing. S. Afr. J. Ind. Eng. 2015, 26, 93. [Google Scholar] [CrossRef] [Green Version]
Manufacturing Methods | Disadvantages | Advantages | |
---|---|---|---|
Conventional | Casting |
| The infrastructure and knowledge base of producing TiAl-based intermetallic alloys via conventional methods is very mature, resulting in the mass production of simple shapes [6,16,17]. |
Forging | |||
Sheet forming | |||
Extrusion | |||
Powder bed fusion | EBM |
| Production of 3D components of less intricate shapes with the required TiAl (γ-phase) and Ti3Al (α2-phase) intermetallic phases for high temperature operations [27,28]. |
LPBF | Production of non-crack-free 3D components [28,57,58]. | 3D components of intricate geometries with high resolution and rigorous build accuracy [30,56,57,58]. | |
The proposed LPBF manufacturing heating system | Figure 5 | Optimum process parameters not yet determined. | Possible production of 3D components of intricate geometries according to the technical, functional, and geometrical dimensions of the required/intended applications. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzogbewu, T.C.; du Preez, W.B. Additive Manufacturing of Ti-Based Intermetallic Alloys: A Review and Conceptualization of a Next-Generation Machine. Materials 2021, 14, 4317. https://doi.org/10.3390/ma14154317
Dzogbewu TC, du Preez WB. Additive Manufacturing of Ti-Based Intermetallic Alloys: A Review and Conceptualization of a Next-Generation Machine. Materials. 2021; 14(15):4317. https://doi.org/10.3390/ma14154317
Chicago/Turabian StyleDzogbewu, Thywill Cephas, and Willie Bouwer du Preez. 2021. "Additive Manufacturing of Ti-Based Intermetallic Alloys: A Review and Conceptualization of a Next-Generation Machine" Materials 14, no. 15: 4317. https://doi.org/10.3390/ma14154317
APA StyleDzogbewu, T. C., & du Preez, W. B. (2021). Additive Manufacturing of Ti-Based Intermetallic Alloys: A Review and Conceptualization of a Next-Generation Machine. Materials, 14(15), 4317. https://doi.org/10.3390/ma14154317