Focused Ion Beam Milling of Single-Crystal Sapphire with A-, C-, and M-Orientations
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphology and Dimension of the FIB-Etched Pits
3.2. Material Removal Rates of A-, C-, and M-Plane Sapphires by FIB Milling
3.3. Surface Roughness of the Pits on A-, C-, and M-Plane Sapphires
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guo, Q.; Yu, Y.; Zheng, Z.; Chen, C.; Wang, P.; Tian, Z.; Zhao, Y.; Ming, X.; Chen, Q.; Yang, H.; et al. Femtosecond laser inscribed sapphire fiber bragg grating for high temperature and strain sensing. IEEE Trans. Nanotechnol. 2019, 18, 208–211. [Google Scholar] [CrossRef]
- Pinkas, M.; Lotem, H.; Golan, Y.; Einav, Y.; Golan, R.; Chakotay, E.; Haim, A.; Sinai, E.; Vaknin, M.; Hershkovitz, Y.; et al. Thermal healing of the sub-surface damage layer in sapphire. Mater. Chem. Phys. 2010, 124, 323–329. [Google Scholar] [CrossRef]
- Dobrovinskaya, E.R.; Lytvynov, L.A.; Pishchik, V. Sapphire: Material, Manufacturing, Applications; Springer: Berlin, Germany, 2009; pp. 4–31. [Google Scholar]
- Xie, Y.; Madel, M.; Zoberbier, T.; Reiser, A.; Jie, W. Enforced c-axis growth of ZnO epitaxial chemical vapor deposition films on a-plane sapphire. Appl. Phys. Lett. 2012, 100, 182101. [Google Scholar] [CrossRef]
- Luan, X.; Jiang, F.; Wang, N.; Xu, X.; Lu, X.; Wen, Q. The mechanical response characteristics of sapphire under dynamic and quasi-static indentation loading. Cream. Int. 2018, 44, 15208–15218. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, F.; Li, Y.; Wang, N.; Hu, Z.; Yan, L.; Lu, J.; Wen, Q.; Lu, X. Prediction of pop-in load for sapphires with different crystal orientations. Ceram. Int. 2020, 46, 6682–6692. [Google Scholar] [CrossRef]
- Wang, G.; Zuo, H.; Zhang, H.; Wu, Q.; Zhang, M.; He, X.; Hu, Z.; Zhu, L. Preparation, quality characterization, service performance evaluation and its modification of sapphire crystal for optical window and dome application. Mater. Des. 2010, 31, 706–711. [Google Scholar] [CrossRef]
- Zhou, S.; Yuan, S.; Liu, Y.; Guo, L.J.; Liu, S.; Ding, H. Highly efficient and reliable high power LEDs with patterned sapphire substrate and strip-shaped distributed current blocking layer. Appl. Surf. Sci. 2015, 355, 1013–1019. [Google Scholar] [CrossRef]
- Wang, W.; Yang, W.; Wang, H.; Zhu, Y.; Yang, M.; Gao, J.; Li, G. A comparative study on the properties of c-plane and a-plane GaN epitaxial films grown on sapphire substrates by pulsed laser deposition. Vacuum 2016, 128, 158–165. [Google Scholar] [CrossRef]
- Zhu, H.; Tessaroto, L.A.; Sabia, R.; Greenhut, V.A.; Smith, M.; Niesz, D.E. Chemical mechanical polishing (CMP) anisotropy in sapphire. Appl. Surf. Sci. 2004, 236, 120–130. [Google Scholar] [CrossRef]
- Wan, L.; Dai, P.; Li, L.; Deng, Z.; Hu, Y. Investigation on ultra-precision lapping of A-plane and C-plane sapphires. Ceram. Int. 2019, 45, 12106–12112. [Google Scholar] [CrossRef]
- Luo, Q.; Lu, J.; Xu, X.; Jiang, F. Removal mechanism of sapphire substrates (0001, 110 and 100) in mechanical planarization machining. Ceram. Int. 2017, 43, 16178–16184. [Google Scholar] [CrossRef]
- Wen, Q.; Zhang, P.; Cheng, G.; Jiang, F.; Lu, X. Crystalline orientation effects on material removal of sapphire by femtosecond laser irradiation. Ceram. Int. 2019, 45, 23501–23508. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Z.; Chen, Y.; Yu, Y.; Xu, X. Material removal mechanism of sapphire substrates with four crystal orientations by double-sided planetary grinding. Ceram. Int. 2020, 46, 7813–7822. [Google Scholar] [CrossRef]
- Xu, S.; Liu, B.; Pan, C.; Ren, L.; Tang, B.; Hu, Q.; Jiang, L. Ultrafast fabrication of micro-channels and graphite patterns on glass by nanosecond laser-induced plasma-assisted ablation (LIPAA) for electrofluidic devices. J. Mater. Process. Tech. 2017, 247, 204–213. [Google Scholar] [CrossRef]
- Manley, P.; Walde, S.; Hagedorn, S.; Hammerschmidt, M.; Burger, S.; Becker, C. Nanopatterned sapphire substrates in deep-UV LEDs: Is there an optical benefit? Opt. Express 2020, 28, 3619. [Google Scholar] [CrossRef]
- Ngo, C.; Chun, D. Fabrication of un-coated transparent superhydrophobic sapphire surface using laser surface ablation and heat treatment. CIRP Ann. 2018, 67, 571–574. [Google Scholar] [CrossRef]
- Graça, S.; Trabadelo, V.; Neels, A.; Kuebler, J.; Le Nader, V.; Gamez, G.; Döbeli, M.; Wasmer, K. Influence of mosaicity on the fracture behavior of sapphire. Acta Mater. 2014, 67, 67–80. [Google Scholar] [CrossRef]
- Rommel, M.; Bauer, A.J.; Frey, L. Simple and efficient method to fabricate nano cone arrays by FIB milling demonstrated on planar substrates and on protruded structures. Microelectron. Eng. 2012, 98, 242–245. [Google Scholar] [CrossRef]
- Kusserow, T.; Wulf, M.; Zamora, R.; Kelash, K.; Hartmut, H. Processing of photonic crystals in InP membranes by focused ion beam milling and plasma etching. Microelectron. Eng. 2013, 102, 25–28. [Google Scholar] [CrossRef]
- Kim, C.; Ahn, S.; Jang, D. Review: Developments in micro/nanoscale fabrication by focused ion beams. Vacuum 2012, 86, 1014–1035. [Google Scholar] [CrossRef]
- Xu, Z.; Fang, F.; Zeng, G. Focused ion beam nanofabrication technology. In Handbook of Manufacturing Engineering and Technology; Springer: London, UK, 2013; pp. 1391–1423. [Google Scholar]
- Cheng, J.; Wu, J. Experimental investigation of fracture behaviors and subsurface cracks in micro-slot-grinding of monocrystalline sapphire. J. Mater. Process. Tech. 2017, 242, 160–181. [Google Scholar] [CrossRef]
- Dienes, G.J.; Welch, D.O.; Fischer, C.R.; Hatcher, R.D.; Lazareth, O.; Samberg, M. Shell-model calculation of some point-defect properties in α-Al2O3. Phys. Rev. B 1975, 8, 3060–3070. [Google Scholar] [CrossRef]
Orientation | Number of Al3+ Ions | Number of O2− Ions | Area (nm2) | Total Potential Energy (eV) | Removal Energy Per nm2 for Surface Ions (eV/nm2) |
---|---|---|---|---|---|
A | 35 | 14 | 6.42 | 1869.70 | 291.23 |
C | 66 | 37 | 4.12 | 3743.55 | 908.63 |
M | 42 | 21 | 4.94 | 2329.95 | 471.65 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Q.; Wei, X.; Jiang, F.; Lu, J.; Xu, X. Focused Ion Beam Milling of Single-Crystal Sapphire with A-, C-, and M-Orientations. Materials 2020, 13, 2871. https://doi.org/10.3390/ma13122871
Wen Q, Wei X, Jiang F, Lu J, Xu X. Focused Ion Beam Milling of Single-Crystal Sapphire with A-, C-, and M-Orientations. Materials. 2020; 13(12):2871. https://doi.org/10.3390/ma13122871
Chicago/Turabian StyleWen, Qiuling, Xinyu Wei, Feng Jiang, Jing Lu, and Xipeng Xu. 2020. "Focused Ion Beam Milling of Single-Crystal Sapphire with A-, C-, and M-Orientations" Materials 13, no. 12: 2871. https://doi.org/10.3390/ma13122871
APA StyleWen, Q., Wei, X., Jiang, F., Lu, J., & Xu, X. (2020). Focused Ion Beam Milling of Single-Crystal Sapphire with A-, C-, and M-Orientations. Materials, 13(12), 2871. https://doi.org/10.3390/ma13122871