Self-Assembly of Asymmetrically Functionalized Titania Nanoparticles into Nanoshells
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Drug Release
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Boles, M.A.; Engel, M.; Talapin, D.V. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem. Rev. 2016, 116, 11220–11289. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Caruso, R.A. Recent Progress in the Synthesis of Spherical Titania Nanostructures and Their Applications. Adv. Funct. Mater. 2013, 23, 1356–1374. [Google Scholar] [CrossRef]
- Kotov, N.A. Self-Assembly of Inorganic Nanoparticles: Ab ovo(a). Europhys. Lett. 2017, 119, 66008. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, J.; Lv, F.; Xiao, S.; Nuckolls, C.; Hexing, L. Synthesis and Self-Assembly of Photonic Materials from Nanocrystalline Titania Sheets. J. Am. Chem. Soc. 2013, 135, 4719–4721. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, H.; Wang, X.; Li, Y.; Song, B.; Bolarinwa, O.; Reese, R.A.; Zhang, T.; Wang, X.Q.; Cai, J.; et al. Supersnowflakes: Stepwise Self-Assembly and Dynamic Exchange of Rhombus Star-Shaped Supramolecules. J. Am. Chem. Soc. 2017, 139, 8174–8185. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.; Hao, C.; Sen, S.; Xu, C.; Král, P.; Kotov, N.A. Template-Free Hierarchical Self-Assembly of Iron Diselenide Nanoparticles into Mesoscale Hedgehogs. J. Am. Chem. Soc. 2017, 139, 16630–16639. [Google Scholar] [CrossRef]
- Glotzer, S.C.; Solomon, M.J.; Kotov, N.A. Self-Assembly: From Nanoscale to Microscale Colloids. AIChE J. 2004, 50, 2978–2985. [Google Scholar] [CrossRef]
- Jiang, W.; Qu, Z.B.; Kumar, P.; Vecchio, D.; Wang, Y.; Ma, Y.; Bahng, J.H.; Bernardino, K.; Gomes, W.R.; Colombari, F.M.; et al. Emergence of Complexity in Hierarchically Organized Chiral Particles. Science 2020, 368, 642–648. [Google Scholar] [CrossRef]
- Walther, A.; Müller, A.H.E. Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chem. Rev. 2013, 113, 5194–5261. [Google Scholar] [CrossRef]
- Su, H.; Price, C.A.H.; Jing, L.; Tian, Q.; Liu, J.; Qian, K. Janus Particles: Design, Preparation, and Biomedical Applications. Mater. Today Biol. 2019, 4, 100033. [Google Scholar] [CrossRef]
- Chen, Q.; Bae, S.C.; Granick, S. Directed Self-Assembly of a Colloidal Kagome Lattice. Nature 2011, 469, 381–384. [Google Scholar] [CrossRef]
- Chen, Q.; Diesel, E.; Whitmer, J.K.; Bae, S.C.; Luijten, E.; Granick, S. Triblock Colloids for Directed Self-Assembly. J. Am. Chem. Soc. 2011, 133, 7725–7727. [Google Scholar] [CrossRef] [PubMed]
- McConnell, M.D.; Kraeutler, M.J.; Yang, S.; Composto, R.J. Patchy and Multiregion Janus Particles with Tunable Optical Properties. Nano Lett. 2010, 10, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Isojima, T.; Lattuada, M.; Vander Sande, J.B.; Hatton, T.A. Reversible Clustering of pH- and Temperature-Responsive Janus Magnetic Nanoparticles. ASC Nano 2008, 2, 1799–1806. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, Y.; Bolzinger, M.A. Emulsions Stabilized with Solid Nanoparticles: Pickering Emulsions. Colloids Surf. A Physochemical Eng. Asp. 2013, 439, 23–34. [Google Scholar] [CrossRef]
- Harman, C.L.G.; Paterl, M.A.; Guldin, S.; Davies, G.L. Recent Developments in Pickering Emulsions for Biomedical Applications. Curr. Opin. Colloid Interface Sci. 2019, 39, 173–189. [Google Scholar] [CrossRef]
- Andala, D.M.; Shin, S.H.R.; Lee, H.Y.; Bishop, K.J.M. Templated Synthesis of Amphiphilic Nanoparticles at the Liquid-Liquid Interface. ACS Nano 2012, 6, 1044–1050. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, Z.; Zhang, L.; Shi, J.; Yang, D. Sol-Gel Derived Boehmite as an Efficient and Robust Carrier for Enzyme Encapsulation. Ind. Eng. Chem. Res. 2012, 51, 255–261. [Google Scholar] [CrossRef]
- Sakkos, J.K.; Mutlu, B.R.; Wackett, L.P.; Aksan, A. Adsorption and Biodegradation of Aromatic Chemicals by Bacteria Encapsulated in a Hydrophobic Silica Gel. ACS Appl. Mater. Interfaces 2017, 9, 26848–26858. [Google Scholar] [CrossRef]
- Amoura, M.; Nassif, N.; Roux, C.; Livage, J.; Coradin, T. Sol-Gel Encapsulation of Cells is Not Limited to Silica: Long-Term Viability of Bacteria in Alumina Matrices. Chem. Commun. 2007, 39, 4015–4017. [Google Scholar] [CrossRef]
- Kessler, V.G.; Seisenbaeva, G.A.; Unell, M.; Håkansson, S. Chemically Triggered Biodelivery Using Metal-Organic Sol-Gel Synthesis. Angew. Chem. Int. Ed. 2008, 47, 8506–8509. [Google Scholar] [CrossRef] [PubMed]
- Youn, W.; Ko, E.H.; Kim, M.H.; Park, M.; Hong, D.; Seisenbaeva, G.A.; Kessler, V.G.; Choi, I.S. Cytoprotective Encapsulation of Individual Jurkat T Cells within Durable TiO2 Shells for T-Cell Therapy. Angew. Chem. Int. Ed. 2017, 56, 10702–10706. [Google Scholar] [CrossRef] [PubMed]
- Sayes, C.M.; Wahi, R.; Kurian, P.A.; Liu, Y.; West, J.L.; Ausman, K.D.; Warheit, D.B.; Colvin, V.L. Correlating Nanoscale Titania Structure with Toxicity: A Cytotoxicity and Inflammatory Response Study with Human Dermal Fibroblasts and Human Lung Epithelial Cells. Toxicol. Sci. 2006, 92, 174–185. [Google Scholar] [CrossRef]
- Ekstrand-Hammarström, B.; Hong, J.; Davoodpour, P.; Sandholm, K.; Ekdahl, K.N.; Bucht, A.; Nilsson, B. TiO2 Nanoparticles Tested in a Novel Screening Whole Human Blood Model of Toxicity Trigger Adverse Activation of the Kallikrein System at Low Concentrations. Biomaterials 2015, 51, 58–68. [Google Scholar] [CrossRef]
- Pang, H.; Yang, H.; Guo, C.X.; Lu, J.; Li, M. Nanoparticle Self-Assembled Hollow TiO2 Spheres with Well Matching Visible Light Scattering for High Performance Dye-Sensitized Solar Cells. Chem. Commun. 2012, 48, 8832–8834. [Google Scholar] [CrossRef]
- Seisenbaeva, G.A.; Moloney, M.P.; Tekoriute, R.; Hardy-Dessource, A.; Nedelec, J.M.; Gun’ko, Y.K.; Kessler, V.G. Biomimetic Synthesis of Hierarchically Porous Metal Oxide Microparticles—Potential Scaffolds for Drug Delivery and Catalysis. Langmuir 2010, 26, 9809–9817. [Google Scholar] [CrossRef]
- Chen, T.; Clover, P.J.; Bon, S.A.F. Organic-Inorganic Hybrid Hollow Spheres Prepared from TiO2-Stabilized Pickering Emulsion Polymerization. Adv. Mater. 2007, 19, 2286–2289. [Google Scholar] [CrossRef]
- Li, S.; Wang, F.; Dai, H.; Jiang, X.; Ye, C.; Min, J. Self-Assembly of Silica Nanoparticles into Hollow Spheres via a Microwave-Assisted Aerosol Process. Mater. Res. Bull. 2016, 74, 459–464. [Google Scholar] [CrossRef]
- Li, M.; Zhang, C.; Yang, X.L.; Xu, H.B. Controllable Synthesis of Hollow Mesoporous Silica Nanoparticles Templated by Kinetic Self-Assembly Using a Gemini Surfactant. RSC Adv. 2013, 3, 16304. [Google Scholar] [CrossRef]
- Nilsing, M.; Lunell, S.; Persson, P.; Ojamae, L. Phosphonic Acid Adsorption at the TiO2 Anatase (101) Surface Investigated by Periodic Hybrid HF-DFT Computations. Surf. Sci. 2005, 582, 49–60. [Google Scholar] [CrossRef]
- Nilsing, M.; Persson, P.; Ojamae, L. Anchor Group Influence on Molecule-Metal Oxide Interfaces: Periodic Hybrid DFT Study of Pyridine Bound to TiO2 via Carboxylic and Phosphonic Acid. Chem. Phys. Lett. 2005, 415, 375–380. [Google Scholar] [CrossRef]
- Svensson, F.G.; Daniel, G.; Tai, C.W.; Seisenbaeva, G.A.; Kessler, V.G. Titanium Phosphonate Oxo-Alkoxide “Clusters”: Solution Stability and Facile Hydrolytic Transformation into Nano Titania. RSC Adv. 2020, 10, 6873–6883. [Google Scholar] [CrossRef]
- Azouani, R.; Soloviev, A.; Benmami, M.; Chhor, K.; Bocquet, J.F.; Kanaev, A. Stability and Growth of Titanium-Oxo-Alkoxy TixOy(OiPr)z Clusters. J. Phys. Chem. C 2007, 111, 16243–16248. [Google Scholar] [CrossRef]
- Xia, Y.; Nguyen, T.D.; Yang, M.; Lee, B.; Santos, A.; Podsiadlo, P.; Tang, Z.; Glotzer, S.C.; Kotov, N.A. Self-Assembly of Self-Limiting Monodisperse Supraparticles from Polydisperse Nanoparticles. Nat. Nanotechnol. 2012, 7, 479. [Google Scholar] [CrossRef] [PubMed]
- Piccinini, E.; Pallarola, D.; Battaglini, F.; Azzaroni, O. Self-Limited Self-Assembly of Nanoparticles into Supraparticles: Towards Supramolecular Colloidal Materials by Design. Mol. Syst. Des. Eng. 2016, 1, 155–162. [Google Scholar] [CrossRef]
- Evdokimova, O.L.; Svensson, F.G.; Agafonov, A.V.; Håkansson, S.; Seisenbaeva, G.A.; Kessler, V.G. Hybrid Drug Delivery Patches Based on Spherical Cellulose Nanocrystals and Colloid Titania-Synthesis and Antibacterial Properties. Nanomaterials 2018, 8, 228. [Google Scholar] [CrossRef]
- Kulak, A.; Hall, S.R.; Mann, S. Single-Step Fabrication of Drug-Encapsulated Inorganic Microspheres with Complex Form by Sonication-Induced Nanoparticle Assembly. Chem. Commun. 2004, 5, 576–577. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svensson, F.G.; Seisenbaeva, G.A.; Kotov, N.A.; Kessler, V.G. Self-Assembly of Asymmetrically Functionalized Titania Nanoparticles into Nanoshells. Materials 2020, 13, 4856. https://doi.org/10.3390/ma13214856
Svensson FG, Seisenbaeva GA, Kotov NA, Kessler VG. Self-Assembly of Asymmetrically Functionalized Titania Nanoparticles into Nanoshells. Materials. 2020; 13(21):4856. https://doi.org/10.3390/ma13214856
Chicago/Turabian StyleSvensson, Fredric G., Gulaim A. Seisenbaeva, Nicholas A. Kotov, and Vadim G. Kessler. 2020. "Self-Assembly of Asymmetrically Functionalized Titania Nanoparticles into Nanoshells" Materials 13, no. 21: 4856. https://doi.org/10.3390/ma13214856
APA StyleSvensson, F. G., Seisenbaeva, G. A., Kotov, N. A., & Kessler, V. G. (2020). Self-Assembly of Asymmetrically Functionalized Titania Nanoparticles into Nanoshells. Materials, 13(21), 4856. https://doi.org/10.3390/ma13214856