Li+ Insertion in Nanostructured TiO2 for Energy Storage
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.2. Material Characterization
2.3. Electrochemical Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, J. A Review of Nanostructured Lithium Ion Battery Materials via Low Temperature Synthesis. Recent Pat. Nanotechnol. 2012, 7, 2–12. [Google Scholar] [CrossRef]
- Mahmood, N.; Hou, Y. Electrode Nanostructures in Lithium-Based Batteries. Adv. Sci. 2014, 1, 1400012. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, X. Nanostructured Materials for Li-Ion Batteries and Beyond. Nanomaterials 2016, 6, 63. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Srivastava, S.K. Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 2015, 3, 2454–2484. [Google Scholar] [CrossRef]
- Ivanov, S.; Cheng, L.; Wulfmeier, H.; Albrecht, D.; Fritze, H.; Bunda, A. Electrochemical behavior of anodically obtained titania nanotubes in organic carbonate and ionic liquid based Li ion containing electrolytes. Electrochim. Acta 2013, 104, 228–235. [Google Scholar] [CrossRef]
- Li, H.; Martha, S.K.; Unocic, R.R.; Luo, H.; Dai, S.; Qu, J. High cyclability of ionic liquid-produced TiO2 nanotube arrays as an anode material for lithium-ion batteries. J. Power Sources 2012, 218, 88–92. [Google Scholar] [CrossRef]
- Shannon, R.D. Phase transformation studies in TiO2 supporting different defect mechanisms in vacuum-reduced and hydrogen-reduced rutile. J. Appl. Phys. 1964, 35, 3414–3416. [Google Scholar] [CrossRef]
- Fang, H.T.; Liu, M.; Wang, D.W.; Sun, T.; Guan, D.S.; Li, F.; Zhou, J.; Sham, T.K.; Cheng, H.M. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays. Nanotechnology 2009, 20, 225701. [Google Scholar] [CrossRef]
- Augustyn, V.; Come, J.; Lowe, M.A.; Kim, J.W.; Taberna, P.L.; Tolbert, S.H.; Abruña, H.D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522. [Google Scholar] [CrossRef]
- Badini, C.; Deambrosis, S.M.; Ostrovskaya, O.; Zin, V.; Padovano, E.; Miorin, E.; Castellino, M.; Biamino, S. Cyclic oxidation in burner rig of TiAlN coating deposited on Ti-48Al-2Cr-2Nb by reactive HiPIMS. Ceram. Int. 2017, 43, 5417–5426. [Google Scholar] [CrossRef]
- Drera, G.; Salvinelli, G.; Brinkman, A.; Huijben, M.; Koster, G.; Hilgenkamp, H.; Rijnders, G.; Visentin, D.; Sangaletti, L. Band offsets and density of Ti3+ states probed by x-ray photoemission on LaAlO3/SrTiO3 heterointerfaces and their LaAlO3 and SrTiO3 bulk precursors. Phys. Rev. B. 2013, 87, 075435. [Google Scholar] [CrossRef]
- Pistoia, G.; Pasquali, M.; Wang, G.; Li, L. Li/Li1+xV3O8 Secondary Batteries: Synthesis and Characterization of an Amorphous Form of the Cathode. J. Electrochem. Soc. 1990, 137, 2365–2370. [Google Scholar] [CrossRef]
- Mattelaer, F.; Geryl, K.; Rampelberg, G.; Dendooven, J.; Detavernier, C. Amorphous and Crystalline Vanadium Oxides as High-Energy and High-Power Cathodes for Three-Dimensional Thin-Film Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 13121–13131. [Google Scholar] [CrossRef] [PubMed]
- Tossici, R.; Marassi, R.; Berettoni, S.; Stizza, S.; Pistoia, G. Study of amorphous and crystalline Li1+xV3O8 by FTIR, XAS and electrochemical techniques. Solid State Ion. 1992, 57, 227–234. [Google Scholar] [CrossRef]
- Bresser, D.; Paillard, E.; Binetti, E.; Krueger, S.; Striccoli, M.; Winter, M.; Passerini, S. Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes. J. Power Sources 2012, 206, 301–309. [Google Scholar] [CrossRef]
- Jankulovska, M.; Berger, T.; Wong, S.S.; Gómez, R.; Lana-Villarreal, T. Trap states in TiO2 films made of nanowires, nanotubes or nanoparticles: An electrochemical study. ChemPhysChem 2012, 13, 3008–3017. [Google Scholar] [CrossRef]
- Berger, T.; Monllor-Satoca, D.; Jankulovska, M.; Lana-Villarreal, T.; Gómez, R. The electrochemistry of nanostructured titanium dioxide electrodes. ChemPhysChem 2012, 13, 2824–2875. [Google Scholar] [CrossRef]
- Zukalová, M.; Kalbáč, M.; Kavan, L.; Exnar, I.; Graetzel, M. Pseudocapacitive lithium storage in TiO2 (B). Chem. Mater. 2005, 17, 1248–1255. [Google Scholar] [CrossRef]
- Kim, B.R.; Yun, K.S.; Jung, H.J.; Myung, S.T.; Jung, S.C.; Kang, W.; Kim, S.J. Effect of anatase phase on electrochemical properties of the TiO2 (B) negative electrode for lithium-ion battery application. Curr. Appl. Phys. 2013, 13, S148–S151. [Google Scholar] [CrossRef]
- Mason, C.W.; Yeo, I.; Saravanan, K.; Balaya, P. Interconnected nanofibrous titanium dioxide bronze: An emerging lithium ion anode material for high rate performance. RSC Adv. 2013, 3, 2935–2941. [Google Scholar] [CrossRef]
- Dylla, A.G.; Lee, J.A.; Stevenson, K.J. Influence of mesoporosity on lithium-ion storage capacity and rate performance of nanostructured TiO2 (B). Langmuir 2012, 28, 2897–2903. [Google Scholar] [CrossRef] [PubMed]
- Laskova, B.; Zukalova, M.; Zukal, A.; Bousa, M.; Kavan, L. Capacitive contribution to Li-storage in TiO2 (B) and TiO2 (anatase). J. Power Sources 2014, 246, 103–109. [Google Scholar] [CrossRef]
- Madian, M.; Eychmüller, A.; Giebeler, L. Current Advances in TiO2-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries. Batteries 2018, 4, 7. [Google Scholar] [CrossRef]
- Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931. [Google Scholar] [CrossRef]
- Andreas, H.A. Self-discharge in electrochemical capacitors: A perspective article. J. Electrochem. Soc. 2015, 162, A5047–A5053. [Google Scholar] [CrossRef]
- Black, J.; Andreas, H.A. Prediction of the self-discharge profile of an electrochemical capacitor electrode in the presence of both activation-controlled discharge and charge redistribution. J. Power Sources 2010, 195, 929–935. [Google Scholar] [CrossRef]
- Bavykin, D.V.; Friedrich, J.M.; Walsh, F.C. Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. 2006, 18, 2807–2824. [Google Scholar] [CrossRef]
- Albu, S.P.; Ghicov, A.; Aldabergenova, S.; Drechsel, P.; LeClere, D.; Thompson, G.E.; Macak, J.M.; Schmuki, P. Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv. Mater. 2008, 20, 4135–4139. [Google Scholar]
T150 | T150 | |||||||
---|---|---|---|---|---|---|---|---|
Cathodic | Anodic | Cathodic | Anodic | |||||
Q− | Diffusion-controlled | Capacitive-controlled | Q+ | Diffusion-controlled | Capacitive-controlled | Q− | Q+ | |
µVs−1 | C·g−1 | % | % | C g−1 | % | % | C∙g−1 | C∙g−1 |
50 | 722 | 85 | 15 | 530 | 76 | 24 | 945 | 913 |
100 | 492 | 80 | 20 | 447 | 69 | 31 | 843 | 850 |
200 | 389 | 74 | 26 | 374 | 61 | 39 | 804 | 795 |
400 | 314 | 67 | 33 | 305 | 52 | 48 | – | – |
600 | 275 | 62 | 38 | 269 | 47 | 53 | 709 | 702 |
800 | 246 | 59 | 41 | 243 | 44 | 56 | 693 | 684 |
1000 | 221 | 41 | 59 | 217 | 16 | 84 | 669 | 660 |
2000 | 168 | 33 | 67 | 167 | 48 | 52 | 586 | 578 |
3000 | 141 | 29 | 71 | 140 | 43 | 57 | 536 | 527 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrapede, M.; Savino, U.; Castellino, M.; Amici, J.; Bodoardo, S.; Tresso, E.; Chiodoni, A. Li+ Insertion in Nanostructured TiO2 for Energy Storage. Materials 2020, 13, 21. https://doi.org/10.3390/ma13010021
Serrapede M, Savino U, Castellino M, Amici J, Bodoardo S, Tresso E, Chiodoni A. Li+ Insertion in Nanostructured TiO2 for Energy Storage. Materials. 2020; 13(1):21. https://doi.org/10.3390/ma13010021
Chicago/Turabian StyleSerrapede, Mara, Umberto Savino, Micaela Castellino, Julia Amici, Silvia Bodoardo, Elena Tresso, and Angelica Chiodoni. 2020. "Li+ Insertion in Nanostructured TiO2 for Energy Storage" Materials 13, no. 1: 21. https://doi.org/10.3390/ma13010021
APA StyleSerrapede, M., Savino, U., Castellino, M., Amici, J., Bodoardo, S., Tresso, E., & Chiodoni, A. (2020). Li+ Insertion in Nanostructured TiO2 for Energy Storage. Materials, 13(1), 21. https://doi.org/10.3390/ma13010021