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Abstract: Heat transfer processes in micro- and nanoscale devices have become more and more
important during the last decades. Scanning thermal microscopy (SThM) is an atomic force
microscopy (AFM) based method for analyzing local thermal conductivities of layers with
thicknesses in the range of several nm to pm. In this work, we investigate ultrathin films of
hexagonal boron nitride (h-BN), copper iodide in zincblende structure (y-Cul) and some test sample
structures fabricated of silicon (Si) and silicon dioxide (SiO2) using SThM. Specifically, we analyze
and discuss the influence of the sample topography, the touching angle between probe tip and
sample, and the probe tip temperature on the acquired results. In essence, our findings indicate that
SThM measurements include artefacts that are not associated with the thermal properties of the film
under investigation. We discuss possible ways of influence, as well as the magnitudes involved.
Furthermore, we suggest necessary measuring conditions that make qualitative SThM
measurements of ultrathin films of h-BN with thicknesses at or below 23 nm possible.

Keywords: scanning thermal microscopy; SThM; Atomic force microscopy; AFM; boron nitride; h-
BN; topography influences; ultrathin films; copper iodide; Cul

1. Introduction

Miniaturization is an economically driven continuous process that applies to Integrated Circuits
(ICs) as well as for complete microsystems. In the following the term microsystem (MS) is used for
diverse miniaturized systems with feature sizes from the nanometer to the micrometer range that
include ICs. With decreasing feature sizes device densities and current densities have increased [1,2]
and Joule heating has become increasingly critical. Today, in defect-free, metallic carbon nanotubes,
it is possible to reach current densities with values of 101° Acm2, which is equivalent to 7 GA current
for standard household wires [3]. Household wires would immediately melt, but MSs carrying
structures with similar current densities are still in service. The heat transfer capabilities of these thin
films are critical, as MS typically constitute of a stack of diverse thin film layers. In future, the
availability of suitable new thin film materials is an important issue for further progress, but the
associated local thermal characterization is at least equally important. Unfortunately, the thermal
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properties of thin films substantially differ from the corresponding bulk material [4-7] and are much
harder to acquire. The present work focuses on the metrology of local thermal properties of thin film
materials for MSs and the associated restrictions and artefacts.

The difference between thermal properties of thin films and corresponding bulk material stems
from several atomic and molecular effects [4-7] and from the fact that a thin layer constitutes more
or less a surface and interface effects become dominant over bulk effects. A further complication is
that local anisotropies and thickness fluctuations increasingly affect the thermal properties with
decreasing film thickness. Furthermore, thermal conductivities in thin films strongly depend on the
grain size. Fladischer et al., who investigated 500 nm thin, chemical vapor deposition (CVD) grown
tungsten films, showed this. After a long heat treatment (4 cycles of ~20 min. at 425 °C) the thermal
conductivity increased from 153 Wm™ K- to 155 Wm~ K, caused by a growth of the grain sizes [8].
The cross and in-plane thermal conductivities in thin films can also differ in various magnitudes. It
can be necessary to consider both the diffusive in-plane heat flux and the ballistic Stefan-Boltzmann
like cross-plane heat flux, depending on the film thickness and the phonon mean-free path.
Heiderhoff et al. studied this transition of heat transport, specifically in non-crystalline TiO2 films
with decreasing film thicknesses [9]. Very local characterization techniques with a resolution in the
nanometer range are needed to investigate such effects. Scanning thermal microscopy (SThM) is an
appropriate method for characterizing the local thermal properties of thin films [10-13]. Earlier
observations indicated [14-16] that the SThM results may be affected by artefacts that are associated
with the sample topography and the measurement system itself. Therefore, in this work, we assess
the influence of sample topography, tip sample contact angle, and probe temperature on the thermal
SThM signal and evaluate and discuss the impact on the measurement results with respect to the
thermal conductivity of the film under investigation.

SThM thermal images are likely to be influenced by the sample’s topography, which has been
explained in literature in recent years. Hammiche et al. [12] found out that, even for homogeneous
samples, variations of the thermal contact area between tip and sample lead to an alternating heat
flow. His research was conducted while using homogeneous polystrene. Lehermeier [14] studied the
thermal properties of y-Cul thin films. His thermal SThM images showed a higher local thermal
conductivity at grain boundaries when compared to the conductivity inside a grain. He could not
exclude a significant topography influence on SThM measurements. Furthermore, Majumdar et al.
[11] and Sadehi et al. [17] discovered topography-related artefacts in their investigations. Shi et al.
[18] made SThM measurements of carbon nanotubes with different applied heating voltages to
eliminate the topography influence. Ruiz et al. [19] showed that after proper calibration SThM
measurements are suitable for measuring absolute values of the thermal conductivity of diamond-
like nanocomposite materials but Price et al. [13] critically questioned his results. It would not be
routinely possible to make absolute measurements of local thermal conductivities, since the thermal
signal was convoluted with the surface roughness. Sharp changes in relief would affect the contact
area and, thus, the heat exchange between tip and sample, which would falsify the thermal image.
Martinek et al. [20] used nethods, such as neural network analysis and three-dimensional (3D) finite
element modelling, to reduce this topography influence. An excellent overview about the
fundamentals and applications of SThM is given in the review of Gomes et al. [21].

This work considers the topography influence (Section 4.1), the temperature dependency
(Section 4.2), and the angle dependency (Section 4.3) to further study artificial effects in SThM
measurements. We investigate ultrathin films of hexagonal boron nitride (h-BN), thin films of copper
iodide in zincblende structure (y-Cul), and a test sample of silicon dioxide (SiO2) arranged in steps
and circles on top of bulk silicon (Si) by means of SThM. The film thickness of the h-BN sample ranges
from approximately 5 nm to 23 nm and, thus, approaches thickness values close to so called 2D
materials. Generally speaking, 2D materials are crystalline materials that only contain one atomic
layer, so there is virtually no third dimension. With their special mechanical, electrical, and thermal
properties, such as significant higher thermal conductivities and mechanical strength when
compared to the bulk materials [22], they are ideal candidates for the use in MSs. Promising
candidates are 2D h-BN, investigated here, graphene and 2D MoS: [23,24]. Other promising materials
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for future SThM investigations are diamond like films [25,26]. In recent years, research activities on
2D materials, including the evaluation and development of associated characterization techniques,
have enormously increased as the film thicknesses in MSs approaches atomic level. This work
provides another important contribution to the development and improvement of suitable
investigation methods, on the one hand, and to the thermal characterization of ultrathin h-BN films,
on the other hand.

2. Materials and Methods

2.1. Atomic Force Microscopy (AFM) and Scanning Thermal Microscopy (SThM)

In this work, we employ the following measuring equipment, which are explained in more detail
hereafter:

e  AFM system: Bruker Dimension Icon [27]; operating software: NanoScope 9.1

e  Thermal system: Bruker Vita Module [28] consisting of a power supply, a controller, a calibration
box, a variable resistor box, the nano-TA calibration sample, and the software Bruker VITA
studio v3.4

e  Thermal probe: SThM probe Bruker VITA-DM-NANOTA-200 [29]; The thermal probe is made
from crystalline silicon (Si) and can be heated repeatedly and reliably up to temperatures of 350
°C, according to manufacturer information. In the following, we use the term “probe” for the
whole thermal probe (as it can be purchased), and the term “tip” only for the sharp area on the
front side of the probe, which is directly touching the surface of the samples.

AFM is a method for characterizing surfaces according to the topographical, mechanical, and
electrical [30] properties on a nanometre scale. The sample is scanned with a predefined number of
lines and readings per line, which results in an image line by line. It utilizes different parameter
interactions between the probe and the investigated surface, such as the force, current, or voltage.
One of the main parts is a microfabricated probe with a sharp tip. Tip radii are in the small nm range
(depending on the AFM method employed), e.g., Bruker RESP-20 with a tip radius of 8 nm to 12 nm
and a tip height of 10 nm to 15 nm [31]. This probe is mounted on a piezoelectric actuator on whose
backside a laser beam is focused. The backside of the probe reflects the laser beam and directed to a
photo detector. By this means that it is possible to determine the deflection of the probe and, hence,
the topography of the sample. The three fundamental modes of AFM are the contact mode (Cont-
AFM), the non-contact mode (NC-AFM) and the intermittent-contact mode (IC-AFM), which
combines Cont-AFM and NC-AFM. Typically, the force between the tip and sample in Cont-AFM is
in the range of 10 nN to 100 nN [32,33].

SThM is a method for qualitatively mapping local thermal conductivities [34]. SThM
measurements create two images of the same position simultaneously, one of the topography and
one of the corresponding thermal properties. It is used in an AFM system together with an additional
thermal system. The AFM operates in contact mode, in which the tip scans over a sample directly
touching the surface. SThM utilizes the force interaction between the probe and sample to produce
topography images and variations of the electrical resistance within the probe to record thermal
images. The thermal system is responsible for set up, calibration procedure, and thermal
measurement. Both of the systems combined provide a local thermal signal that is assigned
simultaneously to the corresponding topography and the lateral tip position. For this, a thermal
resistive probe is heated with a constant heating power. The temperature of the probe depends on
the heat exchange between tip and sample and, therefore, on the sample’s local thermal conductivity.
If the local thermal conductivity of the sample is high, more heat can spread into the sample and so
the temperature of the tip (and consequently the temperature of the probe) decreases and vice versa.
A complex extension of the SThM method makes it possible to quantitatively map local thermal
conductivities [35,36]. However, this is not part of the present work.

At the beginning of the measuring process, the Wheatstone bridge of the thermal system (Figure
1) is balanced by manually adjusting the variable resistor R, in the variable resistor box. During
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this set-up process, the scanning process is disabled and the tip position is fixed. The thermal signal,
represented by V,,, = V; — V}, is transferred to the thermal system and it can be set to zero there.
After set-up the scanning process can be started. While the probe is scanning over the surface the
local thermal conductivities vary. At a position with a high thermal conductivity, the probe
temperature decreases as more heat spreads into the sample. As a result, the temperature dependent
electrical resistance of the probe, R, decreases and the Wheatstone bridge becomes unbalanced,
imposing a negative thermal signal V,,, = V; — V. < 0. Dark colours in the thermal images that are
presented here represent negative signals so that, in our measurements, “black” positions correspond
to a high local thermal conductivity. The influence of thermal radiation and convection on the thermal
results may be excluded, because the probe’s temperature is held nearly constant (only varies in the
tenth-Kelvin range) by the system during the measurements.

fixed resistor R1 R2 fixed resistor

@

variable resistor Rvar Rprobe

thermal probe

€L

Figure 1. Wheatstone bridge in Scanning thermal microscopy (SThM) measurement. The electrical
resistors R; and R, are fixed. R, is the temperature dependent electrical resistance of the
thermal probe. Before the measuring process the Wheatstone bridge is balanced to V,,, = V; —
V. = 0 by means of adjusting R, (based on [14]).

2.2. Samples and Materials under Investigation
In this work, we investigate three different samples:

e  Test sample TGXYZ02 [37]
e  Copper iodide in zincblende structure (y-Cul)
e  Hexagonal boron nitride (h-BN).

The test sample TGXYZ02 [37] was fabricated by the company MikroMasch® and it contains a
step and circle structure (SC-structure). This SC-structure is made of silicon dioxide (5iO2) on top of
a bulk silicon substrate. According to the manufacturer, the SiO: film is 96 nm * 3% high and the pitch
is 5 um + 0.1 pm. Overall, the chip has dimensions of 5 mm x 5 mm x 0.3 mm [37]. The active area is
1 mm x 1 mm and it contains a test pattern, as illustrated in Figure 2. The test structures will not be
thermally damaged by the heated tip during the SThM measurements, because bulk Si and SiO2
possess melting temperatures (1410 °C and 1710 °C, respectively) far beyond the maximum tip
temperature of 200 °C. The thermal conductivity of the SC-structure is significantly lower (bulk SiOz:
1.38 Wm™ K1) than the thermal conductivity of the Si substrate (bulk Si: 163 Wm™ K-1).
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Quadrant 1 Quadrant 3

Figure 2. Active area of the test samples. Quadrant 1: raised circles. Quadrant 2: horizontal raised
steps. Quadrant 3: submerged circles. Quadrant 4: vertical raised steps.

The second film under investigation consists of copper iodide in zincblende structure (y-Cul).
Cul is a binary metal halide semiconductor, which is transparent for visible light. Its band gap in
zincblende structure (y-Cul) is approximately 3.1 eV. Recently, excellent thermal and electrical
properties of Cul have been reported, which make it a promising candidate for improved
thermoelectric [38,39] and optoelectronic [40] applications. In this work, we investigate thin films of
v-Cul with a thickness of approximately 1 um on top of an amorphous glass structure. The thermal
conductivity of this y-Cul structure can be estimated to 0.5 Wm" K- [38].

The surface of the third sample is fabricated of hexagonal boron nitride (h-BN). In general, it
contains 15 to 18 layers of h-BN with a thickness of 0.33 nm to 0.4 nm each above a 300 nm thick SiO2
structure. Therefore, we can estimate the general h-BN thickness to 6.075 nm + 1.125 nm. The bottom
substrate is made of Si, with a thickness of approximately 1.5 mm. On the top layer, local rests of
PMMA particles may be present, which are residuals from the manufacturing process. However, all
of the thermal measurements have been carried out at PMMA-free sites, as confirmed by topographic
maps. The useful position investigated in this work (Section 3.2) contains a vertical step with more
layers of h-BN caused by the manufacturing process, to make qualitative SThM measurements
possible. With a step height of 15.5 nm, we can estimate the h-BN thickness on top of the step to
21.575 nm # 1.125 nm. Layers of h-BN are electrically insulating and they possess a comparatively
high thermal in-plane conductance at the same time. Together with other chemical, mechanical, and
electrical properties, h-BN is a promising 2D material for future semiconductor devices in the field of
optoelectronics, functional composites, accumulators, or electrically insulating substrates. It seems to
have high potential for electrical insulating layers, which can spread heat away from critical
structures effectively [41]. The properties of h-BN are explained here in more detail due to its
potential. The highly anisotropic thermal conductivity of h-BN is the most important property, as far
as this research is concerned. The in-plane thermal conductivity is estimated to be between 100 Wm-
K-t and 2000 Wm™ K-!, whereas the cross-plane values fall to only a few Wm™ K- [42—44]. Boron
nitride nanosheet (BNNS), another term for 2D h-BN, is a layered material with a graphite like
structure [45]. This structure is frequently called the honeycomb-structure due to its hexagonal
weave. Nitrogen and boron atoms are regularly arranged and they are held together by covalent
bonds. Van der Waals forces cause the attraction between two layers. The lattice mismatch is only
1.7% [46], which makes the h-BN structure similar to graphene. Therefore, it is also possible to
combine h-BN layers and graphene layers to a hybrid structure for fully two-dimensional (2D) metal-
insulator-semiconductor (MIS) composites [47]. Unlike graphene, h-BN is an electrical insulator with
a band gap between 5.2 eV and 5.9 eV. It has low dielectric losses with a permittivity between 2 and
4 [47,48]. The hexagonal structure is stable until a melting point of approximately 2967 °C and,
therefore, will not be affected by our SThM measurements (tip temperature < 200 °C). The use of h-
BN in semiconductor devices is still at a very early stage and there is a huge variety of other promising
2D materials for MS, such as MoS:, WSz, MoSez, and WSe: [41]. The first synthesis of BNNS was
performed in 1842 by the reaction between boric oxide and potassium cyanide [49]. Today, CVD is
the most effective technique for large-scale synthesis of BNNS. Optical microscopy, Raman
spectroscopy, Fourier transform infrared spectroscopy (FITR), scanning electron microscopy (SEM),
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transmission electron microscopy (TEM), and AFM are the most common characterization methods
[41].

3. Experimental Set-up

3.1. Probe Calibration

Before measuring with SThM the calibration of the probe is necessary. That ensures that the
applied heating voltage corresponds to the correct probe (and also tip) temperature. After probe
calibration, it is possible to set a specific temperature and the software automatically applies the
corresponding voltage to the probe. Thus, it is possible to assign the thermal image acquired to the
corresponding probe temperature. Calibration is performed with the software VITA Studio v3.4 and
the nano-TA calibration sample, which are part of the thermal system [28]. The nano-TA calibration
sample contains the following three materials with different melting points T:

e  Polycaprolactone (PCL; T,, = 55 °C)
e  Polyethylene (PE; T, = 116 °C)
° Polyethylene terephthalate (PET; T, = 235 °C)

The calibration procedure was performed at two random positions of each material to increase
the accuracy of the calibration procedure. At the beginning of this process, the tip is brought to the
sample’s surface by the piezoelectric actuator until it slightly touches the surface. The probe
deflection is then set to zero. Currently, the temperature of the probe is increased in a system specific
temperature ramp (defined within the thermal system), so that probe, tip, and locally the calibration
sample heat up. As a consequence, the sample material expands and thus, the deflection of the probe
increases as the z-position of the probe clamping is fixed. After reaching the melting point of the
calibration sample material the tip sinks into the surface and hence the deflection of the probe sharply
decreases. In contact mode, the AFM records the deflection of the probe, represented in mV, and
assigns it to the corresponding heating voltages. As the melting points of the three calibration
materials are known the probe temperature can be assigned to the corresponding heating voltages.
For the present study, the procedure described yielded the calibration values that are given in Table
1.

Table 1. Probe Calibration points in this work.

Temperature (°C) 55 (T, of PCL) 116 (T,, of PE) 235 (T, of PET)
Heating voltage (V) 2.90 +0.03 4.80 +0.03 6.78 +£0.03

Subsequently, the thermal system performs a quadratic fit in order to relate the heating voltage
Vi to the probe temperature T: f(x) = ax? + bx + c. The coefficients, a, b, and c, are calculated while
using the values of Table 1. The result is given in Equation (1), with which it was possible to estimate
the probe temperature in our investigations:

Vy(T) = -8 x 1075

v
oy T2 +0.045 ;T +0.673V (1)

3.2. Useful Sample Positions of h-BN Sample

Before performing our measurements, it was not completely clear whether SThM could be
applied to ultrathin films with high in-plane thermal conductivities like h-BN. Similar measurements
have not been found in literature to the present time. Therefore, samples with few layer h-BN were
investigated. We focused on the thermal contrast at positions in the transition zones between different
thicknesses of h-BN, as the system utilized in this work is not able to quantitatively map local thermal
conductivities. As our sample shows sites, where a few layers of h-BN were added caused by the
manufacturing process (general h-BN thickness: 6.075 nm =+ 1.125 nm; h-BN thickness on top of the
vertical step: 21.575 nm + 1.125 nm), it is perfect to qualitatively study the thermal conductivity of
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few layer h-BN with different thicknesses. Figure 3 exemplarily illustrates a useful position on the h-
BN sample. Finding useful positions regarding the y-Cul and TGXYZ02 samples in this work was
not as critical, as the film thicknesses were much higher (>100 nm) and in-plane thermal
conductivities much lower (<165 Wm- K™') when compared to the h-BN sample. Furthermore, the
special geometry of TGXYZ02 and the high roughness of y-Cul (Rq of 110 nm, whereas h-BN sample
had an Rq of 4.15 nm) simplify the search for useful positions.

Figure 3. Useful positions on the h-BN sample. (a) Entire sample with test structure. (b) and (c) Zoom

into investigated area. We studied positions with different thicknesses of h-BN caused by scrapping
off of some h-BN layers during the manufacturing process. The golden test structure was utilized for
other measurements and is not relevant for this work.

4. Results and Discussion

4.1. Demonstration of Topography Influences of SThM Using a y-Cul Sample

We performed SThM measurements on y-Cul samples with a probe temperature of 80 °C to
demonstrate the topography influence of SThM. Figure 4a,b illustrate the topography and thermal
images. These images show a strong topography influence, as the y-Cul grains are also visible on the
thermal image marked by the white-dotted triangles. The two-dimensional (2D) plots of the
normalized thermal and the normalized topography signal at the white cut line look quite similar
(compare red squares and blue dots in Figure 4c), highlighting the strong topography influence in
this SThM measurement. The subtraction of the normalized topography signal (Figure 4c, blue dots)
from the normalized thermal signal (Figure 4c, red squares) results in a curve that fluctuates around
zero (Figure 4c, yellow triangles). The mean value of the yellow subtraction curve is —0.02226 (n: 256;
median: —0.01036), with a standard deviation of 0.06459. The minimum value is -0.20071 and the
maximum value is 0.14675. As the whole surface consists of Cul grains, the local thermal
conductivities should nearly be equal on every position, which would result in a subtraction curve
similar to the topography signal with an offset on the y-axis. It might also be possible that the course
of the thermal signal is influenced by the substrate’s local thermal conductivity at positions, where
the thickness of y-Cul is quite thin, with only a few grains of y-Cul. However, the strong match of
the topography and thermal curve cannot be denied. In summary, the subtraction curve fluctuating
around zero is a strong indicator for the topography influence on these SThM-measurements while
using y-Cul. Producing similar curves like Figure 4c at different cut lines results in similar subtraction
curves, which also fluctuate around zero with statistical values that are similar to those given above.
In the following sections, we discuss the influence of the parameters probe temperature and touching
angle in more detail.
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Figure 4. (a) Unmodified topography image of a y-Cul thin film with the corresponding original (as
recorded) height scale. (b) Unmodified thermal image under a probe temperature of 80 °C with the
corresponding original thermal scale. (¢) Graphical representation of the normalized thermal signal
(Ntherm) and normalized topography signal (Ntopo) at the white cut lines of (a) and (b). Subtracting
Ntopo from Ntherm results in the yellow subtraction curve, which is fluctuating around zero.

4.2. Probe Temperature Dependency of the SThM Signal

The following measurements were performed in order to study the probe temperature

dependency of the thermal signal:

1.

h-BN on S5iO2: Measurement positions similar to Figure 3; Probe temperatures: 50 °C, 100 °C, and
200 °C (see Figure 5)

TGXYZ02 raised circles: Quadrant 1 in Figure 2; Probe temperatures: 50 °C, 100 °C, and 200 °C
(see Figure 6)

We investigated the thermal contrast by means of the following statistic parameters:

Mean thermal contrast: The thermal signals in each diagram in Figures 5 and 6 were applied
with an offset on the y-axis, so that the minimum is always zero. This is permitted, as the thermal
signal represented by voltage is a potential unit. Hence, the mean value between the two
maximum values (left and right of the step) is defined as “mean thermal contrast”. Those two
measuring points define the statistic area and represent the local maxima of the thermal signal
on top of the step where the difference quotients of first order change their signs. For the h-BN
sample with T, e = 50 °C (red curve in Figure 5e) there are no corresponding maxima for
which reason we use the same statistic area as the one from Tjq,. = 100 °C.

Standard deviation of the mean thermal contrast.

Minimum thermal contrast: Minimum value within the statistic area.

Median thermal contrast: Median value within the statistic area.

Maximum thermal contrast: Maximum value within the statistic area.

Figure 5 illustrates the topography and thermal data of the investigated h-BN sample and Table

2 contains the statistic parameters, which represent the thermal contrast, at the corresponding probe
temperatures. The statistic parameters presented in Table 2 are compared to the ones of Table 3 in
Figure 7. The step height along the white horizontal cut line in Figure 5a can be estimated to
approximately 15.5 nm (mean value of black curve in Figure 5f from 2.09 um-3.203 um; n: 58).
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Figure 5. (a) Unmodified topography image of an h-BN thin film with the corresponding original (as
recorded) height scale containing a step. (b) Unmodified thermal image under a probe temperature
of 50 °C with the corresponding original thermal scale. (¢) Unmodified thermal image under a probe
temperature of 100 °C with the corresponding original thermal scale. (d) Unmodified thermal image
under a probe temperature of 200 °C with the corresponding original thermal scale. (e) Corresponding
2D plots of the thermal signal at the white cut lines in (b), (c), and (d). The thermal signals were
applied with an offset on the y-axis so that the minimum is always zero. (f) Comparison of the
topography signal at the white cut line in (a) with the thermal signal at the white cut line in (d), where
Tyrobe i 200 °C.

Table 2. Investigation of the thermal contrast (curves in Figure 5e) at different probe temperatures by
means of specific statistic parameters.

Probe Mean Standard Minimum Median Maximum
Statistic Area Thermal .. Thermal Thermal Thermal
Temperature Deviation
©C) (um-pm) Contrast W) Contrast Contrast Contrast
(V) V) (V) V)

50 2.070-3.203 (n = 59) 0.184 0.041 0.087 0.202 0.227

100 2.070-3.203 (n = 59) 0.523 0.055 0.402 0.534 0.625

200 2.090-3.320 (n = 64) 1.195 0.145 1.027 1.138 1.647

The results show that, for the h-BN sample, in this investigation (ultrathin sample with up to 20
nm in thickness with a high in-plane thermal conductivity up to 2000 Wm™" K-!), the thermal contrast
strongly depends on the probe temperature. As can be seen in Table 2, with an increasing probe
temperature, all of the statistic thermal parameters increase (within nearly constant statistic areas).
The fact that the thermal signal is significantly higher on top of the step than beyond, leads to the
conclusion that the thermal conductivity might be lower on top of the step, when compared to
positions beyond. This seems logic, as the step contains more layers of h-BN, which should lead to a
decreasing thermal conductivity.

At the edges of the step in Figure 5e super elevations of the thermal signal are visible,
predominately for Ty.gne = 200 °C. These local maxima, which enclose the statistical area (Table 2),
are indicators of the topography influences on the thermal signal. The thermal signal should also be
constant in contrast to the super elevations, as the layer thickness of h-BN on top of the step is
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constant. As a result, these values might represent artificially overrated thermal signals. This is a
reason why we do not only consider the mean thermal contrast, but also the median thermal contrast
in this discussion.

In Figure 5e, it can be observed that the thermal signal right to the step is significantly higher
than left to the step and increases gradually. Comparing the corresponding mean values (which in
the presented accuracy range do not differ from the median values as in these areas no super
elevations occur) of the thermal signals left and right to the step this is confirmed. Right to the step
the values are higher by 0.2 V (Tyrope = 50 °C), 0.3 V (Tyrone = 100 °C), and 0.4 V (Tyope = 200 °C). It
seems that in the present measurements the increase of the thermal signal after the step is an artefact
that represents a seemingly lower thermal conductivity. In theory, the values left and right of the step
should be nearly constant and equal, as the number of h-BN layers is equal left and right of the step.
We expect the sample construction to be the reason for this effect. On the one hand, it might be
possible that the thermal resistance between h-BN and the SiO: substrate is significantly higher on
the right side of the step, being caused by the manufacturing process. As the h-BN thickness right
and left of the step is estimated to 6.075 nm # 1.125 nm, the thermal resistance might have a huge
influence on the amount of heat flowing from tip to sample, which would affect the representation
of the local thermal conductivities. On the other hand, it could also be possible that, as a matter of
fact, the local thermal conductivities on the right side of the step are lower when compared to the left
side, also caused by the manufacturing process. These possible reasons need to be considered in more
detail in future studies.

It can also be observed (Figure 5f) that both the topography signal and the thermal signals show
a kind of ripple especially on the top of the step. In theory, the signals should be almost constant as
the layer thickness is nearly constant because of the same number of h-BN layers on and beyond the
step. This fact could allow for conclusions according to the oscillation frequency of the entire
measuring system (piezo, probe, and sample). When the tip approximates the step, the piezo needs
to adjust the z-position of the probe. This leads to varying thermal contact areas between tip and
sample, as the force between the tip and sample needs to be adjusted. We can roughly estimate this
frequency to 6.7 Hz as a first approach with a tip velocity of approximately 10 pms (standard in all
our measurements) and an oscillating period of 1.5 um (estimated by the yellow curve in Figure 5e).
This rough approach does not cover the influence of the scanning parameters (proportional and
integral gain), the material parameters (Young’s modulus and surface hardness), and the delay of the
thermal signal from probe to thermal system. Another impact on this oscillation frequency is the
inertia of the thermal system to adjust the probe’s temperature and the thermal resonance frequency
of the entire system. All those influences would have to be considered in a next step to explain this
ripple in more detail.

We made investigations with the raised circles of TGXYZ02 (quadrant 1 in Figure 2) under
similar conditions in order to compare the statistic parameters and the results of the h-BN
measurement to a sample with well-known topography and thermal properties. Figure 6 illustrates
the corresponding topography and thermal data and Table 3 contains the statistic parameters, which
represent the thermal contrast, at the corresponding probe temperatures. The step height along the
white horizontal cut line in Figure 6a can be estimated to approximately 120.0 nm (mean value of
black curve in Figure 6f from 1.133 pm-3.984 um; n: 74).
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Figure 6. (a) Unmodified topography image of the raised circles of the test sample TGXYZ02
(quadrant 1 in Figure 2) with the corresponding original (as recorded) height scale. (b) Unmodified
thermal image under a probe temperature of 50 °C with the corresponding original thermal scale. (c)
Unmodified thermal image under a probe temperature of 100 °C with the corresponding original

thermal scale. (d) Unmodified thermal image under a probe temperature of 200 °C with the
corresponding original thermal scale. (e) Corresponding two-dimensional (2D) plots of the thermal
signal at the white cut lines in (b), (c) and (d). The thermal signals were applied with an offset on the
y-axis so that the minimum is always zero. (f) Comparison of the topography signal at the white cut
line in (a) with the thermal signal at the white cut line in (d), where T is 200 °C.

Table 3. Investigation of the thermal contrast (curves in Figure 6e) at different probe temperatures by

means of specific statistic parameters.

Mean Minimum  Median .
Probe L. Standard Maximum
Statistic Area Thermal . . Thermal Thermal
Temperature Deviation Thermal
°C) (um-—pm) Contrast V) Contrast Contrast Contrast (V)
V) V) V)
50 1.094-4.023 (n=76) 0.667 0.410 0.145 0.512 1.499
100 1.094-4.063 (n=77) 1.964 0.505 1.438 1.768 3.793
200 1.289-4.180 (n =75) 2.208 0.246 1.756 2.235 2.819

The measurements with TGXYZ02 lead to similar results according to the thermal contrast when
compared to the h-BN sample until a probe temperature of 100 °C. From probe temperature 100 °C
up to 200 °C a kind of saturation of the thermal contrast can be found here in contrast to the
measurements with the h-BN sample. This fact is further discussed below.

All of the curves in Figure 6e show super elevations at the edges of the step, which represent the
local maxima and define the statistic area. These super elevations are also an indicator of the
topography influences. It seems that vertical steps extraordinary raise the thermal signal. As a result,
these values might represent artificially overrated thermal signals.

In Figure 6e, we can also find a kind of ripple in the topography and the thermal signal. With a
tip velocity of approximately 10 ums (standard in all of our measurements) and an oscillating period
of 1.5 um (estimated by the blue curve in Figure 6f), we can roughly estimate the frequency of the
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thermal signal to 6.7 Hz. The oscillation frequency of the topography signal seems to be lower. Here,
with an oscillating period of approximately 2 um (estimated by the black curve in Figure 6f), we come
to an oscillation frequency of 5 Hz. It can also be found an x-offset of the thermal signal when
compared to the topography signal of —0.118 pum (Tygpe = 50 °C), 0.040 pm (Tyrepe = 100 °C) and
+0.156 um (T,ope = 200 °C) (approximated on the left side of the step).

Figure 7 illustrates the statistic parameters of Tables 2 and 3 of both measurements. All statistic
parameters for the measurement with the h-BN sample increase with an increasing probe
temperature. Mean, median, and minimum thermal contrast increase more or less linearly, whereas
the maximum thermal contrast shows a greater rise starting from probe temperature 100 °C upwards,
which also causes a greater standard deviation. The measurement with TGXYZ02 also shows an
increase of mean, median, and minimum thermal contrast with an increasing probe temperature, but
shows a kind of saturation starting from probe temperature 100 °C upwards. This also becomes
obvious by the decreasing maximum thermal contrast and, hence, standard deviation from 100 °C to
200 °C. In summary, we can say that the thermal contrast in our h-BN measurements increases with
increasing probe temperature until 200 °C, whereas, in our measurements, with the TGXYZ02
sample, we find indicators of saturation of the thermal contrast at 100 °C. A possible reason for this
might be the influence of the high in-plane thermal conductivity of the h-BN sample and its ultra-
thin film thickness. Furthermore, for future comparisons, we recommend choosing the median
thermal contrast as the comparative parameter instead of the mean thermal contrast in statistic areas,
which contain super elevations. The reason for this is that the median thermal contrast is able to
compensate the effect of the artificial super elevations. For demonstration purposes, we evaluated
both, the median and mean thermal contrast in this work.

a) Sample: h-BN b) | Sample: TGXYZ02
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Figure 7. Statistic parameters of Tables 2 and 3 of both measurements in dependency of the probe

temperature. (a) Statistic parameters of measurement with h-BN sample; (b) Statistic parameters of
measurement with TGXYZ02 sample.

4.3. Angle Dependency of the SThM Signal

In a further step, we investigated the angle dependency of the thermal signal. The investigation
was performed while using the submerged circles of TGXYZ02 (quadrant 3 in Figure 2) as a circle
structure of this kind is suitable for illustrating thermal signals with different touching angles in a
single thermal image. Figure 8 represents the definition of the touching angle. Figure 9a,b illustrate

the topography of the submerged circles of the test sample TGXYZ02 (quadrant 3 in Figure 2). The
following definitions were made:

e  Touching angle: Angle between the tangent of the step and the middle plane of the tip, looking
upside down according to Figure 8. We vary the touching angle by moving the middle plane of
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the tip by varying the y-positions of the cut lines within the software. The touching angle also
increases with increasing y-position. The 90° case is the case of symmetry.

Isometric view Top view

plane of tip

y-position

plane of tip

Figure 8. Definition of the touching angle as the angle between the middle plane of the tip and the
tangent to the submerged circle structure.

e  Thermal contrast: Maximum value of the thermal signal for each curve in Figure 9c,d. The
minimum value was set to zero, which is permitted, because the thermal signal might be
interpreted as a potential represented by voltage.

e Absolute strength of super elevations: Highest value of each super elevation subtracted by the
minimum value in the nearly constant area right of the super elevations. This evaluation was
performed for all of the super elevations on the right side in Figure 9¢,d.

e  Relative strength of super elevations: Absolute strength of each super elevation divided by the
minimum value in the nearly constant area right of the super elevations in Figure 9¢,d. This
evaluation was performed for all of the super elevations on the right side in Figure 9¢,d.

Figure 9a was recorded by IC-AFM to overcome disadvantages of the SThM topography image
(Figure 9b). As the IC-AFM tip is much sharper as the SThM tip, it displays the topography with
more precision than SThM. In addition, a 1st order plane fit with the NanoScope software corrected
the horizontal sample inclination. The depth of the submerged circles can be measured to 114.7 nm
(mean value of black curve in Figure 9a between 4.219 um and 6.289 um; n: 54). Figure 9c,d show the
retrace and trace curves for different y-position of the horizontal cut line and, thus, different touching
angles. Table 4 contains with the y-position associated statistic parameters of the thermal contrast.

Table 4. Thermal contrast, and absolute and relative strength of the super elevations of retrace and
trace curves in Figure 9c,d at different y-positions of the cut line and hence different touching angles.

y-Position of Cut Line (um) 085 1.0 1.4 1.7 2.2 (angle =90°) 2.7 3.0

Retrace: Thermal Contrast (V) 4.5 4.3 4.2 3.8 33 25 2.0
Trace: Thermal Contrast (V) 4.6 4.7 4.4 4.1 35 2.7 23
Retrace: Absolute Strength of —, o/ o (3 4y 1.34 105 083

Super Elevations (V)
Trace: Absolute Strength of o 50 | () 143 112 090 073

Super Elevations (V)
Retrace: Relative Strengthof ;) o) 7 (7 1.04 125 110

Super Elevations (1)
Trace: Relative Strengthof .. 01 (74 (7 0.85 104 094

Super Elevations (1)
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Figure 9. (a) Topography image of the submerged circles of the test sample TGXYZ02 (quadrant 3 in
Figure 2) with the corresponding two-dimensional (2D) plot along the white cut line performed using
intermittent-contact mode (IC-AFM); (b) Unmodified topography image of the submerged circles of
the test sample TGXYZ02 (quadrant 3 in Figure 2) with the corresponding 2D plot along the white cut
line performed using scanning thermal microscopy (SThM); (¢) Unmodified thermal image under a
probe temperature of 100 °C with the corresponding 2D plots of retrace under different y-positions
of the cut line and hence touching angles; (d) Unmodified thermal image under a probe temperature
of 100 °C with the corresponding 2D plots of trace under different y-positions of the cut line and hence
touching angles.

In Table 4, it might be observed that with increasing y-position of the cut line the thermal
contrast for retrace and trace decreases (with one exception at y-position 1.0 um). This indicates that
the thermal contrast does not depend on the touching angle. If the thermal signal would depend on
the touching angle, the thermal contrast would rise after passing the symmetric angle of 90° (y-
position 2.2 um). A possible reason for this decrease in thermal contrast is a progressive damage and
pollution of the tip with increasing y-position, which would affect the effective thermal contact area
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between tip and sample and influence the thermal contrast. This effect needs to be investigated in
more detail in future studies by using new probes, different materials, and larger dimensions of the
investigated areas. It might also be possible to investigate this effect by using an SThM system
included in an SEM system, which makes it possible to get “live-videos” of the scanning process. It
can also be seen from Table 4 that the absolute and relative strength of the super elevations of retrace
is always greater than for trace (with one exception at y-position 1.0 um). Furthermore, it can be
stated that with increasing y-position of the cut line the absolute strength for retrace and trace
decreases. The course of the relative strength for both retrace and trace is not axisymmetric to the 90°
line. These observations, which can also be seen in Figure 10b, are indicators that the absolute and
relative strength of the super elevations do not depend on the touching angle. Figure 10a shows the
thermal contrasts of trace and retrace over the y-position of the cut line and, hence, of the touching
angle. The thermal contrast value decreases with an increasing y-position of the cut line and it is
always greater in the trace direction than in the corresponding retrace direction. Figure 10b shows
the absolute and relative strength of the super elevations of trace and retrace over the y-position of
the cut line and, hence, of the touching angle. All four curves in Figure 10b do not show signs for axis
symmetry to the 90° line. These results appear somehow surprising, because in theory we would
expect a small dependency of the thermal contrast and the strength of the super elevations on the
touching angle as the touching areas vary with the touching angle. Obviously, this effect is negligible,
at least for the present investigation.

a) b)
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Figure 10. Statistic evaluation of the thermal contrast and the strength of the super elevations. (a)
Comparison of the thermal contrast of trace and retrace in dependency of the y-position of the cut line
and hence the touching angle; (b) Comparison of the absolute strength of the super elevations of trace
and retrace (black curves) and comparison of the relative strength of the super elevations of trace and
retrace (blue curves) in dependency of the y-position of the cut line and hence the touching angle.

In Figure 9c,d, we can also see that the thermal signals slightly decrease at the bottom of the step
for each probe temperature with an increasing x-position for all curves. The largest difference
observable is the mirroring of the sharp and smooth transition zones at the bottom left and right of
each curve. In trace the sharp zones are on the bottom right, whereas in retrace they are on the bottom
left. The super elevations, which partly represent the thermal contrast here, are another strong
indicator of the topography influence on the thermal signal. In each measurement, they occur exactly
at the beginning and end of the step where the thermal contact areas vary biggest. We can not find a
ripple in the thermal signals whereas the topography signal shows one, which is supposed to be
artificial. With a tip velocity of approximately 10 ums (standard in all our measurements) and an
oscillating period of 1.95 um (estimated by the black curve in Figure 9b), we can roughly estimate the
frequency expected for the thermal signal to be 5.1 Hz. We do not find a strong indicator that the
mean thermal signals are significantly different when comparing the values left and right of the step
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for each curve. This seems logic as the local thermal conductivities left and right of the step should
be equal as material and layer thickness are the same here. The thermal conductivity at the bottom of
the step must be higher as the material is bulk Si here, which has a higher thermal conductivity (bulk
Si: 163 Wm K1) than SiO:z beyond (bulk SiO2: 1.38 Wm™ K!). Measurement and theory match in this
point.

5. Conclusions

In this work, we applied SThM on diverse thin and ultrathin films to approach and explore

limitations of this method. Several conclusions can be drawn:

1.

Thermal signals at vertical steps (especially occurring super elevations at the beginning and end
of a vertical step) always have to be questioned critically as the thermal signal may not represent
the correct local thermal conductivity here. We suggest ignoring the thermal signal near the
vertical steps. The step heights in the present investigations varied from 15.5 nm (h-BN sample)
to 120.0 nm (TGXYZ02 sample). In some measurements we also found that after passing a step
the thermal signal is significantly greater than before, where it should be equal (h-BN sample:
0.2V (Tyrobe = 50 °C), 0.3 V (Tprope = 100 °C), and 0.4 V (Tyrope = 200 °C)). If present, this effect
also has to be critically considered.

SThM is a useful technique that is applied to ultra-flat surfaces but results according to samples
with a high roughness (Cul sample had an Rq of 110 nm, whereas the h-BN sample had an Rq of
4.15 nm) must always be questioned critically. Samples with a super-flat surface without vertical
steps are especially suitable for SThM technique. Between step angels of 90° and flat samples, in
our current investigations, we were not able to estimate or deduce some kind of critical step
angle with respect to the influence on the thermal signal. Further research needs to be done.
The combination of low film thickness (<50 nm), high surface roughness (Rq > 50 nm), vertical
steps, and high in-plane thermal conductivity (>200 Wm™ K-!) makes the results more
unsatisfying and more difficult. These are the main limiting factors of useful SThM
measurements.

Our investigations show that the thermal contrast depends on the probe temperature. This was
predominantly the case for the ultrathin h-BN sample (ultrathin sample with a film thickness at
or below 23 nm with a high in-plane thermal conductivity up to 2000 Wm- K-'). Therefore, for
similar h-BN samples, we suggest a probe temperature of 200 °C and for samples similar to
TGXYZ02 (step height 120.0 nm consisting of Si and SiOz) we suggest probe temperatures of 100
°C. Greater probe temperatures may also increase the thermal contrast, but lead to a higher
mechanical damage of tip and sample. For other samples, researchers need to be aware of
possible saturation effects and it might be necessary to find some kind of optimal probe
temperature, depending on the sample.

There is no indicator that the thermal contrast depends on the touching angle. In theory, we
would expect a small dependency of the thermal contrast on the touching angle, as the touching
areas vary depending on the touching angle. Our investigation with TGXYZ02 shows that this
effect obviously is negligible. The thermal contrast decreased from 4.5 V to 2.0 V (retrace curves
of TGXYZ02, submerged circles) and from 4.6 V to 2.3 V (trace curves of TGXYZ02, submerged
circles) with an increasing touching angle, but did not show signs of axis symmetry to the 90°
line. Additionally, the absolute and relative strength of super elevations did not depend on the
touching angle. The relative strength of the super elevations varied from 0.77 to 1.25 (retrace
curves of TGXYZ02, submerged circles) and from 0.74 to 1.04 (trace curves of TGXYZ(2,
submerged circles) and did not show signs of axis symmetry to the 90° line.

Some of our thermal and topography signals showed a kind of ripple after passing a vertical
step. The IC-AFM measurements confirmed that the ripples in topography are artefacts and,
hence, we also suppose the ripple in the thermal signals to be artificial. The frequency of those
ripples can be estimated between 5 Hz (topography signal of TGXYZ02) and 6.7 Hz (thermal
signal of TGXYZ02). We suppose the natural frequency of the cantilever, the surface hardness of
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the sample, and the proportional gain to influence this ripple most but unfortunately, we were
not able to explain the origin of the ripples sufficiently and, thus, further research is necessary.

7. The course of the thermal signal of the h-BN sample suggests the thermal conductivity to
decrease with increasing film thickness in our investigations. Absolute numbers of the local
thermal conductivities cannot be obtained with the SThM system used in this work.

8.  Lastbutnotleast, we were able to successfully apply the SThM method to h-BN films at or below
23 nm, which has not been reported before (general h-BN thickness: 6.075 nm + 1.125 nm; h-BN
thickness on top of the vertical step: 21.575 nm + 1.125 nm).

The achieved results demonstrate that the limits of the method to qualitatively map the thermal
conductivity of ultrathin films are not reached yet. Further research is necessary in order to fully
understand the capabilities and limitations of SThM. Especially with respect to the interdependence
of topography and the thermal signal it is necessary to increase the number of SThM measurements
and to further explore different materials, such as diamond like films [25,26], surface properties, step
angles, and scanning parameters, such as the tip velocity. By this means and in combination with
FEM simulations it could be possible to reduce or even eliminate the topography influence in future
thermal images.
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