In Situ Doping of Nitrogen in <110>-Oriented Bulk 3C-SiC by Halide Laser Chemical Vapour Deposition
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, T.H.; Bhunia, S.; Mehregany, M. Electromechanical computing at 500 °C with silicon carbide. Science 2010, 5997, 1316–1318. [Google Scholar] [CrossRef] [PubMed]
- Barringer, E.; Faiztompkins, Z.; Feinroth, H. Corrosion of CVD silicon carbide in 500°C supercritical water. J. Am. Ceram. Soc. 2007, 1, 315–318. [Google Scholar] [CrossRef]
- Cho, J.S.; Jang, E.; Lim, D.; Ahn, S.; Yoo, J.; Cho, A.; Park, J.H.; Kim, K.; Choi, B.H. Wide-bandgap nanocrystalline silicon-carbon alloys for photovoltaic applications. Sol. Energy Mater. Sol. Cells 2018, 182, 220–227. [Google Scholar] [CrossRef]
- Li, Q.; Yin, X.; Duan, W.; Kong, L.; Liu, X.; Cheng, L.; Zhang, L. Improved dielectric and electromagnetic interference shielding properties of ferrocene-modified polycarbosilane derived SiC/C composite ceramics. J. Eur. Ceram. Soc. 2014, 10, 2187–2201. [Google Scholar] [CrossRef]
- Latha, H.K.E.; Udayakumar, A.; Prasad, V.S. Microstructure and electrical properties of nitrogen doped 3C -SiC thin films deposited using methyltrichlorosilane. Mater. Sci. Semicond. Process. 2015, 29, 117–123. [Google Scholar] [CrossRef]
- Kim, Y.W.; Kim, K.J.; Kim, H.C.; Cho, N.H.; Lim, K.Y. Electrodischarge-machinable silicon carbide ceramics sintered with Yttrium Nitrate. J. Am. Ceram. Soc. 2011, 4, 991–993. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, C.; Liu, J.L.; An, K.; Yan, X.B.; Hei, L.F. The interface and mechanical properties of a CVD single crystal diamond produced by multilayered nitrogen doping epitaxial growth. Materials 2019, 15, 2492. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.C.; Wang, F.H.; Chang, S.C.; Yang, C.F. Using oxygen plasma pretreatment to enhance the properties of F-Doped ZnO films prepared on polyimide substrates. Materials 2018, 9, 1501. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Quan, X.; Li, J.Y.; Chen, X.; Yu, H.T.; Chen, G.H. Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. J. Phys. Chem. C 2007, 32, 11836–11842. [Google Scholar] [CrossRef]
- Wijesundara, M.B.J.; Stoldt, C.R.; Carraro, C.; Howe, R.T.; Maboudian, R. Nitrogen doping of polycrystalline 3C–SiC films grown by single-source chemical vapor deposition. Thin Solid Films 2002, 419, 69–75. [Google Scholar] [CrossRef]
- Chen, J.; Steckl, A.J.; Loboda, M.J. In situ N2 -doping of SiC films grown on Si (111) by chemical vapor deposition from organosilanes. J. Electrochem. Soc. 2000, 6, 2324–2327. [Google Scholar] [CrossRef]
- Hoshide, Y.; Tabata, A.; Kitagawa, A.; Kondo, A. Preparation of n-type nanocrystalline 3C-SiC films by hot-wire CVD using N2 as doping gas. Thin Solid Films 2009, 12, 3524–3527. [Google Scholar] [CrossRef]
- Zhang, J.; Carraro, C. Electrical, mechanical and metal contact properties of polycrystalline 3C-SiC films for MEMS in harsh environments. Surf. Coat. Technol. 2007, 22–23, 8893–8898. [Google Scholar] [CrossRef]
- Trevino, J.; Fu, X.; Mehregany, M.; Zorman, C. Low-Stress, heavily-doped polycrystalline silicon carbide for MEMS application. In Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2005), Miami Beach, FL, USA, 30 January–3 February 2005. [Google Scholar]
- Cheng, H.; Tu, R.; Zhang, S.; Han, M.X.; Goto, T.; Zhang, L.M. Preparation of highly oriented beta SiC bulks by halide laser chemical vapor deposition. J. Eur. Ceram. Soc. 2017, 2, 509–515. [Google Scholar] [CrossRef]
- Cheng, H.; Yang, M.J.; Lai, Y.F.; Hu, M.W.; Li, Q.Z.; Tu, R.; Zhang, S. Transparent highly oriented 3C-SiC bulks by halide laser CVD. J. Eur. Ceram. Soc. 2018, 9, 3057–3063. [Google Scholar] [CrossRef]
- Lai, Y.F.; Cheng, H. Fine-grained 3C-SiC thick films prepared via hybrid laser chemical vapor deposition. J. Am. Ceram. Soc. 2019, 102, 1–11. [Google Scholar] [CrossRef]
- Catellani, A.; Calzolari, A. Functionalization of SiC (110) surfaces via porphyrin adsorption: Ab initio results. J. Phys. Chem. C 2012, 116, 886–892. [Google Scholar] [CrossRef]
- Roy, S.; Zorman, C.; Mehregany, M.; Deanna, R.; Deeb, C. The mechanical properties of polycrystalline 3C-SiC films grown on polysilicon substrates by atmospheric pressure chemical-vapor deposition. J. Appl. Phys. 2006, 4, 11–12. [Google Scholar] [CrossRef]
- Jha, H.S.; Agarwal, P. Highly crystalline silicon carbide thin films grown at low substrate temperature by HWCVD technique. J. Mater. Sci. Mater. Electron. 2015, 3, 1381–1388. [Google Scholar] [CrossRef]
- Carduner, K.R.; Shinozaki, S.S.; Rokosz, M.J.; Peters, C.R.; Whalen, T.J. Characterization of beta-Silicon Carbide by Silicon-29 Solid-State NMR, Transmission Electron Microscopy, and Powder X-ray Diffraction. J. Am. Ceram. Soc. 1990, 8, 2281–2286. [Google Scholar] [CrossRef]
- Koumoto, K.; Takeda, S. High-resolution electron microscopy observations of stacking faults in beta-SiC. J. Am. Ceram. Soc. 1989, 10, 1985–1987. [Google Scholar] [CrossRef]
- Lotgering, F. K Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I. J. Inorg. Nucl. Chem. 1959, 9, 113–123. [Google Scholar] [CrossRef]
- Ferro, G.; Chaussende, D. A new model for in situ nitrogen incorporation into 4H-SiC during epitaxy. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larkin, D.J.; Neudeck, P.G.; Powell, J.A.; Matus, L.J. Site-competition epitaxy for superior silicon carbide electronics. Appl. Phys. Lett. 1994, 13, 1659–1661. [Google Scholar] [CrossRef]
- Tu, R.; Zheng, D.H.; Cheng, H.; Hu, M.W.; Zhang, S.; Han, M.X.; Goto, T.; Zhang, L.M. Effect of CH4/SiCl4ratio on the composition and microstructure of <110>-oriented beta-SiC bulks by halide CVD. J. Eur. Ceram. Soc. 2017, 4, 1217–1223. [Google Scholar] [CrossRef]
- Ohshita, Y.; Kitajima, H. In situ doped polycrystalline silicon selective growth using the SiH2Cl2/H2/HCl/PH3 gas system. J. Appl. Phys. 2014, 3, 1989–1992. [Google Scholar]
- Feldman, D.W.; Parker, J.H. Phonon Dispersion Curves by Raman Scattering in SiC, Polytypes 3C, 4H, 6H, 15R, and 21R. Phys. Rev. 1968, 3, 787–793. [Google Scholar] [CrossRef]
- Klein, M.V.; Ganguly, B.N. Theoretical and Experimental Study of Raman Scattering from Coupled LO-Phonon-Plasmon Modes in Silicon Carbide. Phys. Rev. B 1972, 6, 2380–2388. [Google Scholar] [CrossRef]
- Irmer, G. Determination of the Charge Carrier Concentration and Mobility in n-GaP by Raman Spectroscopy. Phys. Status Solidi 1983, 2, 595–603. [Google Scholar] [CrossRef]
- Yugami, H.; Nakashima, S.; Mitsuishi, A.; Uemoto, A.; Shigeta, M. Characterization of the freecarrier concentrations in doped β SiC crystals by Raman scattering. J. Appl. Phys. 1987, 61, 354–358. [Google Scholar] [CrossRef]
- Wellmann, P.J.; Weinga, R. Determination of doping levels and their distribution in SiC by optical techniques. Mater. Sci. Eng. B 2003, 1–3, 262–268. [Google Scholar] [CrossRef]
- Weingärtner, R.; Wellmann, P.J.; Bickermann, M.; Hofmann, D.; Straubinger, T.L.; Winnacker, A. Determination of charge carrier concentration in n- and p-doped SiC based on optical absorption measurements. Appl. Phys. Lett. 2012, 80, 70–72. [Google Scholar] [CrossRef]
- Weingärtner, R.; Wellmann, P.J. On the Origin of the Below Band-Gap Absorption Bands in n-Type (N) 4H- and 6H-SiC. Mater. Sci. Forum 2004, 457, 645–648. [Google Scholar] [CrossRef]
- Hellmann, B.A.R. SiC absorption of near-infrared laser radiation at high temperatures. Appl. Phys. A 2016, 7, 642. [Google Scholar]
- Shi, X.; Chen, L.; Uher, C. Recent advances in high-performance bulk thermoelectric materials. Int. Mater. Rev. 2016, 6, 379–415. [Google Scholar] [CrossRef]
- Tan, G.; Zhao, L.D.; Kanatzidis, M.G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016, 19, 12123–12149. [Google Scholar] [CrossRef]
- Sonntag, H.; Kalbitzer, S. Ion-implantation doping of crystalline 6H-SiC. Appl. Phys. A Mater. Sci. Process. 1995, 4, 363–367. [Google Scholar] [CrossRef]
- Yukina, T.; Yukina, T.; Mettaya, K.; Hirokazu, K.; Takashi, G. Electrical and thermal properties of nitrogen-doped SiC sintered body. J. Jpn. Soc. Powder Powder Metall. 2018, 8, 508–512. [Google Scholar]
- Pearson, G.L.; Bardeen, J. Electrical properties of pure silicon and silicon alloys containing boron and phosphorus. Phys. Rev. 1949, 5, 865–883. [Google Scholar] [CrossRef]
- Wijesundara, M.B.J.; Gao, D.; Carraro, C.; Howe, R.T.; Maboudian, R. Nitrogen doping of polycrystalline 3C-SiC films grown using 1, 3-disilabutane in a conventional LPCVD reactor. J. Cryst. Growth 2003, 259, 18–25. [Google Scholar] [CrossRef]
Precursor | SiCl4 + CH4 |
---|---|
Diluting gas | H2 |
Dopant | N2 |
Substrate | Graphite |
Tdep | 1623 K |
Ptot | 4 kPa |
Flow rate of SiCl4/CH4 | 600/200 sccm |
Flow rate of H2 | 1200 sccm |
ϕN2 | 0–30% |
Distance between the nozzle and the substrate | 30 mm |
Deposition time | 20 min |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Y.; Xia, L.; Xu, Q.; Li, Q.; Liu, K.; Yang, M.; Zhang, S.; Han, M.; Goto, T.; Zhang, L.; et al. In Situ Doping of Nitrogen in <110>-Oriented Bulk 3C-SiC by Halide Laser Chemical Vapour Deposition. Materials 2020, 13, 410. https://doi.org/10.3390/ma13020410
Lai Y, Xia L, Xu Q, Li Q, Liu K, Yang M, Zhang S, Han M, Goto T, Zhang L, et al. In Situ Doping of Nitrogen in <110>-Oriented Bulk 3C-SiC by Halide Laser Chemical Vapour Deposition. Materials. 2020; 13(2):410. https://doi.org/10.3390/ma13020410
Chicago/Turabian StyleLai, Youfeng, Lixue Xia, Qingfang Xu, Qizhong Li, Kai Liu, Meijun Yang, Song Zhang, Mingxu Han, Takashi Goto, Lianmeng Zhang, and et al. 2020. "In Situ Doping of Nitrogen in <110>-Oriented Bulk 3C-SiC by Halide Laser Chemical Vapour Deposition" Materials 13, no. 2: 410. https://doi.org/10.3390/ma13020410
APA StyleLai, Y., Xia, L., Xu, Q., Li, Q., Liu, K., Yang, M., Zhang, S., Han, M., Goto, T., Zhang, L., & Tu, R. (2020). In Situ Doping of Nitrogen in <110>-Oriented Bulk 3C-SiC by Halide Laser Chemical Vapour Deposition. Materials, 13(2), 410. https://doi.org/10.3390/ma13020410