N\

ol

materials @\Py

a

Article
Influence of the Titanium Implant Surface Treatment

on the Surface Roughness and Chemical Composition

Ana Isabel Nicolas-Silvente !, Eugenio Velasco-Ortega 2*, Ivan Ortiz-Garcia 3,
Loreto Monsalve-Guil 3, Javier Gil ¢ and Alvaro Jimenez-Guerra 3

1 Associate Professor of Restorative Dentistry, Professor of Master in Mucogingival, Periodontal and Implant
Surgery, School of Dentistry, University of Murcia, 30008 Murcia, Spain; ainicolas@um.es

2 Professor of Comprehensive Dentistry for Adults, Director of Master in Implant Dentistry, Faculty of
Dentistry, University of Seville, 41009 Sevilla, Spain

3 Associate Professor of Comprehensive Dentistry for Adults, Professor of Master in Implant Dentistry,
Faculty of Dentistry, University of Seville, 41009 Sevilla, Spain; ivanortizgarcial000@hotmail.com (1.O.G.);
lomonsalve@hotmail.es (L.M.-G.); alopajanosas@hotmail.com (A.].-G.)

4 Chairman of Bioengineering Institute of Technology, Universitat Internacional de Catalunya,
08017 Barcelona, Spain; xavier.gil@uic.es

* Correspondence: evelasco@us.es

Received: 12 December 2019; Accepted: 7 January 2020; Published: 9 January 2020

Abstract: The implant surface features affect the osseointegration process. Different surface
treatment methods have been applied to improve the surface topography and properties. Trace of
different elements may appear on the implant surface, which can modify surface properties and
may affect the body’s response. The aim was to evaluate the roughness based on the surface
treatment received and the amount and type of trace elements found. Ninety implants (nine
different surface treatment) were evaluated. Roughness parameters were measured using
white-light-interferometry (WLI). The arithmetical mean for R., Rq, Ry, and R: of each implant
system was calculated, and Fisher’s exact test was applied, obtaining Ra values between 0.79 and
2.89 um. Surface chemical composition was evaluated using X-ray photoelectron spectroscopy (XPS)
at two times: as received by the manufacturer (AR) and after sputter-cleaning (SC). Traces of several
elements were found in all groups, decreasing in favor of the Ti concentration after the
sputter-cleaning. Within the limitations of this study, we can conclude that the surface treatment
influences the roughness and the average percentage of the trace elements on the implant surface.
The cleaning process at the implant surface should be improved by the manufacturer before
assembling the implant.

Keywords: surface roughness; surface chemical composition; dental implant contamination;
surface treatment technique

1. Introduction

Implant surface characteristics have been shown to play an essential role in the osseointegration
process [1]. The cellular responses depend upon the chemical and physical characteristics of the
substrate [2] and particularly upon its particle size [3], crystallinity [4,5], chemical composition [6],
and surface structure [7]. The attachment capability by human stromal cells to smooth titanium
surface is low [8] and can lead to the formation of fibrous tissue layer between the implant and the
surrounding bone [9]. To increase biocompatibility and cell viability, modifications affecting
topography, roughness surface characteristics, and chemical surface composition must be done [10].
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Regarding the implant surface roughness, the osteoblast activity can be seen increased with
micro-rough from 1 to 100 um when it is compared to untreated or smooth surfaces [11]. The most
commonly used methods to acquire these roughness characteristics are sandblasting with different
metals or metal oxides, etching, machining, micron-sized metal bead coatings, or anodization. Most
of the current commercial implant systems have a height variation (Ra) ranging from 1 to 2 pum. The
microtopographic features of the implant surface (peaks, valleys, and protrusions) are an essential
factor in the biological response and the configuration of the bone-implant interface [12,13]. The
implant surface topography can be classified as smooth (Ra < 0.5 um), minimally rough (Ra 0.5-1.0
pum), moderately rough (Ra 1.0-2.0 um), and highly rough (Ra > 2.0 um) [12]. Surface properties are a
critical factor for achieving clinical success [14,15].

On the opposite, despite the increasing interest in performing new surfaces that allow quick
osseointegration, the interactions with soft tissues are still less investigated [16,17]. When the
implant surface is treated by any of the methods exposed above, traces of the materials used, such as
metals, metal ions, lubricants, and detergents, may appear. These elements can modify surface
properties even when present in small quantities and may affect the body’s response during the
osseointegration process, leading to the formation of undesirable tissues between bone/implant
interface [18,19]. Although the effects caused by these low concentration trace elements are relatively
weak studied, there is a broad agreement that comprehensive control of the implant surface and
elimination of undesirable chemical compounds must be done to improve implant quality [20].

The presence of organic contamination (carbon) on all implant surfaces cannot be avoided since
the hydrocarbons present in the atmosphere are almost instantly adsorbed on the titanium surface
exposed to the air. Nevertheless, the presence of other elements, such as sodium, chlorine, calcium,
sulfur, or silicon indicates that these impurities have not been removed by the cleaning process. This
may occur due to the roughness itself; hidden areas remain where the ionic beam cannot reach to
carry out the cleaning process [21]. The presence of some of these trace elements may even be
adequate, such as calcium phosphate, which induces the formation of biochemical junctions that
facilitate the quick and intense osseointegration of the implant, especially in the early stages of bone
healing. In this sense, calcium phosphate has been documented as biocompatible with
osteoconductive properties [22].

Most of the trace elements found do not have these favorable properties, and they can even alter
cell viability. The presence of deoxyribonucleic acid (DNA) and lactate dehydrogenase (LDH) assess
nuclear and cell membrane alterations. This presence is usually low, confirming the safety of
implants for clinical use, but the identification of cytoplasmatic cell components could demonstrate
some degree of toxicity on some implant surfaces [23]. This toxicity, together with the ionic release,
could somehow affect the osseointegration process and perhaps could be the precursor of a future
peri-implant disease [23].

Currently, there are different methods used by the manufacturer before the final implant
assembly to clean the trace elements deposited on the implant surface. Some of these methods are
sputter cleaning [24], which is a physical technique to remove surface layers, material is physically
removed from a surface by bombardment of ions generated in a plasma, being the gas used
generally inert or nonreactive (argon or helium more frecuently), the goal of ion beam sputtering is
to remove unwanted layers without damaging the rest and it is widely used before surface analysis;
abrasive air [25]; laser or photodynamic therapy [26] between others.

Therefore, the goal of the present study was to evaluate the relationship between the roughness
created in different implant systems based on their surface treatment and the amount and type of
trace elements found on their surface.

2. Materials and Methods

For the development of this experimental study, the surface of different implant systems was
analyzed. The surface roughness and the chemical elements surface composition was measured for
each implant as received by the manufacturer and after a cleaning process.
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2.1. Dental Implants and Experimental Groups
Ninety implants distributed in nine implant systems with different surface treatments were

evaluated (1 = 10 per group; Table 1).

Table 1. Implant manufacturer, implant system, surface name, surface treatment, and surface

treatment code of each of the nine experimental groups.

Implant Implant Surface Treatment
Group Manufacturer System Name Surface Treatment Code
Group I Straumann BL SLA® Iarge-grl.t sandl?lastmg + SB + AE
(n=10) acid-etching
G(;O_l?; )H Microdent Genius ATEC® Alumina sandblasting SB (Al20s)
Titanium Oxide sandblasting
G I -Si
roup Dentspéliy Siron Astra Tech Osse(;@Spee . SB (TiO2) + F
(n=10) Fluoride treatment
Group IV Biomimeti Sandblasting +
Avinent OCEAN® © © Addition of calcium and SB+Ca+P
(n=10) ©
Phosphorous
G \Y Zi
roup Hnmer Biomet 3i  Osseotite® Double acid-etching 2AE
(n=10) Biomet
Group VI o o Alumina sandblasting + SB (AL20s) +
(n=10) Klockner Vega Vega thermochemical treatment TCT
Resorbable particles
II
Group V Ticare inHex® RBM TC® sandblasting + SB (res) +
. . 2AE
(n=10) Double acid-etching
Group
VII  NobelBiocare OPIREPI  pipyiies TiOz layer TiO:
ce®
(n=10)
G IX Sandblasti
roup Galimplant PX® Nanoblast . an .as ing + SB + 3AE
(n=10) © Triple acid-etching

Group I: Straumann® Implant System: contained 10 Straumann® Bone Level (BL; Straumann)
with cylindrical (parallel) outer contour with a SLA® surface treatment, which is based on a
large-grit sandblasting technique that generates the macro-roughness, followed by acid-etching that
superposes a micro-roughness.

Group II: Microdent® Implant System: contained 10 Microdent Genius® (Microdent Implant
System) conical connection dental implants with a surface treatment, which is made by applying a
physical attack with abrasive alumina particles (sandblasting) at high pressure. This method is
registered as Abrasive Treatment Extreme Cleaning® (ATEC®). The implant is sandblasted along its
entire length.

Group III: Astra Tech® Implant System: contained 10 Astra Tech OsseoSpeed®
(Dentsply-Sirona) tapered implants, which surface treatment is made by a titanium dioxide
sandblasting at high pressure, followed by a fluoride nanostructure treatment.

Group IV: Avinent® Implant System: contained 10 Ocean® (Avinent), which Biomimetic®
surface is treated by sandblasting at high pressure, followed by the addition of calcium and
phosphorus.

Group V: Biomet 3i® Implant System: contained 10 Osseotite® (Zimmer Biomet), which surface
is treated by a double acid-etching technique.

Group VI: Klockner® Implant System: contained 10 Vega® (Klockner), which surface is treated
by a two-phase technique starting with an alumina particle attack followed by a thermochemical
treatment (alkaline immersion plus heat treatment).
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Group VII: Mozograu-Ticare® Implant System: contained 10 inHex® (Ticare) with RBM TC®
surface, obtained by applying a physical attack with resorbable particles (sandblasting) at high
pressure followed by a double acid-etching.

Group VIII: Nobel Biocare® Implant System: contained 10 NobelReplace® tapered (Nobel
Biocare) with TiUnite® surface characterized by a thick and moderately rough titanium oxide layer
with a high degree of crystallinity.

Group IX: Galimplant® Implant System: contained 10 IPX® (Galimplant) with Nanoblast®
surface obtained after abrasive sandblasting at high pressure followed by a triple acid-etching
technique.

2.2. Evaluation of the Implant Surface Roughness

Implant surface roughness was evaluated for all the implants included in this experimental
study. Different roughness parameters were recorded.

2.2.1. Data Acquisition

For the quantitative evaluation of the surface roughness of the nine different implant systems, a
last generation white light interferometry (WLI) equipment (Optical Profiling System, Wyko
NT9300, Veeco Instruments, New York, NY, USA) was used. WLI is a non-contact optical method
that allows measurements on 3D structures by using a wave superposition principle with a
visible-wavelength light (white light).

Measurements were made using the white light optical interferometry (WLOI) non-contact
topography characterization technique with a vertical scanning interferometry mode (VSI). A
magnification of 20x with a 1x field of view (FOV) was used, obtaining an image size of 227 x 298
pum?. Nine areas were randomly selected on the middle part of the implant surface, and the average
of each parameter evaluated was calculated with Wyko Vision 232TM Software (Veeco Instruments,
New York, NY, USA). The following image filtering was set to calculate roughness parameters: 1.
Missing data removal; 2. height at level “strong” to eliminate excessively high peaks that may
appear by image artifact; and 3. surface shape selecting “waveform removal” to eliminate the
influence of the slight cylindrical curvature of the selected areas and turn the curved image into a flat
image so that the real topography of the surface can be appreciated. The profile parameters were
recorded after applying a Gaussian filter, with an “end effect correction” activated.

2D and 3D images were also recorded from the virtual reconstruction made by the WLOI with a
magnification of 20x.

2.2.2. Roughness parameters
The reported parameters were (Figure 1):

a. The arithmetical mean roughness (Ra): the arithmetical mean height indicates the average of the
absolute value along the sampling length.

b. Root mean square deviation (Rq): indicates the root mean square along the sampling length.

c. Total height of profile (R¢): indicates the vertical distance between the maximum profile peak
height and the maximum profile valley depth along the evaluation length.

d. Maximum height of profile (R): indicates the absolute vertical distance between the maximum
profile peak height and the maximum profile valley depth along the sampling length [27].
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Figure 1. Graphics of the roughness parameters evaluated included Ra, Rq, Ry, and Rz [27].

2.2.3. Statistical Analysis

The arithmetical mean for the variables Ra, Rq, Ry, and R: of each implant system was calculated,
and Fisher’s exact test was applied.

2.3. Evaluation of the Surface Chemical Composition

Surface chemical composition was evaluated using the electron spectroscopy for chemical
analysis (ESCA), also known as X-ray photoelectron spectroscopy (XPS, ThermoFisher Scientific,
Waltham, MA, USA). By the ESCA, x-ray irradiation hits on the sample surface and the detached
energy is measured and analyzed. This method allows us to identify all the elements presented in
the sample qualitatively and quantitatively, except for hydrogen (H) and helium (He) and generates
a photoelectron spectrum, which includes characteristic peaks for all elements.

2.3.1. Data Acquisition

One area located in the middle part of the implant surface was randomly selected to evaluate
the surface chemical composition. It was evaluated at two different stages:

Stage 1: as received by the manufacturer (AR), with a maximum time of two minutes of exposure
to the air from the opening of the implant container until it was analyzed.

Stage 2: After performing a 30-min sputter cleaning (SC) with an argon ion cannon, at an energy
of 1kV and a surface area of 1 mm?2.

A K-Alpha™+ XPS System (ThermoFisher Scientific,c Waltham, MA, USA) was used for the
surface chemical evaluation. The XPS was calibrated to irradiate the sample with a diameter spot of
400 microns, which represents an irradiation area of 0.35 mm2 An X-ray (monochromatic) photon
cannon with an aluminum anode (1486.6 eV) was used, and atomic concentrations of each element
were obtained from the areas under the peaks applying Scofield sensitivity factors. Data were
registered and analyzed with Thermo Scientific™ Avantage Data System Software (ThermoFisher
Scientific, Waltham, MA, USA). A descriptive evaluation of the data obtained was carried out.

3. Results

3.1. Roughness of the Analyzed Surfaces. Quantitative Findings

The different roughness parameters were recorded in each of the nine implant systems, means
for each parameter were calculated and are shown in Table 2; and maximum Ra, minimum Ra, mean
Ra, and standard deviation are shown in Table 3.
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Group I: Straumann BL Implant System with SLA® surface (obtained by a large grit
sandblasting followed by acid-etching). The roughness parameters evaluated gave mean values of
Ra:2.49 pm, Rq: 3.16 um, Re: 22.86 um, and R-: 25.49 um.

Group II: Microdent® Implant System, with the surface treated with the Abrasive Treatment
Extreme Cleaning® (ATEC®) reported mean roughness values of Ra: 1.07 pm, Rq: 1.37 pm, Re 15.01
um, and Rz: 28.09 um, representing the second implant system with the least rough surface.

Group III: Astra Tech® Implant System, with the OsseoSpeed®surface, obtained after a titanium
dioxide sandblasting at high pressure and followed by a fluoride nanostructure treatment, gave
mean roughness values of Ra: 1.97 pm, Rq: 2.51 um, Re: 24.71 um, and Rz: 35.05 pm.

Group IV: Avinent® Implant System, with the Biomimetic® surface, treated by sandblasting at
high pressure, followed by addition of calcium and phosphorus, reported mean roughness values of
Ra: 2.39 um, Rq: 3.07 pm, Re 27.58 um, and Rz: 35.95 um, being the second implant system with the
roughest surface.

Group V: Biomet 3i® Implant System, with the Osseotite® surface, treated by a double
acid-etching technique, showed mean roughness values of Ra: 0.79 pm, Rq: 0.99 um, Re: 17.07 pm, and
Rz:29.74 um, being the implant system with the smoothest surface.

Group VI: Klockner® Implant System, with the Vega® surface, which is treated by an alumina
particles attack followed by a thermochemical treatment, reported mean roughness values of Ra: 2.89
pum, Rq: 3.74 pm, Re: 29.32 um, and Rz: 34.52 um. This surface treatment provided the roughest surface
of all evaluated implant systems.

Group VII: Mozograu-Ticare® Implant System, with the RBM TC® surface, treated by a
sandblasting with resorbable particles followed by a double acid-etching, gave mean roughness
values of Ra: 1.31 um, Rq: 1.73 pm, Re: 36.71 um, and Rz: 59.30 um.

Group VIII: Nobel Biocare® Implant System, with the TiUnite® surface, obtained after adding a
thick and moderately rough titanium oxide layer, provided mean roughness values of Ra: 1.10 um,
Rq: 1.50 pum, Re: 24.21 um, and Rz: 32.12 pm.

Group IX: Galimplant® Implant System, with the Nanoblast® surface, treated with an abrasive
sandblasting at high pressure followed by a triple acid-etching reported mean roughness values of
Ra:1.45 um, Rq: 1.94 pm, Re: 14.98 pm, and Rz: 16.38 pm.

Table 2. Mean values of the roughness parameters evaluated for each implant system and the
implant surface classification according to the degree of roughness.

Implant System Ra(um) Ry(um) Re(um)  R: (um) Roughness Type
STRAUMANN® 2,49 3,16 22,86 25,49 highly rough
MICRODENT® 1,07 1,37 15,01 28,09 moderately rough
ASTRATECH® 1,97 2,51 24,71 35,05 moderately rough
AVINENT® 2,39 3,07 27,58 35,95 highly rough
BIOMET 3i® 0,79 0,99 17,07 29,74 minimally rough
KLOCKNER® 2,89 3,74 29,32 34,52 highly rough
MOZOGRAU® 1,31 1,73 36,71 59,30 moderately rough
NOBELBIOCARE® 1,10 1,50 24,21 32,12 moderately rough
GALIMPLANT® 1,45 1,94 14,98 16,38 moderately rough

Table 3. Sample number (n), minimum Ra, maximum Ra, mean Ra, and Ra standard deviation of each
experimental group.

Implant System n  Minimum Ra MaximumR. MeanR:  Ra Standard deviation
STRAUMANN® 10 1.99 3.34 2.49 0.43126
MICRODENT® 10 0.95 1.13 1.07 0.05959
ASTRATECH® 10 1.80 2.14 1.97 0.10692
AVINENT® 10 1.99 2.78 2.39 0.27727
BIOMET 3i® 10 0.73 0.93 0.79 0.06567

KLOCKNER® 10 248 3.33 2.89 0.29578
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MOZOGRAU® 10 1.06 1.47 1.31 0.11657
NOBELBIOCARE® 10 0.76 1.37 1.10 0.17735
GALIMPLANT® 10 1.07 1.72 1.45 0.24501

3.2. Topography of the Analyzed Surfaces. Qualitative Findings

Qualitatively evaluating the surface topography features, a coincidence could be observed
between the roughness pattern obtained in the 2D and 3D images from the WLOI at 20x and the
classification of each implant system surface roughness after the R. measurements. The greatest
difference between peaks and valleys appeared in those groups of implant systems classified as
“highly rough”, according to the R.. While a more smoothed roughness pattern was observed in
those implant systems classified as “moderately and minimally rough” (Figure 2).

STRAUMANN®
Highly Rough

MICRODENT®
Moderately Rough

ASTRATECH®
Moderately Rough

AVINENT®
Highly Rough

BIOMET 3i®
Minimally Rough

KLOCKNER®
Highly Rough

MOZOGRAU®
Moderately Rough

NOBELBIOCARE®
Moderately Rough

GALIMPLANT®
Moderately Rough

Figure 2. 2D and 3D images of the topographic reconstruction of the implant surface for each of the
nine implant systems evaluated, obtained from the white light optical interferometry (WLOI) with a
magnification of 20x.



Materials 2020, 13, 314 8 of 13

3.3. Surface Chemical Composition.

Common elements, such as carbon (C), oxygen (O), and nitrogen (N), were found in all the
samples analyzed at a high concentration, as these are found in the atmosphere. The highest average
percentage of carbon was for group VIII (Nobel Biocare) with 82.4% (as received by the
manufacturer, Kloten, Switzerland), followed by group III (Dentsply-Sirona), with 81.9%. The lowest
average percentage of carbon was for group V (Zimmer Biomet) with 40.2%.

Titanium (Ti) also appeared as it is the main element of the alloys used in implantology. The
concentration of these elements (C, O, and N) decreased in favor of the Ti concentration after the
sputter cleaning (Table 4).

Table 4. Percentage of each element found on the implant surface, as received from the manufacturer
(AR) and after receiving a sputter cleaning (SC). “X” means than the element was not found in the

sample.
Tsryes:fré‘gg‘é Stage € O N Ti Al Si Ca Na Cl Mg P Zn
STRAUMANN® AR 584 284 12 70 X 35 08 08 X X X X
SB+AE SC 238 478 09 255 X 18 02 X X X X X
MICRODENT® AR 547 280 25 48 51 18 05 13 07 07 X X
SB (AL:O») sC 239 416 09 175 153 X 01 X X X X X
ASTRATECH® AR 819 138 X 18 X 10 14 X X X X X
SB (TiO2)+F SC 477 213 22 286 X X 00 X X X X X
AVINENT® AR 455 365 11 97 33 16 17 X X X 06 X
SB+Car+P SC 414 388 11 112 14 26 28 X X X 07 X
BIOMET 3i® AR 402 396 12 11,8 X 72 X X X X X X
2AE sC 382 275 23 321 X X X X X X X X
KLOCKNER® AR 626 236 11 29 43 48 04 X X X 05 X
SB (ALOs)+TCT sC 641 183 X 73 85 17 X X X X X X
MOZOGRAU® AR 735 182 04 27 X 23 13 07 X X 10 X
SB (res)+2AE SC 477 213 22 286 X X 02 X X X X X
NOBELBIOCARE® AR 824 122 X 07 X 20 19 X X X 08 X
TiO: SC 699 188 X 85 X 17 08 X X X 20 X
GALIMPLANT® AR 531 312 10 84 X 37 12 X X X X 050
SB+3AE sC 337 271 37 315 X X X X X X X X

Aluminum (Al) was found in those implant systems that use a sandblasting with abrasive
alumina oxide for the surface treatment (Microdent®, Avinent®, and Klockner®). In most of them, the
percentage of Al increased after the sputter cleaning.

Elements such as silicon (Si), calcium (Ca), and sodium (Na) were found in small quantities in
most of the samples evaluated, although their concentration decreased after sputter cleaning. Traces
of elements such as chlorine (Cl), magnesium (Mg), phosphorus (P), or zinc (Zn) in small amounts
were found in some of the samples evaluated. Most of them decreased or disappeared after sputter
cleaning.

4. Discussion

The present study aimed to evaluate the relationship between the roughness created in
different implant systems based on their surface treatment and the amount and type of trace
elements found on their surface. Different roughness parameters and chemical elements found on
the surface of the implants were evaluated.

Taking into account the different surface treatment techniques to achieve different
topographical features, it is very important to characterize the surfaces and to study the surface
chemical composition after each treatment. According to Wennerberg and Albrektsson [28], a light
interferometer is a safe and effective way to measure the different roughness parameters. The white
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light optical interferometry allowed characterizing the 3D surface topography with a
non-destructive method. The system was calibrated to a national institute of standards and
technology (NIST) traceable standard, so any variation that could appear from one sample to
another was excluded.

The implants’ surface microtopography is relevant at a cellular level in the osseointegration
process. The nanotopography influences proteins/cells/implants interactions [23]. Nanotopography
features induce changes at biological, physical, and chemical levels, causing an increase in the
adhesion of osteogenic cells, and promoting osseointegration. It has been postulated that micro and
nanosurfaces can influence osteoblastic activity and, therefore, osteoconduction process [29]. In this
sense, some authors have shown an increase in bone-implant contact ratio (BIC) between four and
ten weeks on surfaces with higher roughness. The current trend is to apply a surface treatment that
generates the appropriate roughness to promote cell adhesion and bone neoformation [30,31].

The Ra values obtained in the present study were between 0.79 and 2.89 pm. Most commercial
dental implants have a Ra value of 1-2 um. This roughness range seems to be optimal for achieving
osseointegration [12,32]. Ra values above 2 um involve a prejudiced and non-reinforced bone
response [28,32,33]. Our results showed three implant systems with a Ra value over 2 um (highly
rough). Two of these three implant systems received a surface treatment consisting of sandblasting
without a subsequent acid-etching technique: group IV (Avinent®) and group VI (Klockner®). These
surfaces could produce a faster osseointegration response, but the risk of future periimplantitis may
be higher.

In the present study, five of the nine implant systems evaluated were ranged between the
optimal Ra values, 1-2 um (moderately rough). The two experimental groups that reached an ideal
Ra value (near 1.5 pm) were group VII (Ticare®) and group IX (Galimplant®), which had received a
surface treatment consisting of sandblasting followed by double or triple acid etching respectively.
The combination of sandblasting, followed by some acidic etching, has been a technique widely used
for surface treatment [34]. The reason for this combination is that by the sandblasting, an optimal
roughness and mechanical properties are reached, while with the following acid etching, the peaks
are smoothed and can add a high frequency component to the implant surface, which is of vital
importance for protein adherence [34,35]. Some authors obtained a higher bone index contact with
sandblasted and acid-etched surfaces when compared with other techniques like oxidized surfaces
[36].

After the blasting deformation, some particles may become embedded and contaminate the
implant surface [32]. By the use of the acid etching, the most superficial layers of the implant surface
are removed, decreasing the surface stress and cleaning the surface contaminated by particles
leftover from the sandblasting process. At the same time, this process helps in the creation of
microcavities on the surface of the implant, generating an added nanometric roughness.

In the results of our study, only one experimental group presented a Ra value less than 1 um,
classifying itself as minimally rough (group V, Zimmer Biomet®). This may be because this implant
system uses only a double acid etching as surface treatment, without previous blasting. As already
known, blasting is the technique that allows achieving a greater surface roughness, being this
roughness smoothed by the subsequent acid etching.

The residues or particles originated from the different processes used for surface treatment can
remain attached to the surface of the titanium and cause some biological effects. These impurities
coming from manufacturing or packaging processes may remain on the implant depending on the
cleanliness process developed by the manufacturer [37].

In the present study, we evaluated the chemical surface composition with a XPS, which has
been demonstrated to be a suitable technique to quantify the percentage of each chemical element
present on the surface [38].

In our results, common elements (C, O, and N) were found in all samples analyzed at a high
concentration. This fact is somewhat expected since these elements are found in the atmosphere, and
the implant surface comes into contact with them. The highest average percentage of carbon was for
group VIII (Nobel Biocare®), with 82.4% (as received by the manufacturer, Kloten, Switzerland). This
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high percentage may be due to the TiO: layer surface treatment received by this group, which could
be chemically attractive for the carbon union. The second-highest average percentage of carbon was
for group III (Dentsply-Sirona®), with 81.9% (as received by the manufacturer, York, PA, USA),
which surface is obtained after a titanium oxide sandblasting followed by a fluoride treatment. The
existence of free fluoride anions on the surface could favor carbon union. The lowest average
percentage of carbon was for group V (Zimmer Biomet®) with 40.2%, whose surface was obtained
after a double acid etching technique. In all samples, the average percentage of carbon was
decreased after sputter cleaning in favor of titanium.

The appearance of the oxygen was evident, since, in addition to being present in the
atmosphere, it was part of the metallic oxides used during the sandblasting processes in most of the
implant systems evaluated. The presence of OH groups is an important feature because it is strongly
related to surface wettability, bioactivity, and protein adsorption [16,38]. The negative charge of the
surface allows for a stronger electrostatic interaction with some proteins as albumin and fibronectin,
enhancing the adhesion. This negative charge also attracts the water biomolecules (higher
wettability) and ions like Caz+ or POs-4 (precipitation of hydroxyapatite) [39,40].

In our study appeared some surfaces that contained certain elements, such as Al, Si, Mg, P, or
Zn. Such is the case for techniques that use sandblasting with aluminum oxide. During this process,
some alumina particles may remain attached to the titanium surface. These particles influence free
surface energy but are not heterogeneously distributed along the surface, and probably do not affect
the distribution of fibronectin. However, they can affect protein absorption by their influence on
wettability [1]. Some metals and metallic alloys release potentially harmful ions, such as Cr, Co, Nj,
Al, or V, caused by wear of the implant at the bone-implant interface and the accumulation of
metallic ions is considered to be the main reason for implant failure [41,42]. In our measurements,
most of these elements drastically decreased or even disappeared after the sputter cleaning.

The present study possessed some strengths but also some limitations. All data has been
recorded and calibrated by the same experimented operator, the experimental protocol was strictly
developed, and non-destructive technology was utilized for the evaluation of the samples; on the
other hand, the small sample size could compromise the data’s extrapolation.

The clinical relevance of the present work is that the topographical features of the implant
surface are crucial for the proper osseointegration process. However, depending on the surface
treatment technique used, traces of elements, metals, or ions may appear on the surface that may
compromise the health of peri-implant tissues and develop future periimplantitis disease.

Further research on other implant surfaces, the development of new techniques for treating the
surface, and different surface cleaning methods would be required to improve the results of this
experimental study.

5. Conclusions

With the limitations of the present study, it could be concluded that the surface treatment
technique influenced the roughness features. These roughness conditions, along with the
physical-chemical characteristics of the technique used for conditioning the implant surface,
affected the average percentage of the different elements on the implant surface. The presence of
some of these elements might not be beneficial for peri-implant tissues. A better method of cleaning
the final implant surface should be developed by the manufacturer before assembling the implant.
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