Influence of Silver Addition on Structure, Martensite Transformations and Mechanical Properties of TiNi–Ag Alloy Wires for Biomedical Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eggeler, G.; Hornbogen, E.; Yawny, A.; Heckmann, A.; Wagner, M. Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng. A 2004, 378, 24–33. [Google Scholar] [CrossRef]
- Jani, J.M.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Hornbogen, E. Microstructure and Thermo-Mechanical Properties of NiTi Shape Memory Alloys. Mater. Sci. Forum 2004, 455, 335–341. [Google Scholar] [CrossRef]
- Shen, J.-J.; Lu, N.-H.; Chen, C.-H. Mechanical and elastocaloric effect of aged Ni-rich TiNi shape memory alloy under load-controlled deformation. Mater. Sci. Eng. A 2020, 788, 139554. [Google Scholar] [CrossRef]
- Gunther, V.E.; Chekalkin, T.L; Kim, J.S; Hodorenko, V.N. The Equilibrium Of Martensite Shear Stress At Phase Transistors In TiNi-Based Alloy. Adv. Mater. Lett. 2015, 6, 8–12. [Google Scholar] [CrossRef]
- Sakamoto, H. Distinction between Thermal and Stress-Induced Martensitic Transformations and Inhomogeneity in Internal Stress. Mater. Trans. 2002, 43, 2249–2255. [Google Scholar] [CrossRef]
- Mishnaevsky, L.; Levashov, E.; Valiev, R.Z.; Segurado, J.; Sabirov, I.; Enikeev, N.; Prokoshkin, S.; Solov’Yov, A.V.; Korotitskiy, A.; Gutmanas, E.; et al. Nanostructured titanium-based materials for medical implants: Modeling and development. Mater. Sci. Eng. R: Rep. 2014, 81, 1–19. [Google Scholar] [CrossRef]
- Gunther, V.; Radkevich, A.; Kang, S.B.; Chekalkin, T.; Marchenko, E.; Gunther, S.; Pulikov, A.; Sinuk, I.; Kaunietis, S.; Podgorniy, V.; et al. Study of the knitted TiNi mesh graft in a rabbit cranioplasty model. Biomed. Phys. Eng. Express 2019, 5, 027005. [Google Scholar] [CrossRef]
- Melaiye, A.; Youngs, W.J. Silver and its application as an antimicrobial agent. Expert Opin. Ther. Patents 2005, 15, 125–130. [Google Scholar] [CrossRef]
- Ruparelia, J.; Chatterjee, A.K.; Duttagupta, S.P.; Mukherji, S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008, 4, 707–716. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, B.; Wang, B.; Wang, Y.; Li, L.; Yang, Q.; Cui, L. Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag. Acta Biomater. 2011, 7, 2758–2767. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.-T.; Joo, U.-H.; Park, G.-H.; Hwang, C.-J.; Kim, K.-N. Effect of silver addition on the properties of nickel-titanium alloys for dental application. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2006, 76, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Kim, Y.-W.; Nam, T.-H. Transformation behavior and superelastic properties of Ti-Ni-Ag scaffolds prepared by sintering of alloy fibers. Scr. Mater. 2018, 153, 23–26. [Google Scholar] [CrossRef]
- Momeni, S.; Tillmann, W. Influence of Ag on antibacterial performance, microstructure and phase transformation of NiTi shape memory alloy coatings. Vacuum 2019, 164, 242–245. [Google Scholar] [CrossRef]
- Jhou, W.-T.; Wang, C.; Ii, S.; Chiang, H.-S.; Hsueh, C.-H. TiNiCuAg shape memory alloy films for biomedical applications. J. Alloy. Compd. 2018, 738, 336–344. [Google Scholar] [CrossRef]
- Da Silva, G.; Álvares, O.J. Designing NiTiAg Shape Memory Alloys by Vacuum Arc Remelting: First Practical Insights on Melting and Casting. Shape Mem. Superelasticity 2018, 4, 402–410. [Google Scholar] [CrossRef]
- Marchenko, E.S.; Baigonakova, G.; Gyunter, V.E. The Effect of Silver Doping on the Structure and Shape Memory Effect in Biocompatible TiNi Alloys. Tech. Phys. Lett. 2018, 44, 749–752. [Google Scholar] [CrossRef]
- Zamponi, C.; Wuttig, M.; Quandt, E. Ni–Ti–Ag shape memory thin films. Scr. Mater. 2007, 56, 1075–1077. [Google Scholar] [CrossRef]
- Quandt, E.; Zamponi, C. Superelastic NiTi Thin Films for Medical Applications. Adv. Sci. Technol. 2008, 59, 190–197. [Google Scholar] [CrossRef]
- Thangavel, E.; Dhandapani, V.S.; Dharmalingam, K.; Marimuthu, M.; Veerapandian, M.; Arumugam, M.K.; Kim, S.; Kim, B.; Ramasundaram, S.; Kim, D.-E.; et al. RF magnetron sputtering mediated NiTi/Ag coating on Ti-alloy substrate with enhanced biocompatibility and durability. Mater. Sci. Eng. C 2019, 99, 304–314. [Google Scholar] [CrossRef]
- Chun, S.-J.; Noh, J.-P.; Yeom, J.-T.; Kim, J.-I.; Nam, T.-H. Martensitic transformation behavior of Ti–Ni–Ag alloys. Intermetallics 2014, 46, 91–96. [Google Scholar] [CrossRef]
- Li, S.; Kim, E.-S.; Kim, Y.-W.; Nam, T.-H. Microstructures and martensitic transformation behavior of superelastic Ti-Ni-Ag scaffolds. Mater. Res. Bull. 2016, 82, 39–44. [Google Scholar] [CrossRef]
- Jang, J.-Y.; Chun, S.-J.; Kim, N.-S.; Cho, J.-W.; Kim, J.-H.; Yeom, J.-T.; Nam, T.-H.; Kim, J.-I. Martensitic transformation behavior in Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys. Mater. Res. Bull. 2013, 48, 5064–5069. [Google Scholar] [CrossRef]
- Yi, X.; Pang, G.; Sun, B.; Meng, X.; Cai, W. The microstructure and martensitic transformation behaviors in Ti-Ni-Hf -X (Ag, Sn) high temperature shape memory alloys. J. Alloy. Compd. 2018, 756, 19–25. [Google Scholar] [CrossRef]
- Marchenko, E.; Baigonakova, G.; Kokorev, O.V.; Klopotov, A.; Yuzhakov, M.M. Phase equilibrium, structure, mechanical and biocompatible properties of TiNi-based alloy with silver. Mater. Res. Express 2019, 6, 066559. [Google Scholar] [CrossRef]
- Gunther, V.; Marchenko, E.S.; Chekalkin, T.; Baigonakova, G.; Kang, J.-H.; Kim, J.-S.; Klopotov, A. Study of structural phase transitions in quinary TiNi(MoFeAg)-based alloys. Mater. Res. Express 2017, 4, 105702. [Google Scholar] [CrossRef]
- Hua, Y.; Nie, Z.; Wang, L.; Zhang, H.; Wang, C.; Tan, C.; Wang, Y. Studies of intergranular and intragranular stresses in cold-rolled CuNiSi alloys. J. Alloy. Compd. 2020, 818, 152896. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, H.; Stoica, A.D.; Wang, X.-L.; Liaw, P.K.; Richardson, J.W. The development of grain-orientation-dependent residual stressess in a cyclically deformed alloy. Nat. Mater. 2003, 2, 101–106. [Google Scholar] [CrossRef]
- Gunther, V.; Marchenko, E.; Baigonakova, G. Physical properties of the TiNi-based alloys doped with silver. Mater. Today: Proc. 2017, 4, 4727–4731. [Google Scholar] [CrossRef]
- Gyunter, V.E.; Marchenko, E.; Gyunter, S.V.; Baigonakova, G. The Influence of the Surface Layer on the Combination of Properties of Thin TiNi Alloy Wires. Tech. Phys. Lett. 2018, 44, 811–813. [Google Scholar] [CrossRef]
- Gunther, S.; Chekalkin, T.; Hodorenko, V.; Kang, J.H.; Kim, J.S.; Gunther, V. Impact of infrared radiation on oxide layer of ultrathin TiNi-based alloy wire. Adv. Mater. Lett. 2018, 9, 715–720. [Google Scholar] [CrossRef]
- Sharifi, E.M.; Kermanpur, A. Superelastic properties of nanocrystalline NiTi shape memory alloy produced by thermomechanical processing. Trans. Nonferrous Met. Soc. China 2018, 28, 515–523. [Google Scholar] [CrossRef]
- Povoden-Karadeniz, E.; Cirstea, D.; Lang, P.; Wojcik, T.; Kozeschnik, E. Thermodynamics of Ti–Ni shape memory alloys. Calphad 2013, 41, 128–139. [Google Scholar] [CrossRef]
- Otsuka, K.; Ren, X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 2005, 50, 511–678. [Google Scholar] [CrossRef]
- Gao, P.; Liu, Y.; Ren, Y.; Chen, G.; Lan, B.; Lu, X.; Li, C. Evaluation of the microstructure and property of TiNi SMA prepared using VIM in BaZrO3 crucible. Vacuum 2019, 168, 108843. [Google Scholar] [CrossRef]
- Khaleghi, F.; Tajally, M.; Emadoddin, E.; Mohri, M. The investigation of the mechanical properties of graded high-temperature shape memory Ti-Ni-Pd alloy. J. Alloy. Compd. 2019, 787, 882–892. [Google Scholar] [CrossRef]
- Lu, J.; Hu, Q.-M.; Yang, R. Composition-dependent elastic properties and electronic structures of off-stoichiometric TiNi from first-principles calculations. Acta Mater. 2008, 56, 4913–4920. [Google Scholar] [CrossRef]
- Wu, S.; Lin, H.; Chen, S. Phenomenological analysis of martensitic transformation in cold-rolled TiNi-base shape memory alloys. Mater. Chem. Phys. 2001, 68, 149–156. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Inuzuka, M.; Tomus, D.; Hosokawa, A.; Nakayama, H.; Morii, K.; Todaka, Y.; Umemoto, M. Martensitic transformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation. Mater. Sci. Eng. A 2006, 643–648. [Google Scholar] [CrossRef]
M’s, °C | M’f, °C | A’s, °C | A’f, °C | ΔT, deg | εrev, % | εres, % | |
---|---|---|---|---|---|---|---|
TiNi | −36 | −164 | −22 | 25 | 55 | 6.2 | 0 |
TiNi49.9–Ag0.1 | −40 | −145 | −14 | 13 | 60 | 6.5 | 0 |
TiNi49.8–Ag0.2 | −38 | −108 | −27 | 27 | 68 | 4.7 | 0.2 |
σy, MPa | σв, MPa | Δεy, % | εв, % | |
---|---|---|---|---|
TiNi | 350 ± 20 | 1370 ± 20 | 7 ± 0.5 | 32 ± 0.5 |
TiNi49.9–Ag0.1 | 435 ± 20 | 1450 ± 20 | 10 ± 0.5 | 34 ± 0.5 |
TiNi49.8–Ag0.2 | 400 ± 20 | 1330 ± 20 | 8 ± 0.5 | 31 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baigonakova, G.; Marchenko, E.; Chekalkin, T.; Kang, J.-h.; Weiss, S.; Obrosov, A. Influence of Silver Addition on Structure, Martensite Transformations and Mechanical Properties of TiNi–Ag Alloy Wires for Biomedical Application. Materials 2020, 13, 4721. https://doi.org/10.3390/ma13214721
Baigonakova G, Marchenko E, Chekalkin T, Kang J-h, Weiss S, Obrosov A. Influence of Silver Addition on Structure, Martensite Transformations and Mechanical Properties of TiNi–Ag Alloy Wires for Biomedical Application. Materials. 2020; 13(21):4721. https://doi.org/10.3390/ma13214721
Chicago/Turabian StyleBaigonakova, Gulsharat, Ekaterina Marchenko, Timofey Chekalkin, Ji-hoon Kang, Sabine Weiss, and Aleksei Obrosov. 2020. "Influence of Silver Addition on Structure, Martensite Transformations and Mechanical Properties of TiNi–Ag Alloy Wires for Biomedical Application" Materials 13, no. 21: 4721. https://doi.org/10.3390/ma13214721
APA StyleBaigonakova, G., Marchenko, E., Chekalkin, T., Kang, J.-h., Weiss, S., & Obrosov, A. (2020). Influence of Silver Addition on Structure, Martensite Transformations and Mechanical Properties of TiNi–Ag Alloy Wires for Biomedical Application. Materials, 13(21), 4721. https://doi.org/10.3390/ma13214721