The Formation of Perovskite during the Combustion of an Energy-Rich Glycine–Nitrate Precursor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Glycine–Nitrate Precursors
2.2. Synthesis of Oxides in SHS
2.3. Synthesis of Oxides in VCS
2.4. Synthesis of Oxides in SCS
2.5. Methods of Investigation
3. Results and Discussion
3.1. ATR FTIR Study of Dry Precursors
3.2. Thermal Analysis of Dry Precursors
3.3. Effect of Combustion Regime of Precursors on the Characteristics of the Forming Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Merzhanov, A.G. The chemistry of self-propagating high-temperature synthesis. J. Mater. Chem. 2004, 14, 1779–1786. [Google Scholar] [CrossRef]
- Merzhanov, A.G.; Borovinskaya, I.P. A new class of combustion processes. Combust. Sci. Technol. 1975, 10, 195–201. [Google Scholar] [CrossRef]
- Mukasyan, A.S.; Dinka, P. Novel approaches to solution-combustion synthesis of nanomaterials. Int. J. Self Propagating High Temp. Synth. 2007, 16, 23–35. [Google Scholar] [CrossRef]
- Mukasyan, A.S.; Epstein, P.; Dinka, P. Solution combustion synthesis of nanomaterials. Proc. Combust. Inst. 2007, 31, 1789–1795. [Google Scholar] [CrossRef]
- Wen, W.; Wu, J.M. Nanomaterials via solution combustion synthesis: A step nearer to controllability. RSC Adv. 2014, 4, 58090–58100. [Google Scholar] [CrossRef]
- Patil, K.C.; Aruna, S.T.; Mimani, T. Combustion synthesis: An update. Curr. Opin. Solid State Mater. Sci. 2002, 6, 507–512. [Google Scholar] [CrossRef]
- Sutka, A.; Mezinskis, G. Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front. Mater. Sci. 2012, 6, 128–141. [Google Scholar] [CrossRef]
- González-Cortés, S.L.; Imbert, F.E. Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS). Appl. Catal. A Gen. 2013, 452, 117–131. [Google Scholar] [CrossRef]
- Hwang, C.C.; Tsai, J.S.; Huang, T.H. Combustion synthesis of Ni-Zn ferrite by using glycine and metal nitrates-Investigations of precursor homogeneity, product reproducibility, and reaction mechanism. Mater. Chem. Phys. 2005, 93, 330–336. [Google Scholar] [CrossRef]
- Manukyan, K.V.; Cross, A.; Roslyakov, S.; Rouvimov, S.; Rogachev, A.S.; Wolf, E.E.; Mukasyan, A.S. Solution combustion synthesis of nano-crystalline metallic materials: Mechanistic studies. J. Phys. Chem. C 2013, 117, 24417–24427. [Google Scholar] [CrossRef]
- Khaliullin, S.M.; Zhuravlev, V.D.; Russkikh, O.V.; Ostroushko, A.A.; Bamburov, V.G. Solution-combustion synthesis and eletroconductivity of CaZrO3. Int. J. Self Propagating High Temp. Synth. 2015, 24, 83–88. [Google Scholar] [CrossRef]
- Erri, P.; Pranda, P.; Varma, A. Oxidizer-fuel interactions in aqueous combustion synthesis. 1. Iron(III) nitrate-model fuels. Ind. Eng. Chem. Res. 2004, 43, 3092–3096. [Google Scholar] [CrossRef]
- Khetre, S.M.; Chopade, A.U.; Khilare, C.J.; Jadhav, H.V.; Jagadale, P.N.; Bamane, S.R. Electrical and dielectric properties of nanocrystalline LaCrO3. J. Mater. Sci. Mater. Electron. 2013, 24, 4361–4366. [Google Scholar] [CrossRef]
- Mishra, A.; Prasad, R. Preparation and application of perovskite catalysts for diesel soot emissions control: An overview. Catal. Rev. Sci. Eng. 2014, 56, 57–81. [Google Scholar] [CrossRef]
- Alami, D. Environmental applications of rare-earth manganites as catalysts: A comparative study. Environ. Eng. Res. 2013, 18, 211–219. [Google Scholar] [CrossRef]
- Lantto, V.; Saukko, S.; Toan, N.N.; Reyes, L.F.; Granqvist, C.G. Gas sensing with perovskite-like oxides having ABO3 and BO3 structures. J. Electroceram. 2004, 13, 721–726. [Google Scholar] [CrossRef]
- Peña, M.A.; Fierro, J.L.G. Chemical structures and performance of perovskite oxides. Chem. Rev. 2001, 101, 1981–2018. [Google Scholar] [CrossRef]
- Kharton, V.V.; Yaremchenko, A.A.; Naumovich, E.N. Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. II. Perovskite-related oxides. J. Solid State Electrochem. 1999, 3, 303–326. [Google Scholar] [CrossRef]
- Granger, P.; Parvulescu, V.I.; Kaliaguine, S.; Prellier, W. Perovskites and Related Mixed Oxides: Concepts and Applications; Wiley-VCH: Weinheim, Germany, 2015; ISBN 9783527686605. [Google Scholar]
- Ulla, M.A.; Lombardo, E.A. The mixed oxides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K.A., Eyring, L., Eds.; Elsevier Science B. V.: Amsterdam, The Netherlands, 2000; Volume 29, pp. 75–158. [Google Scholar]
- Zhu, J.; Li, H.; Zhong, L.; Xiao, P.; Xu, X.; Yang, X.; Zhao, Z.; Li, J. Perovskite oxides: Preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal. 2014, 4, 2917–2940. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, J.; Deng, Y.; Qian, Y.; Jia, X.; Ma, M.; Yang, C.; Liu, K.; Wang, Z.; Qu, S.; et al. The application of perovskite materials in solar water splitting. J. Semicond. 2020, 41, 011701. [Google Scholar] [CrossRef]
- Kanhere, P.; Chen, Z. A review on visible light active perovskite-based photocatalysts. Molecules 2014, 19, 19995–20022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deganello, F.; Tyagi, A.K. Solution combustion synthesis, energy and environment: Best parameters for better materials. Prog. Cryst. Growth Charact. Mater. 2018, 64, 23–61. [Google Scholar] [CrossRef]
- Nguyen, L.T.T.; Nguyen, L.T.H.; Duong, A.T.T.; Nguyen, B.D.; Hai, N.Q.; Chu, V.H.; Nguyen, T.D.; Bach, L.G. Preparation, characterization and photocatalytic activity of La-doped zinc oxide nanoparticles. Materials (Basel) 2019, 12, 1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zedan, A.F.; AlJaber, A.S. Combustion synthesis of non-precious CuO-CeO2 nanocrystalline catalysts with enhanced catalytic activity for methane oxidation. Materials (Basel) 2019, 16, 878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najjar, H.; Lamonier, J.F.; Mentré, O.; Giraudon, J.M.; Batis, H. Optimization of the combustion synthesis towards efficient LaMnO3+y catalysts in methane oxidation. Appl. Catal. B Environ. 2011, 106, 149–159. [Google Scholar] [CrossRef]
- Popkov, V.I.; Almjasheva, O.V.; Gusarov, V.V. The investigation of the structure control possibility of nanocrystalline yttrium orthoferrite in its synthesis from amorphous powders. Russ. J. Appl. Chem. 2014, 87, 1417–1421. [Google Scholar] [CrossRef]
- Deshpande, K.; Mukasyan, A.S.; Varma, A. Direct synthesis of iron oxide nanopowders by the combustion approach: Reaction mechanism and properties. Chem. Mater. 2004, 16, 4896–4904. [Google Scholar] [CrossRef]
- Da Silva, A.L.A.; Da Conceição, L.; Rocco, A.M.; Souza, M.M.V.M. Synthesis of Sr-doped LaMnO3 and LaCrO3 powders by combustion method: Structural characterization and thermodynamic evaluation. Ceramica 2012, 58, 521–528. [Google Scholar] [CrossRef] [Green Version]
- Kingsley, J.J.; Pederson, L.R. Combustion synthesis of perovskite LnCrO3 powders using ammonium dichromate. Mater. Lett. 1993, 18, 89–96. [Google Scholar] [CrossRef]
- Khaliullin, S.M.; Zhuravlev, V.D.; Bamburov, V.G.; Khort, A.A.; Roslyakov, S.I.; Trusov, G.V.; Moskovskikh, D.O. Effect of the residual water content in gels on solution combustion synthesis temperature. J. Sol-Gel Sci. Technol. 2020, 93, 251–261. [Google Scholar] [CrossRef]
- Mukasyan, A.S.; Costello, C.; Sherlock, K.P.; Lafarga, D.; Varma, A. Perovskite membranes by aqueous combustion synthesis: Synthesis and properties. Sep. Purif. Technol. 2001, 25, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Specchia, S.; Civera, A.; Saracco, G. In situ combustion synthesis of perovskite catalysts for efficient and clean methane premixed metal burners. Chem. Eng. Sci. 2004, 59, 5091–5098. [Google Scholar] [CrossRef]
- Specchia, S.; Finocchio, E.; Busca, G.; Specchia, V. Combustion synthesis. In Handbook of Combustion; Lackner, M., Winter, F., Agarwal, A.K., Eds.; Wiley-VCH: Weinheim, Germany, 2010; Volume 5, pp. 439–472. [Google Scholar]
- Lima, M.D.; Bonadimann, R.; de Andrade, M.J.; Toniolo, J.C.; Bergmann, C.P. Nanocrystalline Cr2O3 and amorphous CrO3 produced by solution combustion synthesis. J. Eur. Ceram. Soc. 2006, 26, 1213–1220. [Google Scholar] [CrossRef]
- Zupan, K.; Marinšek, M.; Novosel, B. Combustible precursor behaviour in the lanthanum chromite formation process. Mater. Tehnol. 2011, 45, 439–445. [Google Scholar]
- Kumar, A.; Mukasyan, A.S.; Wolf, E.E. Combustion synthesis of Ni, Fe and Cu multi-component catalysts for hydrogen production from ethanol reforming. Appl. Catal. A Gen. 2011, 401, 20–28. [Google Scholar] [CrossRef]
- Komova, O.V.; Mukha, S.A.; Netskina, O.V.; Odegova, G.V.; Pochtar’, A.A.; Ishchenko, A.V.; Simagina, V.I. A solid glycine-based precursor for the preparation of La2CuO4 by combustion method. Ceram. Int. 2015, 41, 1869–1878. [Google Scholar] [CrossRef]
- Komova, O.V.; Simagina, V.I.; Mukha, S.A.; Netskina, O.V.; Odegova, G.V.; Bulavchenko, O.A.; Ishchenko, A.V.; Pochtar’, A.A. A modified glycine-nitrate combustion method for one-step synthesis of LaFeO3. Adv. Powder Technol. 2016, 27, 496–503. [Google Scholar] [CrossRef]
- TOPAS V3: General Profile and Structure Analysis Software for Powder Diffraction Data—User’s Manual; Bruker AXS: Karlsruhe, Germany, 2005.
- Choudhury, R.R.; Panicker, L.; Chitra, R.; Sakuntala, T. Structural phase transition in ferroelectric glycine silver nitrate. Solid State Commun. 2008, 145, 407–412. [Google Scholar] [CrossRef]
- Ghazaryan, V.V.; Fleck, M.; Petrosyan, A.M. Crystal structures and vibrational spectra of novel compounds with dimeric glycine glycinium cations. J. Mol. Struct. 2010, 977, 117–129. [Google Scholar] [CrossRef]
- Aizeng, M.; Laiming, L.; Yonghua, L.; Shiquan, X. Crystal structure and infrared spectra of a lanthanum coordination compound with glycine, {[La(Gly)s·2H2O]·(ClO4)3}n. J. Coord. Chem. 1994, 33, 59–67. [Google Scholar] [CrossRef]
- Mrozek, R.; Rza¸czyńska, Z.; Sikorska-Iwan, M.; Głowiak, T. Crystal structure and vibrational spectra of two complexes of manganese(II) with glicyne. J. Chem. Crystallogr. 1999, 29, 803–808. [Google Scholar] [CrossRef]
- Straughan, B.P.; Lam, O.M. Preparations and structures of some Tris(aquo)-hexa-μ-glycinato-μ3-oxo complexes, [CrnFe3-n(μ3-O)(glycine)6(H2O)3](NO3)7·xH2O. Inorg. Chim. Acta 1985, 98, 7–10. [Google Scholar] [CrossRef]
- Straughan, B.P.; Lam, O.M.; Earnshaw, A. Magnetic and electrochemical studies on the series [CrnFe(μ3-O)(gly)6(H2O)3][NO3]7·xH2O (gly = glycine; N = 0, 1, 2, or 3) and on the mixed-valence complex [FeIIFeIII2(μ3-O)(gly)6(H2O)3]Cl6. J. Chem. Soc. Dalton Trans. 1987, 97–99. [Google Scholar] [CrossRef]
- Balboul, B.A.A.; El-Roudi, A.M.; Samir, E.; Othman, A.G. Non-isothermal studies of the decomposition course of lanthanum oxalate decahydrate. Thermochim. Acta 2002, 387, 109–114. [Google Scholar] [CrossRef]
- Smirnova, I.S.; Bazhenov, A.V.; Fursova, T.N.; Dubovitskii, A.F.; Uspenskaya, L.S.; Maksimuk, M.Y. IR-active optical phonons in Pnma-1, Pnma-2 and R3c phases of LaMnO3+δ. Phys. B Condens. Matter 2008, 403, 3896–3902. [Google Scholar] [CrossRef] [Green Version]
- Tompsett, G.A.; Sammes, N.M. Characterisation of the SOFC material, LaCrO3, using vibrational spectroscopy. J. Power Sources 2004, 130, 1–7. [Google Scholar] [CrossRef]
- Bernal, S.; Blanco, G.; Gatica, J.M.; Pérez-Omil, J.A.; Pintado, J.M.; Vidal, H. Chemical reactivity of binary rare earth oxides. In Binary Rare Earth Oxides; Adachi, G., Imanaka, N., Kang, Z.C., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 9–55. ISBN 1402025688. [Google Scholar]
- Le Van, T.; Che, M.; Tatibouët, J.M.; Kermarec, M. Infrared study of the formation and stability of La2O2CO3 during the oxidative coupling of methane on La2O3. J. Catal. 1993, 142, 18–26. [Google Scholar] [CrossRef]
- Najjar, H.; Batis, H. La-Mn perovskite-type oxide prepared by combustion method: Catalytic activity in ethanol oxidation. Appl. Catal. A Gen. 2010, 383, 192–201. [Google Scholar] [CrossRef]
- Zhu, C.; Nobuta, A.; Nakatsugawa, I.; Akiyama, T. Solution combustion synthesis of LaMO3 (M = Fe, Co, Mn) perovskite nanoparticles and the measurement of their electrocatalytic properties for air cathode. Int. J. Hydrog. Energy 2013, 38, 13238–13248. [Google Scholar] [CrossRef]
- Bonet, A.; Travitzky, N.; Greil, P. Synthesis of LaCrO3 and La0.9Ca0.1CrO3 by modified glycine nitrate process. J. Ceram. Sci. Technol. 2014, 5, 93–100. [Google Scholar] [CrossRef]
- Striker, T.; Ruud, J.A. Effect of fuel choice on the aqueous combustion synthesis of lanthanum ferrite and lanthanum manganite. J. Am. Ceram. Soc. 2010, 93, 2622–2629. [Google Scholar] [CrossRef]
Samples | Reagents | Quantity | pH | Theoretical Composition 1 | Determined Composition 2 |
---|---|---|---|---|---|
CrGly | Cr(NO3)3∙9H2O | 2.0 g | 3.1 | CrC6H15N6O15 | CrC6H16.5N5.8O15.8 |
Gly | 1.125 g | ||||
H2O | 10 mL | ||||
MnGly | Mn(NO3)2∙4H2O | 1.255 g | 4.5 | MnC4H10N4O10 | MnC4H9.7N3.9O9.9 |
Gly | 0.75 g | ||||
H2O | 10 mL | ||||
LaCrGly | La(NO3)3∙6H2O | 2.165 g | 2.9 | LaCrC12H30N12O30 | LaCr1.3C12H32.7N11.9O33.8 |
Cr(NO3)3∙9H2O | 1.255 g | ||||
Gly | 1.875 g | ||||
H2O | 10 mL | ||||
MnCrGly | Mn(NO3)2∙4H2O | 2.165 g | 4.1 | LaMnC10H25N10O25 | LaMn1.1C10H26.4N9.8O27.6 |
Cr(NO3)3∙9H2O | 2.0 g | ||||
Gly | 2.25 g | ||||
H2O | 10 mL |
Sample | Phase Composition | SBET (m2/g) | CSR1 (nm) | CSR2 (nm) |
---|---|---|---|---|
Monometallic precursors | ||||
MnGly SHS | Mn3O4 (75 wt%) | − | 76(7) | 75(9) |
MnO (25 wt%) | 72(7) | 75(9) | ||
MnGly VCS | Mn3O4 (99 wt%) | − | 31(3) | 25(3) |
MnO (1 wt%) | 43(4) | − | ||
CrGly SHS | Cr2O3 | − | 41(4) | 43(5) |
traces of CrO2 | − | − | ||
CrGly VCS | Cr2O3 | − | 26(3) | 33(6) |
traces of CrO2 | − | − | ||
Bimetallic precursors | ||||
LaMnGly SHS | LaMnO3 | 32(2) | 11(1) | 10(1) |
traces of La2O2CO3 or La2O(CO3)2 | − | − | ||
LaMnGly VCS | LaMnO3 | 37(2) | 4(4) | − |
traces of La2O2CO3 or La2O(CO3)2 | − | − | ||
Mn3O4 | − | − | ||
LaCrGly SHS | LaCrO3 | 27(2) | 35(4) | 43(5) |
LaCrGly VCS | LaCrO3 | 38(2) | 29(3) | 30(4) |
traces of La2O2CO3 or La2O(CO3)2 | − | − |
Phase | Precursors | Combustion Mode | ϕ | Calcination | XRD Phase Composition | SBET (m2/g) | CSR (nm) | Ref. |
---|---|---|---|---|---|---|---|---|
LaMnO3 | La(NO3)3 Mn(NO3)2 Glycine | Solution Oven 350 °C | 0.7 | − | Amorphous, residual carbon | 15.2 | − | [34] |
900 °C, 1 h | LaMnO3 | 8–10 | − | |||||
1.1 | − | LaMnO3 | 16.6 | − | ||||
900 °C, 1 h | LaMnO3 | 8–10 | − | |||||
1.7 | − | LaMnO3, traces LaONO3, residual carbon | 24.8 | − | ||||
900 °C, 1 h | LaMnO3 | 8–10 | − | |||||
LaMnO3 | La(NO3)3 Mn(NO3)2 Glycine | Pellet Local ignition RT | 1.8 | − | LaMnO3, traces of La2O2CO3, La2O(CO3)2 | 32 | 11 | In this work |
LaMnO3 | La(NO3)3 Mn(NO3)2 Glycine | Solution Furnace 700 °C | 0.6 | − | Amorphous, La2O2CO3, La2O(CO3)2 | 22 | − | [27] |
700 °C, 24 h | LaMnO3 | 16 | − | |||||
1 | − | LaMnO3+y | 18 | 28 | ||||
1.5 | − | LaMnO3+y | 37 | 20 | ||||
LaMnO3 | La(NO3)3 Mn(NO3)2 Glycine | Gel Hot plate 10 °C/min | 1 | − | LaMnO3 | 22 | 33 | [56] |
400 °C | LaMnO3 | 20 | 38 | |||||
600 °C | LaMnO3 | 23 | 47 | |||||
800 °C | LaMnO3 | 9.1 | 33 | |||||
1000 °C | LaMnO3 | 2.6 | 130 | |||||
LaMnO3 | La(NO3)3 Mn(NO3)2 Glycine | Solution Oven 700 °C | 1 | − | LaMnO3.16 | 24 | − | [53] |
700 °C, 24 h flowing air (N2/O2=4/1) | LaMnO3.16 | 16 | − | |||||
LaMnO3 | La(NO3)3 Mn(NO3)2 Glycine | Gel Heater 300–400 °C | 0.6 | − | Amorphous | − | − | [54] |
10 °C/min, 700 °C, 4 h | LaMnO3 | − | 500 - 1000 | |||||
1 | − | LaMnO3 weak crystallinity | − | − | ||||
10 °C/min, 700 °C, 4 h | LaMnO3 | − | − | |||||
1.8 | − | Amorphous | − | − | ||||
10 °C/min, 700 °C, 4 h | LaMnO3 | − | < 100 | |||||
LaMnO3 | La(NO3)3 Mn(NO3)2 Glycine | Gel Muffle furnace 300 °C | 1 | − | Amorphous | − | − | [30] |
10 °C/min, 900 °C, 6 h, flowing air | LaMnO3 | − | 22.4 | |||||
LaCrO3 | La(NO3)3 Cr(NO3)2 Glycine | 1 | − | La2O(CO3)2, Cr5O12, Cr2O3, Cr3O4 | − | − | ||
10 °C/min, 900 °C, 6 h, flowing air | LaCrO3, traces of La2O(CO3)2 | − | 22.3 | |||||
LaCrO3 | La(NO3)3 Cr(NO3)2 Glycine | Solution Hot plate 250 °C | 0.5 | − | Amorphous, unreacted nitrates | 35 | − | [31] |
1 | − | LaCrO3 | 16 | 26 | ||||
2 | − | LaCrO3, LaCrO4 | 33 | 14 | ||||
La(NO3)3 (NH4)2Cr2O7 Glycine | 0 | − | La2CrO6, La2O3, Cr2O3 | − | − | |||
0.5 | − | LaCrO4,unreacted nitrates | 5.6 | 59 | ||||
1 | − | LaCrO3 Pnma | 29 | 15 | ||||
2 | − | LaCrO3 | 41 | 15 | ||||
LaCrO3 | La(CH3COO)3 Cr(NO3)2 Glycine | Solution 10 °C/min 800 °C, 0.5 h | 0 | − | La2CrO6, LaCrO3 | 6 | 150 | [55] |
1 | − | LaCrO3 | 7.3 | 119 | ||||
2 | − | LaCrO3 | 6.5 | 135 | ||||
3 | − | LaCrO3, La2CrO6 | 9.5 | 94 | ||||
4 | − | LaCrO3, La2CrO6 | 6.6 | 135 | ||||
5 | LaCrO3, La2CrO6 | 7.1 | 124 | |||||
LaCrO3 | La(NO3)3 Cr(NO3)2 Glycine | Pellet Local ignition RT | 1.8 | − | LaCrO3 | 27 | 34 | In this work |
Parameter | LaMnGly | LaCrGly |
---|---|---|
Tad. (°C) | 1562 | 2402 |
Pellet combustion rate (mg/s) | 2.4 | 10.1 |
Start of thermolysis (°C) | 245 | 180 |
CSR of LaMO3, M = Mn, Cr (nm) | 11 | 35 |
Additional characteristics according to XRD, ATR FTIR, HRTEM | Coexistence of amorphous phase, high carbonate content | Crystalline product, low carbonate content |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komova, O.V.; Mukha, S.A.; Ozerova, A.M.; Odegova, G.V.; Simagina, V.I.; Bulavchenko, O.A.; Ishchenko, A.V.; Netskina, O.V. The Formation of Perovskite during the Combustion of an Energy-Rich Glycine–Nitrate Precursor. Materials 2020, 13, 5091. https://doi.org/10.3390/ma13225091
Komova OV, Mukha SA, Ozerova AM, Odegova GV, Simagina VI, Bulavchenko OA, Ishchenko AV, Netskina OV. The Formation of Perovskite during the Combustion of an Energy-Rich Glycine–Nitrate Precursor. Materials. 2020; 13(22):5091. https://doi.org/10.3390/ma13225091
Chicago/Turabian StyleKomova, Oksana V., Svetlana A. Mukha, Anna M. Ozerova, Galina V. Odegova, Valentina I. Simagina, Olga A. Bulavchenko, Arcady V. Ishchenko, and Olga V. Netskina. 2020. "The Formation of Perovskite during the Combustion of an Energy-Rich Glycine–Nitrate Precursor" Materials 13, no. 22: 5091. https://doi.org/10.3390/ma13225091
APA StyleKomova, O. V., Mukha, S. A., Ozerova, A. M., Odegova, G. V., Simagina, V. I., Bulavchenko, O. A., Ishchenko, A. V., & Netskina, O. V. (2020). The Formation of Perovskite during the Combustion of an Energy-Rich Glycine–Nitrate Precursor. Materials, 13(22), 5091. https://doi.org/10.3390/ma13225091