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Abstract: Concrete is known as a quasi-brittle material and the microplane model has been proven
to be a powerful method to describe its constitutive features. For some dynamic cases, however,
numerous microplane models used successfully at small strains are not sufficient to predict the
nonlinear behaviour of damaged concrete due to large deformations. In this contribution at hand,
a combined plasticity-damage microplane model extended to the finite strain framework is formulated
and regularised using implicit gradient enhancement to achieve mesh insensitivity and to obtain more
stable finite element solutions. A modified smooth three surface Drucker-Prager yield function with caps
is introduced within the compression-tension split. Moreover, a viscoplastic consistency formulation is
implemented to deliver rate dependency at dynamic cases. In case of penetration into concrete materials,
the proposed model is equipped with an element erosion procedure to yield a better approximation of
crack patterns. Numerical examples on impact cases are performed to challenge the capability of the
newly proposed model to existing experimental data.

Keywords: concrete; microplane; plastic-damage model; finite strain; implicit gradient enhancement;
rate dependency

1. Introduction

Throughout a building’s service period, complex behaviour can be observed in concrete structures,
such as for instance military base anchorages, nuclear reactors, long-span bridges, and oil platforms, which
are subjected to impact phenomena, natural disasters such as earthquake or seismic loading, detonation,
or blast loading with high intensity. These circumstances lead to dynamic fractures in concrete material up
to the final failure of its structure. Finite element simulations are capable of modelling various phenomena
in concrete using material modelling developed extensively up to now. Concrete itself is known as a
quasi-brittle material with heterogeneous complex nature as a result of its constituent materials, such as
cement paste and different type of aggregates. The behaviour of concrete changes from linear elastic to
highly nonlinear inelastic due to several physical phenomena as microcracking, crushing or even plasticity
caused by tension, compression, or combination of both tension and compression. These conditions yield
difficulties in modelling concrete, especially in terms of constitutive laws and numerical aspects regarding
the finite element method.

Several approaches for modelling these phenomena have been employed in order to describe concrete
responses realistically in the context of continuum mechanics. The most renowned approaches are using
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continuum damage mechanics, plasticity, or a combination of damage and plasticity. Continuum damage
mechanics is characterised by the degradation of the material stiffness describing the inelastic behaviour
at post-peak range. Meanwhile, plasticity deals with elastic-plastic conditions as a result of the stress state,
which are evaluated with respect to the applied yield criterion. At monotonic loadings, in fact, either
damage or plasticity models are sufficient to represent softening behaviour of concrete. Nonetheless, by
the fact that a structure is subjected not only to monotonic loading but also to unloading-reloading states
altogether, the necessity of a coupled plastic-damage formulation is inevitable. Various plastic-damage
approaches for concrete can be found in [1-9]. Moreover, other plastic-damage models with different
features are also available, e.g. for impact failure [10], for concrete spalling considering creep-shrinkage [11],
for ductile failure [12], and for granular materials at low confining pressure [13].

In the last three decades, a powerful model for concrete materials, namely the microplane approach,
has been studied and developed extensively since it was pioneered by [14]. The concept of microplanes
is characterised by a projection of the strain tensor to random planes of a microscale. This concept is
straightforward to understand the relation between strain and stress vectors in each microplane, which
is eventually equivalent to macroscopic strains and stresses. This approach was then improved by [15],
namely the model M1 and subsequently, it was developed further up to the recent version M7 employing
stress-strain bounds [16]. As discussed in [17], however, the conventional microplane models using either
the normal-tangential (N-T) or the volumetric-deviatoric-tangential (V-D-T) split have several mechanical
deficits. The full range of Poisson’s ratio cannot be represented by the N-T split, while microplane elastic
constants with the unique macroscopic-microplane relation is not possible to be considered by the V-D-T
split. As observed in [18], the ambiguity of the deviatoric-tangential projection allows a lot of freedom
in the V-D-T split and it leads to problems in numerical implementation. Therefore, the deviatoric and
tangential components in the V-D-T split were merged and resulted in the volumetric-deviatoric (V-D)
split, see [19].

For strain softening at the post-peak regime, however, problems relating to ill-posed differential
equations and strain localisation occur. In consequence, these issues lead to pathological mesh
dependencies and unstable finite element solutions eventually indicated by slow convergence rates. The
so-called implicit gradient enhancement introduced in [20,21] has been proven to tackle these problems,
and it has been successfully implemented to regularise the microplane damage model using the V-D split
in [22]. Moreover, the gradient-enhanced microplane model was combined with Drucker—Prager plasticity
in order to show the softening response of concrete [23], while the coupled plastic-damage model was
developed in [24] for modelling concrete in the state of unloading and reloading.

Notwithstanding that the established microplane approaches at small strains have been effectively
used to describe concrete behaviour, but finite deformations occur in concrete at dynamic cases. In
particular, at high confined pressure on tube-squash tests according to experiments conducted in [25],
approximately 30-50% of concrete strains were exhibited at deformed shapes with no visible damage or
cracks observed. This phenomenon has been supported by numerical simulations using a finite strain
microplane damage model in [26], while simulation results obtained by the small strain version showed
that the concrete lost almost its entire stiffness. Meanwhile, using softening microplane plasticity at finite
strains proposed in [27,28], large plastic deformations were demonstrated for similar cases. Furthermore,
strains up to 100% may happen in the state of impact loading due to bored injection piles or anchors,
whereas strains achieve approximately 30% while subjected to blast loading or ground shock waves, as
mentioned in [25]. Meanwhile, under seismic or earthquake loading, columns of structures were deformed
at around 15% of strains until collapse based on [25]. In the case of projectile or missile penetration into a
concrete wall, beyond 100% of effective plastic strain occurred [29,30].

Due to all aforementioned circumstances, the small strain microplane model should be extended to
the finite strain framework. Hence, the plastic-damage microplane formulation at finite strains regularised
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by the implicit gradient-enhanced method is proposed within the V-D split. The described model is
also equipped with rate dependency to deliver strain rate effects at dynamic cases. Moreover, a coupled
contact-adaptive element erosion is implemented herein for the penetration situation. The objective of
the present work is to introduce and formulate the rate-dependent plastis-damage microplane model
for concrete at finite strains in order to achieve more accurate and reliable responses, particularly at
high velocity impact simulations. This work is organised as follows. First, the research motivation
is summarised and followed by the proposed constitutive description as well as algorithmic features
implemented. Subsequently, numerical examples of impact load cases are simulated and, finally, the
results are compared to existing experimental investigations in order to challenge the capability of the
newly proposed formulation.

2. Material Constitutive Laws at Finite Strains

2.1. Microplane Approach with V-D Split

The present work continues to use the V-D split for extending the small strain microplane model
to the finite strain regime employing the conjugate strain-stress pair, namely the Green-Lagrange strain
tensor and the second Piola-Kirchhoff stress tensor, which is transformed to the Cauchy stress tensor at
post-processing [26,28]. Both predecessor models showed that large deformations occur in concrete either
at the damaged region or at the plasticity domain. Due to these phenomena, this subsequent work will
combine both damage and plasticity within the microplane approach at the finite strain framework using
the proposed model in [26,28]. As discussed in [29,31], the Green-Lagrange strain tensor E is chosen to
extend the small strain microplane description for concrete to the finite strain formulation computed as

1

E=;(C-1), )

with the right Cauchy-Green tensor C obtained by the deformation gradient F as follows

C=rFTF, )
ox
F=>2, &)

where X and x are the initial and spatial Cartesian coordinates, respectively.

Rather than the Biot or Hencky strain tensor, the Green-Lagrange strain tensor is selected since it
is the only admissible strain tensor for extending the small strain microplane model to the finite strain
formulation due to several reasons. A direct physical interpretation, such as the V-D or N-T decompositions,
is clearly explained by the Green-Lagrange strain tensor. Stretch characterisations in the normal strain
component should be independent of the stretch in other directions. Similarly, the representation of shear
angles in the shear strain component should also be independent of the shear angle in other microplanes as
well as the stretch in other directions. Solely the Green-Lagrange strain tensor satisfies these circumstances
and, hence, it is chosen to be the strain measure in this extended model.

In general, the V-D decomposition at finite strain theories is multiplicative. Nevertheless, by the
fact that the volumetric strain of concrete is always small at all conditions, the multiplicative formulation
could be simplified additively for the extension using the Green-Lagrange strain tensor [29,31]. Please note
that for other materials with large volume changes, the multiplicative decomposition should be employed
instead of the additive split. According to the V-D-T split, the microplane normal strain Ey is related to its
volumetric and deviatoric parts, Ey and Eyp, as follows

EnN =Eyv+Exp or Enxp=En—Ey, 4)
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where Ey and Ey are computed as

EN=n®mn:E, &)
1
Ey =Ep+ 553. (6)

While E is obtained from Equation (1) and n denotes the normal vector, Ey is described by the Biot strain
asEg =] 5 — 1 with J = detF > 0. As the kinematic constraint of the V-D split is used here, the deviatoric
component Enp is modified into vector form of the deviatoric strain Ep

Ep = Enpn+ Er, )

where the tangential strain vector Et is calculated from its third order projection tensor T as

Er=T:E, ®)
T=n-TY""—neonemn, )

with the symmetrical fourth order identity tensor defined as IV = [T +17].

In terms of elastoplasticity, the multiplicative decomposition into elastic and plastic parts is performed
using the deformation gradient F [32]. Since concrete undergoes very small elastic strains, the elastic part
of the finite strain tensor could be replaced by small strains and it leads non-negative dissipation by plastic
strains [29] and, thus, the additive elastic-plastic decomposition is admissible. This approach has been
introduced in [28], and it yields accurate plastic behaviour of concrete at finite strains. For hyperelastic
materials such as rubbers, the multiplicative formulation should be implemented instead of using the
proposed additive approach.

The formulation of microplane models, in general, starts with the macroscopic free-energy function
as the integration of its microplane quantities

3

¥ = /Q yic(E) dQ. (10)

As seen in Equation (10), the microplane free-energy is the function of the Green-Lagrange strain tensor,
its conjugate should be the second Piola-Kirchhoff S stress tensor. Due to material orientations, the
stress quantity obtained by applying material laws to the Green-Lagrange strain tensor is the co-rotated
Cauchy stress tensor as suggested in [29]. However, the second law of thermodynamics is not satisfied
by the non-conjugate pair of the Green-Lagrange strain tensor and the co-rotated Cauchy stress tensor.
Besides thermodynamical restrictions, the use of the second Piola-Kirchhoff stress tensor as the stress
measure is appropriate for concrete, since this tensor refers to the initial configuration. Concerning the
physical meaning of strength and frictional limit within the normal and shear components, the second
Piola-Kirchhoff stress tensor is allowed to be the stress measure since no large elastic strain is observed in
concrete, yet the finite strain may occur at the inelastic regime. For those reasons, as discussed in [26,28],
the approximation of the second Piola-Kirchhoff stress tensor to be equal to the co-rotated Cauchy stress
tensor is considered.
By coupling damage and plasticity, the second Piola-Kirchhoff stress tensor § is then computed as

3

= i /Q (1 - d'"”c) [K’"“V(Ev — ED) +2G"Dev” - (Ep — E”D)] a0, (11)

where d"¢ denotes the damage variable separated into compression and tension, while the superscript
p indicates the plastic quantities. The constants K™ and G define the elastic microplane material
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parameters related to the bulk and shear moduli as K™i¢ = 3K and G™i¢ = G, respectively. Moreover, the
volumetric and deviatoric projection tensors, V and Dev, are obtained as

V=i, (12)

Dev = n - 190 = . TV — %n clac (13)

Next, the plastic strains evolve following the elastoplastic flow rules

Egv = /\ﬂlv, EPD = )\mD, (14)
where A denotes the plastic multiplier, while my, and mp define the flow directions expressed as

QFmic QFmMic
my = ===, MD= =, (15)
asy, aSh
where the yield function F™i¢ originates from the Drucker-Prager yield criterion as used in [28], which is
now equipped with compression and tension caps. Meanwhile, the superscript e indicates the effective
stress measure in which 5§, and S7, are

S = K"“(Ey — E},), S§, =2G™(Ep — E})). (16)

Furthermore, in order to visualise damage and plastic contributions, the scalar values corresponding

to the damage variable d" and the hardening variable k"¢ are calculated

dhom _ % fQ dmlch[ Khom — % fQ KmlCdQ. (17)
ix Jod0 3¢ JodO
Numerical integrations over the surface of the sphere as found in Equations (10), (11), and (17) are
performed using only 21 microplanes reduced from 42 microplanes due to symmetry.

2.2. Modified Smooth Three Surface Drucker—Prager Yield Criterion

The smooth cap model within the Drucker—Prager yield criterion is implemented for capturing
complex triaxial behaviour of concrete. As discussed in [33], a non-smooth yield surface leads to
the singularity in the tangent terms and causes numerical instabilities with slow convergence rates.
Accordingly, the smooth yield surface function depicted in Figure 1, based on the study in [34] then
implemented in [24], is now extended to the finite strain framework and written in terms of the reference
configuration as

) 3
szC( eD' ({/,K):E %.SQD_F%( %,K)FC(S;,K)B( %/,K). (18)

Here, the function F; contains the Drucker-Prager yield criterion with hardening

F, =59 — IXS“?/ + Fh(K), (19)

with the linear hardening function defined as

F,(x) = Dx, (20)

where D is the material constant and the hardening variable « evolves following the flow rule as
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k= A (21)

Moreover, the functions F. and F; describe the compression and tension caps, respectively, which are
computed as

se — SC 2
H:LJﬂ@E—%)LLﬁlL, (22)

s¢, — SI)?
le—Pﬂ@@—SQKJL—%%, (23)

(T—s})
where the intersection points of corresponding caps are

X = RE (55) ) (24)
T = TO + Rch(K). (25)

The function H, and H; are defined by the Heaviside function for activating the respective caps as the
stress state is within their domains

_1

H(x) = 5

(1 +sign(x)). (26)

hardened A /3 15|
yield surface 27D

elastic | initial
region | yield surface |

X +5¢ S¢ ST T, T S

Figure 1. Smooth three-surface yield function as in [24] extended to finite strains.

Furthermore, in accordance with [35], the calibration of several parameters in the smooth three-surface
Drucker-Prager yield function is required in order to simplify the numerical implementation. By knowing
concrete data in terms of uniaxial compressive strength f,. in MPa, other empirical formulas can be
obtained such as the uniaxial tensile strength f,; and the biaxial compressive strength f;,

Fut = 14 (£uc/10)%3, fro = 115f,. (27)

Now, the parameters Sy and & in Equation (19) can be determined as

_ V3(foe — fuc)
 2fpe— fue (28)

SO::<1/v§——a/3)ﬁw. (29)

Substituting Equation (27) into Equation (28) yields « = 0.2. Moreover, fj, can be related to the yield
function as v/3/2(|S5 || = fyc/V3and Sy = —2 fy.
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For compression caps as in Equations (22) and (24), the material constant Sg defines the abscissa of
the intersection point between the compression cap and the Drucker-Prager yield function, whereas R
denotes the ratio between the major to the minor axes of the compression cap. The constant S is difficult
to be determined. However, according to [24], 5§, = —% fre can be set as a minimum value mentioned
before if no triaxial test data are provided. Meanwhile, for tension caps as in Equations (23) and (25),
the material constant S, defines the abscissa of the intersection point between the tension cap and the
Drucker—Prager yield function, whereas Tj is the initial intersection point of the tension cap with the
volumetric axis. These two parameters are easier to find, and they can also be related to the empirical
formula as

ST = _fuc/3/ TO :fut/3/ (30)

while parameter R; controls the increase of the current intersection point T. As mentioned in [24],
parameter R; can be taken as Ry = 1 if no data for uniaxial cyclic tensile tests are available.

2.3. Damage Evolution Law

As mentioned earlier, the damage evolution law in this work is decomposed into compression and
tension parts, 4."¢ and d}"¢, as proposed in [5] and implemented in [24]

1— gmic — (1 ~ d’C”iC> (1 - rwd;"if) ) 31)

with the splits
Arie =1 — exp (—pey™), (32)
a1 = 1—exp (—pit"™), (33)

where B and ; are the compression and tension damage parameters, respectively, while r,, denotes the
split weight factor computed as

3 I
_(E
ro = Z2lE) (34
Yiot |EY]
where E! is the positive principal value of the Green-Lagrange strain tensor. Moreover, the variables /"¢
and 7" are determined as follows
mic mic
. — Y0 for > Y0
e — ¢ 1T e = a (35)
0 for #I" <y
mic mic
) - Y0 for > Y0
apie =4 woon (36)
0 for 5" <y

where 7.9 and 7,y denote the damage thresholds for the state of compression and tension, respectively.
Meanwhile, the equivalent finite strains 77 are obtained in terms of rates as

P P
mic _ { (1—rw)E,  for E,, >0 -

e -p
0 for E;, <0
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=P P
e — { rwEY, for Ej, >0 38)

P
0 for E;, <0

By activating constraints in Equations (37) and (38), this proposed model covers two conditions such
as damage prevention of concrete at high confined pressure loading if E}, > 0, and plastic volumetric
compaction of concrete in the compression cap if E€ <0.

2.4. Rate Dependency

To deliver rate dependency of concrete at dynamic cases, the proposed model is also supplemented by

a viscoplastic function, a so-called consistency type formulation, adopted from [36] and applied in [37,38],
which is expressed as

Fup = 10pS34, (39)

where 77,, denotes the viscosity parameter with an arbitrary value. As a consequence, considering rate
dependency, Equation (18) yields

3

F™ic (88,55, k,&) = 5 ¢ -84 — F2 (8%, K, &) Fe (S%,x,%) Fr (S5, %, %), (40)

where the function F; is modified as

F, =S¢ — DCS?/ + Fh(K) + va(f(), (41)

and, now, the intersection point T increases controlled not only by the parameter R; as in Equation (25)
but also by the viscoplastic function Fyp as

T = To + Re(Fy(x) + Fop(k)). (42)

All functions F;, F;, and F; as seen in Equation (40) are now a function of &, which are rate-dependent
functions. Furthermore, the effect of rate dependency on the yield function is shown in Figure 2.

RVEIEA!

elastic : initial
region i yield surface :
Tt

X + 8¢ 589 ST v T Sp

hardened

-

Figure 2. Effect of rate dependency to the yield function.
2.5. Implicit Gradient Enhancement

The microplane approach, which incorporates nonlocal damage or plasticity, or the combination of
both, requires a regularisation method to eliminate pathological mesh dependencies and to yield a more
stable finite element solution. As implemented successfully in previous models, the present work also
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employs the so-called implicit gradient-enhanced formulation for regularisation. Two governing equations
are then used, such as the balance of linear momentum for the dynamic case

V.o+ f=pi, (43)

and the modified Helmholtz equation introducing a nonlocal field

i — V2 1m = T, (44)

with its boundary condition

Vi -1, =0. (45)

In Equation (43), V- is the divergence, while o and f denote the Cauchy stress tensor and the body force
vector, respectively. Mass density is defined by p, whereas i is the acceleration vector. Moreover, V2 and
V are the Laplace operator and the gradient, respectively. While the parameter c governs the nonlocal
interaction range, n;, describes the unit normal of outside boundaries. Furthermore, #,, defines the local
variable containing the equivalent strains 7" and 5" for compression and tension, whereas 7y, is the
nonlocal counterpart. For adding only two extra degrees of freedom, according to [24], the variable #;, is

taken into consideration as

1 mic
_ | e | _ | ag JanedQ 46
" l mt 1 l = Jonredq | o)

Nonetheless, as found in [39,40], the over-nonlocal method can achieve a full regularisation in

plastic-damage descriptions. Therefore, the equivalent strains 7 and 7" are enhanced as

AME = mifme + (1 — m)yMe, (47)
AMC = mifme + (1 — m)pp"e. (48)

It is stated that localisation still occurs at the strain softening regime if the value m = 1 is applied, which
means the standard regularisation is implemented. Hence, the value of m should be taken as larger than 1

to eliminate localisation and achieve regularisation. Accordingly, 77 and 7" in Equations (35) and (36)

are now replaced by 7€ and 7.

3. Algorithmic Aspects

3.1. Finite Element Formulation

As standard procedure, the weight functions du and 67}, are used for obtaining the weak forms of
Equations (43) and (44)

/5u~V-¢rdv+/ 5u-fdv:/ Su - pil dv, (49)
B By B

/B Ol do /B SV do = /B i do (50)

With the help of the Gauss theorem and the Cauchy theorem as well as the boundary condition in
Equation (45), Equations (49) and (50) become
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/ t-(Suda+/ 5u-fdv:/ p5u-iidv+/ o : Vou dv, (51)
aBt Bt Bt Bt

/B O o+ /B, Ve i = /Bt St do. (52)

For carrying out the spatial discretisation using shape functions N, the displacement and the
variational field as well as their gradients are employed

u= Nd, ou = Ndd, (53)
ON ON

Analogously, the discretisation for the nonlocal field using the nonlocal shape function N is considered as

im = NE, 07jm = NGE, (55)
N _. _oN_

where d and E denote nodal displacements and nodal nonlocal equivalent finite strains, respectively.

The discretisation using the above equations and the linearisation for Equations (51) and (52) should
be used in order to be solved using an iterative Newton-Raphson method. Now, the coupled linearised
system is obtained as

R ext int
u
R = R- | — ?xt ] - [ zunt ’ (57)
7 7 7
Suwi Kugi || Adigy | _ | Rui | (59)
Kyui Ky, AE ;4 Ry,

where the residual vectors for the mechanical and the nonlocal parts are

Rui:/ NTdev-a+/ N o NTtda—/ NTf do, (59)
’ B, B 0x B B
7'1" —
" ON° ON— " T e —
R = Js, chb" dv —I—. . N [NE -y do. (60)

The submatrix S, ; in Equation (58) is evaluated by the Newmark transient solver to analyse dynamic
cases as

1
Suu,i = MW + Kuu,ir (61)

where B, and At denote the Newmark parameter and the incremental time step, respectively. Moreover,
the mass matrix M and the submatrix K,,,, ; are

M = /B NToN do, (62)
t
T T
K, :/ alca—N dv—i—/ a—NUaiI dv. (63)
B Ox Ox B 0x Ox

The other submatrices in Equation (58) are then
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Kyj,i = —_ - Ndo, (64)

T _
Kﬁu,iZ/BNT(ﬁm—nm)a—NdU— NT%HSW% dv_/b’ C<8N 8N> a’ﬂdv
t t

ox B JoE dx ox ox | ox
) T (65)
ONT 377, | ON ONT (37, ON
+ Bf(ax ax) P My <8xax> 4o,
T ON' oN
Kﬁﬁli:/BtN Ndv+ | Socq do (66)

All required derivations for the tangent terms can be found in Appendix A.

3.2. Stress Return Algorithm

Two conditions may occur, either the stress state is still in the elastic region, which lies inside the yield
surface, or the stress state enters the plastic regime, which is outside the yield surface. If the stress fulfils
the yield criterion F™¢ < 0, the condition is elastic. Therefore, all plastic strains at the current time step are
equal to the condition at the previous time step as

p _rP P _
E *EV,n’ ED,n+1*

V.n+1 E

Do Bhasa =0, (67)

where the subscript n + 1 indicates the current time step, while the subscript 1 denotes the previous one.
Then, the evaluation of the trial stresses and the yield function denoted by the subscript tr are

E‘z/',tr = Kmic (EV - Eé,n) ’ (68)
b = 26" (Ep —ED ), (69)

; 3 ) ) ;
Fy™ = 5Sbr - Spr + FE (S trs n, Kn ) Fe (S e, Kn ) Er(SY, 1y Koy ) (70)

The return algorithm needs to be enforced as F”¢ = 0 if the yield function is not fulfilled, which
means that the step enters the plastic condition

. 3
Fmic — 5573,,1 11°S8h 1 — FFEF =0, (71)
Sﬁ/,n—&-l = Sﬁ/,tr - A/\n-‘rleicmVr (72)
SeD,nJrl = S?D,tr - AAnJrlZGmicmD/ (73)
Knt1 = Ktr + DAyq1. (74)

For rate dependency, the evolution of « is simply as

. AL
Knst = = 0 (75)

Using Equation (15), the flow directions my and mp are obtained as follows

E— Fchﬁ (76)

oF oF
711:th _ e R
14

mv = —2h5g 1358,
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mp = 385, 77)

Substituting Equation (77) into Equation (73) yields
S%,n+1 = SeD,tr - 6A)‘n+1Gmics(fD,n+1' (78)

As can be seen from Equation (78), S}, ,, 1 and S}, ;, are collinear and one can rewrite Equation (78) as

15,11l = D | = 681G S 4 (79)

Then, substituting Equation (79) into Equation (71) results in

prie 3 ISbul’ o p (80)
2 (1+ 6AA, 1 Gmicy2 "1 ett
For obtaining the plastic multiplier AA,1; and the volumetric stress S"f/,n 41, Equation (80) can be
solved simultaneously with the help of Equation (72), so that
3 155,112 >

Fy== . — — FiF.F, 81

AT 2 (14 6AA,,Gmic)2 T (®1)

Fy =S¢ ,01 = St + DA K™ my. (82)

By deriving both Equations (81) and (82) with respect to AA,, 1 and S§, | ,;, one obtains

0AA 11 (14 6AA,1G™)3 ~ 9AA, 1]
oF,
=my, (84)
as%,;ﬂrl
oFy _ gomic mic_OMy
Dy K™ my + A, 1K DAy (85)
aFV i amv
=1+ AA, 1K™ . (86)
95y 141 ! 95y 41
Subsequently, the updated deviatoric stress and plastic strains are
Dt
e — AT __ 87
D,n+1 (1 + 6A/\n+1Gmw) ( )
e
P _ D,n+1
ED,n+1 - ED,n+1 - ZGZ”C ’ (88)
SE’
p _ V,n+1
EV,n—H - EV/”+1 - K;ic : (89)

4. Penetration Model

4.1. Contact Mechanism

To limit the discussion here, a general node-to-node contact mechanism is applied and it is briefly
explained. This contact model is simply used since forces are computed directly at the nodes, and
it provides a straightforward procedure to find the contact nodes. Moreover, a frictionless model is
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implemented so that only normal components of contact forces are considered, which implies that the
tangential components are negligible. Since the contact model is not the main focus in the present work,
no special properties are provided so that general codes for contact models can be used herein. Slight
modifications are conducted in order to exclude contact nodes in damaged elements when the contact
model is coupled to the adaptive element erosion procedure.

4.2. Adaptive Element Erosion

As mentioned earlier, damaged elements should be removed if they are destroyed and the impactor
may penetrate into the concrete structure. To accommodate this feature, so-called adaptive element erosion
is introduced in the present work supplementing the proposed material models. Here, the elimination
method is implemented in a straightforward scheme as shown in Figure 3. A certain damage value as
failure threshold is firstly determined prior to start the removal procedure as

damaged for dhom > goal
(90)

undamaged for dhom < goal

where d"" is a scalar damage measure which is homogenised from all microplanes as computed using
Equation (17), while d° is determined as the critical value.

. damaged element

0 hanging node

Stk ol .
o e

Figure 3. Illustration of adaptive element erosion scheme.

From the material level, the value of d"" is obtained, then it is looped over Gauss points on the
element level. Here, an 8-node brick element in the three-dimensional model is used, so that eight Gauss
points are taken into account. If d°” is achieved in all eight Gauss points, one element is completely
damaged and it can be considered to be a failed element indicated by the red-coloured square in Figure 3.
Since the stiffness of the damaged element has been degraded up to almost zero, the element is now
inactive, and it has to be excluded from the finite element computation without re-meshing. Hence, only
active elements are involved in the computation. Furthermore, a special treatment is performed only if all
neighbouring elements of a node are completely damaged. This condition causes the node connecting to its
surrounding elements being unsupported and it becomes a hanging node, denoted by the yellow-coloured
circle as shown in Figure 3. Now, this node is also skipped and the profile is reconstructed without
re-meshing as previously.

To examine the adaptive element erosion, a four-point bending test at static loading is simulated. The
proposed gradient-enhanced plastic-damage microplane model is used for modelling concrete herein. To
evaluate and analyse the effect of the damage value tolerance d°¥ to concrete responses, the values of 0.9,
0.97, and 0.99 are chosen. As can be seen in Figure 4, a good approximation is achieved by d* = 0.99
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which coincides to the curve without d°, while the simulation with d° = 0.90 gives a different response
among others. Using d*¥ = 0.90, the stiffness is degraded too early and, thus, it leads to the spurious
damage since the undamaged elements may categorise as damaged elements.

T T T T T
4 without ¢"%
d=090 ——
— 3L d=097 —
Z d1=0.99 ——
g 2f i
—
1 - —]
0 | | | | |

0 0.05 0.1 0.15 0.2 0.25 0.3
Displacement [mm]
Figure 4. Load-displacement relations for different damage values d°”! in four-point bending test.
Moreover, the validation continues to the visualisation of crack paths at final step of the bending
test using those three different damage values d** as seen in Figure 5a, whereas Figure 5b visualises
the removed elements of the corresponding crack paths. Analogously, using d** = 0.90, the crack path

becomes unrealistic since spurious damage may occur as explained before. Therefore, based on these
investigations, d°" = 0.99 is implemented in the present work so that Equation (90) reads

damaged for d"m >0.99
o1

undamaged  for d"™ < 0.99

(b)

d"'=0.90 d"'=0.90

=097 =097

d=0.99 d=0.99

Figure 5. Four-point bending test using three different 4 implementing an adaptive element erosion: (a)
crack paths and (b) removed elements.

Another example is a compact tension test in order to observe that the proposed adaptive element
erosion also works well for crack branching. The simulations with three different velocities of 0.035 m/s,
1.4 m/s, and 4,3 m/s are performed according to [26] based on experiments in [41] using dvl = 0.99, as
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obtained before. Figure 6a displays the crack paths of the compact tension specimens, while Figure 6b
depicts the removed elements corresponding to its crack paths.

| .
| .

Figure 6. Simulation of compact tension specimens displaying crack paths and removed elements compared
to experiments in [41] at three different velocities: (a) 0.035 m/s, (b) 1.4 m/s, and (c) 4,3 m/s.

4.3. Coupled Contact and Adaptive Element Erosion

Since the final goal of this work is to simulate high velocity impact on concrete plates, the contact
model needs to be combined with adaptive element erosion introduced previously. Therefore, the contact
mechanism should be applied when the impactor hits the concrete plate surface, whereas the adaptive
element erosion is used to eliminate damaged elements as the impactor may penetrate into the structure.

An initial condition with a gap between an impactor and concrete plate is shown schematically in
Figure 7a, while the contact process starts when the impactor hits the plate surface as in Figure 7b and
contact nodes are indicated by blue-coloured circles. The regular contact mechanism works during this
process. If some elements are damaged as explained before, these elements are then eliminated and a
hanging node can probably exist, see Figure 7c. Once the unsupported node is also removed, the impactor
continues to move down following the applied velocity and the new contact nodes are found automatically
based on the gap tolerance value as in the beginning process, see also Figure 7d. Hence, the penetration
process continues and the next step proceeds repeatedly up to failure.
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i
i

Figure 7. Coupled contact mechanism and adaptive element erosion at impact cases: (a) initial condition,

contact node

I:I undamaged element
. damaged element
o hanging node

(b) contact process, (c) detection of damaged elements during contact, (d) searching of new contact nodes
after removing elements.

5. Model Parameters Adjustment

Several types of model parameter are investigated by numerical examples performed in here, i.e.,
parameters for elasticity, plasticity, damage, and nonlocal features. Young’s modulus E and Poisson’s ratio
v as the elasticity parameters are simply taken from the experimental data. Next, the plasticity parameters
in this proposed model consist of fic, S§, R, Ry, and D. The uniaxial compressive strength f,, is mostly
given in the experimental data, whereas the parameter R can be approximated by R = X,/ f (S%) as
mentioned in [24]. Meanwhile, the hardening D is related to the damage parameters, hence, it needs to
be identified corresponding to B, and 7.9 by performing a uniaxial cyclic compression test, whereas R
is related to the damage parameter ; and identified by carrying out a uniaxial cyclic tension test. As a
starting point, R = 1 and B; >~ 1.5, can be considered, see [24]. Moreover, due to the fact that softening
in the tensile state occurs right away subsequent to the elastic limit, the tension damage threshold is
considered to be ¢ = 0 in all simulations.

Moreover, the nonlocal parameter c is quite challenging to be identified as ¢ = I2. Nevertheless,
several attempts were conducted in [42—44] to find the parameter c. For the parameter m, as explained
earlier, it should be taken larger than 1 to achieve a full regularisation. According to [45], the value of
m is considered tobe 1 < m < 1.1, while [40] used the value slightly beyond 1 as m = 1.005. However,
m = 2.5 is used in all simulations herein. For rate dependency, an arbitrary value larger than zero of the
viscosity parameter 17, gives a rate effect in the modelling. A benefit of the consistency type formulation
in the viscoplastic model as in Equation (39) is to consider the constitutive law with or without strain
rate effects in a straightforward manner. To produce a rate-independent model, 17, = 0 can be simply
taken, whereas in order to activate the rate-sensitive formulation, 77, = 1 s/MPa is implemented in all
subsequent simulations.
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5.1. Four-Point Bending Test at Cyclic Loading

A four-point bending test at cyclic loading is simulated. This analysis is performed to identify the
material parameters which need to be fitted with respect to experimental data in [46]. The meshed beam
with a notch including boundary conditions and applied cyclic loading for the bending simulation is
provided in Figure 8a,b, respectively. Table 1 provides all model parameters used in this bending test
simulation. A load-displacement relation obtained by the proposed formulation using the fitted parameters
is plotted in Figure 9a, while damage and plastic contributions computed by Equation (17) are depicted in
Figure 9b. Moreover, mesh insensitivity of the proposed model is achieved as plotted in Figure 10a with
accompanying convergence rates for the mesh with 2464 elements at chosen certain time steps shown in
Figure 10b.

Table 1. Model parameters for four-point bending test.

Parameter Concrete
E [MPa] 38,000

v [-1 0.2
fue [MPa] 20
Ry [-] 1
D [MPa] 7x10*
SC  [MPa] —40
R [-] 2
Y10 [-] 0
Yo [-] 2x107°
Bt [-] 5.5 x 103
Be [-] 3 x 103
c [mm?] 20
m [-1 2.5
(a) 12P 12P (b) 1
. g 0.8 i
Y Y thickness = 50 £
g 06F -
£
100 S 04 .
: == 5
y an A 02 I
— * * * *— l l l l l l l

25 150 75 75 150 25 0

dimensions in [mm] 0 2 4 6 8 10 12 14 16

Time [s]

Figure 8. Four-point bending test: (a) geometry and (b) applied cyclic displacement.

Two model parameters, for instance the uniaxial compressive strength f,. and the hardening stiffness
D, are observed to figure out their effects with respect to the load-displacement response. Three different
values are arbitrarily chosen to perform the simulation. As can be seen in Figure 11a, the obvious influence
of fyc is shown that increasing f,. affects the higher peak load. This parameter is simply taken from
the experiment or, if no data provided, the value can be empirically determined corresponding to the
Young’s modulus E as considered in many building codes. Meanwhile, the parameter D can be identified
relating to other damage parameters, 8. and 7., as mentioned previously. However, its effect to the
hardening-softening branch of the load-displacement curve can be seen in Figure 11b. The curve slope



Materials 2020, 13, 5165 18 of 36

downgrades significantly by using the lower value of D, otherwise the higher D leads to the higher
hardening and the delayed softening so that the curve is going down slowly.

(a) 4 1 1 (b) dhom
7 > exXp. = 77
/ Irf < sim 10
_ 3T 7 T i 0.8
IS AN
é 2 ,/' //'/ /"/ /'/{/ ; YA '
L / Ay o 1 TN ]
g J //}'?,’l ‘7 /‘//,f e -0.6
— 7 o PN~
1 y //'/-’/ J o P — -0.4
1 1 1 1 1 0'2
0
0 005 01 015 02 025 03 00 00
Displacement [mm]
Figure 9. Four-point bending test result: (a) load-displacement relation and (b) damage and
plastic distribution, dhom and ychom
(a) 4 T T \ T (b) §
T~ 378 elements 100
3 ’ 1664 elements —
— 2768 elements - - - - _% 107
E 70112 elements ‘B 10
=, ; g 10
<
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S E 10—15
1 =020
0 'Ii | | | | | 10—25
0 0.05 0.1 0.15 0.2 0.25 0.3 1 2 3 4 5 6 7
Displacement [mm)] Number of iteration
Figure 10. Four-point bending simulation: (a) comparison of different mesh densities and (b) accompanying
convergence rates for mesh with 2768 elements.
a 4 T T b 4 T T T
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= =
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=] =]
2 =
1+ . 1+ .
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Figure 11. Effect of parameters with respect to the load-displacement relation: (a) compressive strength f,c
and (b) hardening stiffness D.

5.2. Homogeneous Test

In addition to identify the damage parameters D, ., and o by simulating the uniaxial compression
test as well as the parameters ; and R; by performing the uniaxial tension test, a homogeneous test
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can also be used to find out about the effect of strain rates ¢ as shown in Figure 12. Only one element is
simulated subjected to uniaxial tension as illustrated in Figure 12a. The activation of strain rate effects
is simply performed by taking 7,, = 1 s/MPa as mentioned previously. Here, six strain rates of 0.05
s71 157110871, 25571, 50571, and 100 s~ ! are chosen to demonstrate the influence of the proposed
rate-dependent model. Due to the applied strain rates, one can see the growth of peak stresses in terms of
stress-strain relations plotted in Figure 12b. In other words, by increasing the strain rate, the stress-strain
curve is getting higher accordingly. Furthermore, the effect of different strain rates at cyclic uniaxial
tension-compression test with respect to the stress-strain response is depicted in Figure 13.

(a A b 15 I I I
) ®) e=005s1 —
A A o= ls}
= e= 10
£ 10r oo 2591 —
= e= 505!
2 e=100s" —
o
g 5r )
0 \,\\ i

0 05 1 15 2 25 3
Strain x1073 [-]

Figure 12. Homogeneous test: (a) illustration of uniaxial tension test and (b) strain rate effect.

10 |- .
_ 0
E-10F -
220 | "e=0.055 ——
7 n e= 1y |
530 e= 105! —
@A —40 | e= 255 —
e= 50¢
—50 e=100s" —
—60 | | | | | |

—25—2—-15-1-—05 0 05 1
Strain x1073 [-]

Figure 13. Homogeneous test at cyclic loading with different strain rates.

6. Numerical Examples

A couple of concrete plate simulations with different thickness subjected to high velocity impacts are
carried out using the newly proposed framework. Comparisons between the small and finite strain model
simulated by the same material parameters are provided and compared also to the experimental data.

6.1. Thick Plate Simulation

First, an example of a thick plate is simulated to show the penetration of an impactor into the concrete
plate. As reported in [47], a machine plate of 540 kg and a steel impactor of 50 kg at a height of 2 m hit a
concrete plate with the dimensions of 1500 x 1500 x 300 mm. The impactor velocity is considered to be
25,000 mm/s according to [26]. Furthermore, as boundary conditions, the concrete plate is restrained at all
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four corners denoted by red dots as can be seen in Figure 14. This impact test is modelled using one-fourth
of the whole specimen by 5241 nodes and 3272 elements due to the symmetrical condition. The whole
geometry of the thick plate impact test in finite element mesh discretisation is depicted in Figure 14a,
while the dimension of its impactor is shown in Figure 14b. All material properties of this impact test are
provided in Table 2.

(a) (b) T 100

steel impactor

concrete plate

fixed support 1000 100

I300

*x

dimensions in [mm] dimensions in [mm]

Figure 14. Finite element mesh of thick plate impact test: (a) geometry and (b) dimension of the
steel impactor.

Table 2. Material properties for the thick plate impact test.

Parameter Concrete Plate  Steel Impactor

E [MPa] 40,000 210,000

v [-] 0.2 0.3

p [kg/m’] 2400 7850
fuc [MPa] 70 -

Ry [-] 1 -

D  [MPa] 7 x 10* -
SC  [MPa] —60 -

R [-] 2 -
710 [-] 0 -
Ye0 [-] 8x10°° -

Bt [-] 5% 103 -

Be [-] 2% 103 -

c [mm?] 50 -

m [-1 2.5 -
op  [s/MPa] 1 -

The proposed plastic-damage microplane model at finite strains including the contact mechanism
coupled to the adaptive element erosion is able to represent the damage evolution including the eroded
elements as shown in Figure 15a,b seen from top view of the plate surface at the chosen time step for small
and finite strain simulation, respectively. Meanwhile, the visualisation of damage evaluation from the
bottom side for both models is depicted in Figure 16a,b. As explained before, the damage value tolerance
dvel is considered to be 0.99, which means that the element is removed once the value of d"" in all eight
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Gauss points of one element is equal or larger than 0.99. From both Figures 15 and 16, one can see the
difference between the small and finite formulation that the damage of concrete plate at small strains
evolves faster than the damage in finite strain simulations. It means that the faster degradation of material
stiffness occurs in numerical simulations using the small strain formulation rather than using the finite
strain model. Moreover, in order to display a more realistic crack growth, Figure 17 represents only the
material view of steel and concrete, which is simulated by the finite strain model.

(@)

7 - -

small strain finite strain

Figure 15. Top view of damage evolution for thick plate impact test: (a) small strain and (b) finite
strain simulation.

N7 NN |-
S 2NZR

N
\

small strain finite strain

Figure 16. Bottom view of damage evolution for thick plate impact test: (a) small strain and (b) finite

strain simulation.
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steel concrete
I material

Figure 17. Crack growth visualisation of thick plate impact test: (a) top and (b) bottom view.

As shown in Figure 17, crack initiation starts immediately on the mid-bottom side of the concrete plate
once the steel impactor hits the plate surface. Further cracks propagate diagonally towards the four fixed
supports implemented in each plate corner. Crack openings get wider following the impactor penetration
into the concrete plate. By these results, the use of damage values obtained from the proposed penetration
model has an advantage since it is able to be coupled with the element erosion in a straightforward manner.
A good visualisation of the crack growth is valuable to supplement the proposed material model, which
has indeed yielded meaningful results without coupling the element erosion method altogether.

Besides the damage evolution, the velocity-time and displacement-time relations are also plotted to
show the differences between the small and finite strain microplane model. Analogous to the previous
explanation regarding the material stiffness degradation, the velocity and displacement responses differ
accordingly. The impact velocity is observed at a node located on the contact surface, while the
displacement is investigated on the mid-bottom side of the plate. As one can see in Figure 18a, the
impact velocity simulated by the small strain model drops immediately, so that the finite strain result has
a higher residual velocity, which differs approximately 2.3 m/s. Likewise, since the material stiffness of
the small strain model degrades faster as explained earlier, its displacement also deviates accordingly as
shown in Figure 18b. Here, more or less 10 mm difference of the displacement is discovered between the
small and finite strain simulation result.
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Figure 18. Simulation results comparing small and finite strain model: (a) velocity-time and (b)
displacement-time relation.

In this simulation, only a picture of damaged plate is compared to the simulation results since no other
experimental data are reported. The comparison for both small and finite strain models to the experimental
investigation is depicted in Figure 19. Some deviations of the crack propagation direction obtained by the
experiment may occur due to the heterogeneity of material constituents in concrete, for instance diverse
aggregate sizes as well as porosity between aggregates and cement paste. However, the numerical result is
able to yield quite similar crack patterns compared to the experimental investigation. From Figure 20, one
can see that more damage occurs surrounding the impactor in the small strain simulation, whereas the
finite strain model gives a closer result to the experimental data. This observed inaccuracy may indicate
that a finite strain case happens in the present impact test, so that the small strain formulation is not
sufficient for modelling this phenomenon.

0.0 0.2 04 0.6 0.8 1.0
_— e

dhom

experiment small strain finite strain

Figure 19. Comparison of damaged plate reported in [47] to both small and finite strain models.
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small strain finite strain

Figure 20. Cross-section view of damaged plate for small and finite strain models.

6.2. Small Thin Plate Simulation

Second example deals with a square small thin plate subjected to high velocity impact loading based
on experiments by [48] with dimension of 610 x 610 x 30 mm. A steel impactor with a diameter of 100 mm
and a height of 100 m installed in a steel frame hits the concrete plate by an initial velocity of 12300 mm/s.
As boundary conditions, fixed supports of 30 mm wide denoted by red dots are applied on each side of
the plate specimen. Figure 21a displays the whole geometry of the impact test in finite element mesh
discretisation, whereas Figure 21b provides the dimension of the steel impactor used in the present work.
Due to the symmetry, only a quarter of the geometry is simulated with 5463 nodes and 3440 elements.
Moreover, all material properties of this impact test are shown in Table 3.

steel impactor (b)

(a) z

concrete plate

fixed support

B 430
i ’\f3o

150

dimensions in [mm]

dimensions in [mm]

Figure 21. Finite element mesh of thin plate impact test: (a) geometry and (b) dimensions of the

steel impactor.
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Table 3. Material properties for the thin plate impact test.

Parameter Concrete Plate  Steel Impactor

E [MPa] 33,100 210,000

v [-] 0.2 0.3

o [kg/md] 2150 8000
fue [MPa] 95 -

Ry [-] 1 -

D [MPa] 7 x 10* -
S$  [MPa] —75 -

R [-] 2 -
Yt0 [-] 0 -
Yo [ 8 x 105 -

Bt [] 5% 10° -

Be [-] 2 x 103 -

c [mm?] 20 -

m [-1 2.5 -
Nop  [s/MPa] 1 -

Similar to the previous example, the damage value tolerance d*” is considered to be d"" = 0.99
obtained from the material level. As discussed previously, the closer d°* is approaching 1.0, spurious
damage in numerical simulations can be avoided. Furthermore, the damage evolution obtained by the
proposed finite strain model is displayed in Figures 22 and 23 for the top and bottom side of the concrete
plate, respectively. Damage initiation starts at the middle of the plate after the impactor hits the plate
surface. Hereafter, damage evolves continuously, in particular surrounding the steel impactor. Then, it gets
wider following the impactor velocity. This condition causes the destruction of elements at the mid-surface
as shown in Figure 22, while the impactor starts to penetrate into the plate. Subsequently, as one can see in
Figure 23, cracks propagate diagonally towards the four corners of the plate emerged at the bottom side.
Moreover, vertical and horizontal cracks are then observed.

Figure 22. Top view of damage evolution for thin plate impact test at chosen time step.
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Figure 23. Bottom view of damage evolution for thin plate impact test at chosen time step.

In a similar manner to the preceding example, the crack growth visualisation for this impact simulation
is then provided in Figure 24a,b shown from the top and bottom side of the concrete plate, respectively.
For the sake of a clearer and more realistic view, Figure 24 displays only the material colour of the steel
and concrete. From the figure, additional crack propagations as seen in Figure 23 are not represented in
Figure 24b since the damage value d"" of the diagonal cracks as well as the vertical and horizontal cracks
have not achieved 0.99 yet.

(a)

(b)

steel concrete
I material

Figure 24. Crack growth visualisation of thin plate impact test: (a) top and (b) bottom view.

To investigate the difference between small and finite strain simulations, the impact test is performed
using three different velocities, i.e., 12.3m/s, 16.5 m/s, and 20.3 m/s. First investigation is the velocity-time
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relation for both models compared to the experimental data in [48], see Figure 25. At the lower velocity,
v = 12.3 m/s, coinciding curves of small and finite strain results are observed. Meanwhile, both curves
differs slightly at higher velocity than before, with v = 16.5 m/s. Furthermore, at v = 20.3 m/s, the
deviation of both models gets larger with the difference in velocity of approximately 1 m/s. By performing
all simulations with the three different velocities, the finite strain microplane model gives better agreement
compared to the experimental investigations than the small strain formulation. Here, one can deduce
that the higher the impact velocity, the larger the deviation of residual velocity between the small and
finite strain simulation. Again, finite strain condition may occur in the impact test simulation at higher
velocities, so that the deviation is observed using the small strain simulation.

22 \
— exp. i
é’ 20 sim. (small)
— 18 sim. (finite) ———
E 16 R S ]
T; g [y 165 s | )
R N ——
) v=123m/s |’
= 10| n

8 | | | |

0 2 4 6 8 10

Time [ms]

Figure 25. Velocity-time curves reported in [48] compared to small and finite strain simulations for three
different velocities of 12.3 m/s, 16.5m/s, and 20.3 m/s.

Second investigation deals with the crack pattern for the small and the finite strain model compared
to the experimental data as reported in [48], see Figures 26 and 27 for the top and bottom side view of
the plate, respectively. As can be seen in Figures 26a and 27a, almost similar results between the small
and finite strain simulations are identified at the lower impact velocity of 12.3 m/s. Meanwhile, a slight
difference of both models appears at the impact velocity of 16.5 m/s at the top surface as in Figure 26b,
while the damage pattern at the bottom side shown in Figure 27b is almost identical for both models.
Moreover, at the higher impact velocity of 20.3 m/s as shown in Figures 26¢ and 27c, damage patterns
obtained by the small strain simulation are focused only in the middle part of the plate. No other crack
propagation at the top side is observed unlike the finite strain result. Furthermore, by comparing the
simulation results numerically to the existing experimental investigations, one can observe that the finite
strain microplane model yields a better accuracy in predicting the damage pattern of the present high
velocity impact test than the small strain formulation. Apparently, as can be seen in Figure 28, the difference
of crack prediction for both models compared to the experiments is caused by the heterogeneous nature
of the concrete material due to its composition as well as aggregate size. In addition, imperfection of
the experimental set-up can possibly happen during the impact test in the reality, whereas the numerical
simulations are always carried out by considering the model testing in a perfect condition.

Throughout the simulations and result analyses of the small thin concrete plate at the three different
velocities, both small and finite strain microplane models are used to perform the simulation. As one
can see from the aforementioned investigations, the small strain approach provides good results and
gives almost identical responses at the impact velocity of 12.3 m/s compared to the proposed finites
strain formulation. Hence, both models are able to simulate this condition. However, each formulation
yields different results during the impact test at higher velocities, such as 16.5 m/s and 20.3 m/s. The
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observation in terms of velocity and crack pattern simulated by the finite strain model gives a better
approximation compared to the experimental data than the small strain formulation. In this regard, a finite
strain case probably occurs so that the small strain microplane model cannot suffice to demonstrate the
accurate response.

dhom
1.0
[0.8
-0.6
-0.4

0.2
0.0

experiment small strain finite strain

Figure 26. Top view of thin plate impact test for experiments in [48] comparing small and finite strain
simulations at three different velocities: (a) 12.3 m/s, (b) 16.5 m/s, and (c) 20.3 m/s.
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experiment small strain finite strain

Figure 27. Bottom view of thin plate impact test for experiments in [48] comparing small and finite strain
simulations at three different velocities: (a) 12.3 m/s, (b) 16.5 m/s, and (c) 20.3 m/s.

experiment small strain finite strain

Figure 28. Damaged plate due to impact tests reported in [48] compared to small and finite strain
simulations at the velocity of 12.3 m/s: (a) top view and (b) bottom view.
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7. Conclusion and Outlook

Formulating a robust material model for concrete using the well-known microplane approach
extended to the finite strain framework as a main objective of the contribution at hand is achieved.
The proposed model can be used to analyse concrete structures numerically at various loading states
particularly for dynamic cases within implicit finite element codes. Constitutive models are developed
in the present work involving a combination of both damage and plasticity. The newly proposed model
combines the plastic-damage microplane approach at finite strains due to the fact that large deformations
occur in concrete at high velocity impacts. The conjugate pair of the Green-Lagrange strain tensor and
the second Piola-Kirchhoff stress tensor is used to extend the small strain microplane model to the finite
strain regime. A smooth three-surface Drucker—Prager yield function is introduced and supplemented
by rate dependency to deliver strain rate effects at dynamic loading. The proposed model is then used
to simulate impact tests with high velocities on concrete plates after being implemented together with a
contact mechanism and an adaptive element erosion during penetration.

A penetration model is required in such impact tests due to the fact that an impactor may penetrate
into concrete structures at high velocity impact. Damage values obtained by the proposed material model
are used as failure criterion to eliminate destroyed elements of concrete during the impactor penetration.
To simulate this phenomenon, the adaptive element erosion is also equipped with a general contact
mechanism. The accuracy and capability of the new framework are then evaluated by comparing with the
experimental data. As a result, the proposed microplane model at finite strains gives better agreement to
the experimental investigations than the small strain version since finite strain situation may occur in the
present impact test simulations.

The research work at hand is able to represent concrete responses in a good approximation and
reliable results compared to existing experimental investigations. However, some improvements can be
pursued to obtain a more sophisticated tool for modelling concrete structures in larger examples and
different types of loading. For instance, the adjustment of model parameters in an advanced manner is
useful to facilitate numerical simulations of other cases. Herein, the plastic parameters can be simplified
by identifying the uniaxial compressive strength of concrete. Nonetheless, determination of damage
and nonlocal parameters in each numerical example are not simple. It probably needs an optimisation
algorithm in order to find accurate values, yet indeed, computational costs may increase accordingly.
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Appendix A. Algorithmic Tangent

Algorithmic tangent moduli for the proposed model contain both elastoplastic and damage tangent
terms. Once the elastoplastic tangent is obtained, the total tangent is then taken into account by
considering damage.
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Appendix A.1. Effective Elastoplastic Tangent

The differentiation of the yield function is required to compute the effective tangent terms

SF™C = 1y 858, 4 np - 686 + nedx = 0, (A1)
with
apmic aFmic apmic
ny = —, Hp= ——=—, Hx= . (A2)
0S¢, 0S5, T ook
Next, the volumetric and deviatoric stresses are differentiated as
e mic dmy e dmy
05, =K O0Ey — dAmy — AA—-06S, — AA——0dx |, (A3)
asy, oK
688 = 2G™Mic (5ED — SAmp — A/\%’Zg : 55;)) . (A4)
Knowing Equation (21), Equation (A3) becomes
e mic amV e amV
05, =K OEy — 0Amy — AA 05 —AA——0A . (A5)
aSy, oK
Then, one can rearrange Equations (A4) and (A5) as
1 8mV amv
oSy (Kmic + AA 85%,) =J6Ey — 0A (mv + A)\aK) , (A6)
1 amD
<2Gmic + AA 85%) 68} = SEp — 6Amp. (A7)
Furthermore, Equations (A6) and (A7) can be written as
05y = MOEy — hihpdA, (A8)
S% = H3 : (SED — H3 . mD(5/\, (A9)
where hy, hp, and Hj are, respectively,
= (L A A10
1= Kmic + an{/ ’ ( )
o = my + AAOTY (A11)
2 = 14 aK 7
1 amD -1
H; = — + A . Al2
3 <2Gmw * Aasg) (AL2)
Now, Equations (A8) and (A9) are substituted into Equation (A1) as follows
S\ — nyh10Ey +np - Hy - 6Ep (A13)

(nohihy +np - Hs - mp — 1)’

or one can write in a convenient way

OA = hihynydEy + hynp - H3 - 0Ep, (A14)
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where hy is

hy = (nolihy +np - Hy -mp — 1) " (A15)

Then, Equation (A14) can be substituted into Equations (A8) and (A9)

0S8y, = OEy — hihy (hihynydEy + hynp - H3 - 0Ep), (A16)
S% = H3-0Ep — H3 - mp (hihynydEy + hynp - Hs - 0Ep) . (A17)

Subsequently, multiplying Equations (A16) and (A17) by V and Dev”, respectively, one obtains

ViSy, = mVOEy — hihihahyny VOEy — hihahsV @ np - Hs - SEp, (A18)

DevT . (55% = DEZJT . H3 . (5ED — h1h4nvDevT . H3 . mD5EV (A19)
— l’l4DEUT -H3-mp ®mnp - Hz - 6Ep.

The differentiation of the effective second Piola-Kirchhoff stress tensor for one microplane is obtained by
summing Equations (A18) and (A19) as

oSMiC = V5S¢, + Dev” - 885,
= ((1 — h1h2h4nv)h1V XV — h1h41’lvDeZ}T -Hy - mp®V

T (A20)
— hihphyV @ np - Hy - Dev + Dev” - Hs - Dev
—hyDev” - Hs-mp @np - Hy - Dev) : OE.
Now, 88 is used to obtain the total tangent incorporated with damage.
Appendix A.2. Total Tangent
From Equation (11), one can write
_ 3 mic mic
S_E/Q@ 4" sy do, (A21)
where S originates from
Sie = K™V (Ey — E})) + 2G™*Dev’ - (Ep — EP)). (A22)
Then, Equation (A21) is differentiated as
5S = 2 / (1—amic) sy do - 3 / s sgmic 40y (A23)
4t Jo ¢ 47 Jo ¢ ’
where 65" is obtained from Equation (A20), while 6d™° is
. admic admic admic
od™e = :0E o7 o7 A24
9E + aﬁmc Mme + aﬁmt Nmt, ( )

which is differentiated with respect to both local and nonlocal quantities in terms of compression and
tensions part, so that

admic

_ (1 B rwd;ﬂic) adgu'c a,,lmic admic arw
JoE

admic anmic
. + - L
onmic. oE ory OE

w 81’]ij oE ’

(1 iy (A25)
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admic admic a,)/mic
c c c

aqmic - a,),gu‘c afﬂ"ic
ad:nic B ad;nic a,ﬂm’c

anmic - a,),;tnic aﬁ;ﬁic (1 o m)rw,

(1-m)(1—ryw),

with the required derivatives as follows

admic .

ar);nic = IBC exp (_,Bcr)/’cmc> 7
c

admic )

a,),inic = Prexp (—.Bt’)’;mc) ’
t

~

Qymic B 1 for 7 > v
0 for 112”” <70

e

Doylmic 1 for A >y
onyre

0 for 7" <o

dnmic aaA—E’\mV + A/\ag"—EV for El, >0
oE 0 for E€ <0 '
Meanwhile, one can obtain the derivatives of AA and my with respect to the strain tensor E as

aaA% =hy (thle +np-Hs- Dev) ,

amv - amv ﬁ amv E)Ai)\
OE 0S¢, OE = 0AA OE’

dSy,
oE
Next, one can derive damage with respect to the split factor ry, as

= hl (1 — h1h2h4nv) V- h1h2h4nD . H3 - Dev.

admic . admic . admic ) )
o, = (= redi™) 51—+ (1 —d?”C)T;w + (1 —dg™)di™,

adgnic adzm'c a,.yznic
Oy dymic ofic
ad;nic _ aditnic a,),;m'c
ore oy e

O o [Ory OE!
9~ L (aEIaE)

(1—m)AAmy,

rw(1 —m)AAmy,

I=1
aro  (Zhaa ') 5 — (ShaEh) G5
o (£ 1E11)° '
oE!

ﬁzl’”@ub
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where u; denotes the eigenvector that corresponds to the eigenvalue E;.
Finally, the macroscopic total tangent terms as well as the stress derivatives with respect to the
nonlocal quantities in terms of compression and tension parts are

0S . 3 _ mic mic 71/ mic admic
E_E./Q (1 - am) a5y do i St e S an, (A42)
mzc mic adTiC
= S, — rd dQ, A43
anmc / ) e (A
) admzc
— szc _ gmic dQ Ad4
aﬂmt 471'/ ¢ )aﬂmt ( )

where
admic admzc a,),mlc
c
Offme Oy BT
ady _ adyc gy
O 0"

(1—m), (A45)

(A46)

and the derivatives of the local variable in compression and tension with respect to the Green-Lagrange
strain tensor are

Mme _ 1 817’”” ory

Tne 4H/Q ((1 ) L — S A/\mv) dQ, (A47)
Mme 1 [ 817’”” orw
9= (rw oE aEM’”V) 4. (A48)

All required derivatives for calculating the tangent stiffness in the element level as in Equations (63)-(66)
should be transformed to the current configuration using the push-forward operation.
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