Effect of Travel Speed on Microstructure and Mechanical Properties of FSW Joints for Al–Zn–Mg Alloy
Abstract
:1. Introduction
2. Materials and Experiments
3. Results and Discussion
3.1. Microstructures of BM
3.2. Microstructures of SZ
3.3. Microstructures of TMAZ
3.4. Microstructures of HAZ
3.5. Mechanical Properties of FSW Joints
4. Conclusions
- (1)
- Both the AGSs of SZ (SAZ and NZ) and the widths of TMAZ decrease with the increase of travel speeds. Moreover, the AGSs of NZ are always about 60% of that of SAZ at different travel speeds. The bent and elongated grains in TMAZ are obviously larger than those in HAZ and BM, while the grain structures in HAZ at hardness minima are similar to those in BM. Otherwise, the fractions of HAGBs and recrystallization in SZ, TMAZ, HAZ, and BM, decrease with the distance away from the SZ.
- (2)
- The major strengthening precipitates of NZ at different travel speeds and TMAZ are the same, i.e., GP zones, which result in similar hardness values in those regions. In HAZ at hardness minima, the η’ precipitates dissolved and GP zone form and the density of those GP zones increases with the increase of travel speeds from 50 mm/min to 150 mm/min. With the further increase of travel speed to 200 mm/min, dissolution and coarsening occurred for the η’ strengthening precipitate, which has a larger size and lower density than those in the BM.
- (3)
- The increase of travel speed improves the hardness minima in the HAZ, decreasing the distance of hardness minima position from the weld centerline and the width of HAZ. During tensile testing, a fracture tends to appear at the hardness minima position for all the FSW joints. Furthermore, the UTS and YS of FSW joints increase as the travel speeds increase.
Author Contributions
Funding
Conflicts of Interest
References
- Threadgill, P.L.; Leonard, A.J.; Shercliff, H.R.; Withers, P.J. Friction stir welding of aluminium alloys. Int. Mater. Rev. 2013, 54, 49–93. [Google Scholar] [CrossRef]
- Mishra, R.S.; Komarasamy, M. Friction Stir Welding of High Strength 7XXX Aluminum Alloys. Butterworth Heinemann 2016. [Google Scholar] [CrossRef]
- Besharati-Givi, M.-K.; Asadi, P. Advances in Friction-Stir Welding and Processing; Woodhead Publishing: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Huang, Y.; Meng, X.; Xie, Y.; Wan, L.; Lv, Z.; Cao, J.; Feng, J. Friction stir welding/processing of polymers and polymer matrix composites. Compos. Part A Appl. Sci. Manuf. 2018, 105, 235–257. [Google Scholar] [CrossRef]
- Murr, L.E. A Review of FSW Research on Dissimilar Metal and Alloy Systems. J. Mater. Eng. Perform. 2010, 19, 1071–1089. [Google Scholar] [CrossRef]
- Sun, Y.F.; Fujii, H.; Tsuji, N. Microstructure and mechanical properties of spot friction stir welded ultrafine grained 1050 Al and conventional grained 6061-T6 Al alloys. Mater. Sci. Eng. A. 2013, 585, 17–24. [Google Scholar] [CrossRef]
- Zhang, F.; Su, X.; Chen, Z.; Nie, Z. Effect of welding parameters on microstructure and mechanical properties of friction stir- welded joints of a super high strength Al–Zn–Mg–Cu aluminum alloy. Mater. Des. 2015, 67, 483–491. [Google Scholar] [CrossRef]
- Lin, S.; Deng, Y.-L.; Lin, H.-Q.; Ye, L.-Y.; Zhang, Z.; Ji, H.; Zhang, X.M. Microstructure, mechanical properties and stress corrosion behavior of friction stir welded joint of Al–Mg–Si alloy extrusion. Rare Met. 2018, 1–11. [Google Scholar] [CrossRef]
- Wiechmann, P.; Panwitt, H.; Heyer, H.; Reich, M.; Sander, M.; Kessler, O. Combined Calorimetry, Thermo-Mechanical Analysis and Tensile Test on Welded EN AW-6082 Joints. Materials 2018, 11, 1396. [Google Scholar] [CrossRef] [Green Version]
- Schneider, J.A.; Nunes, A.C.; Chen, P.S.; Steele, G. TEM study of the FSW nugget in AA2195-T81. J. Mater. Sci. 2005, 40, 4341–4345. [Google Scholar] [CrossRef]
- Mishra, R.S.; Ma, Z.Y. Friction stir welding and processing. Mater. Sci. Eng. R Rep. 2005, 50, 1–78. [Google Scholar] [CrossRef]
- Staley, J.T.; Liu, J.; Hunt, W.H., Jr. Aluminum alloys for aerostructures. Adv. Mater. Process. 1997, 152, 17–20. [Google Scholar]
- Shahri, M.M.; Sandström, R.; Osikowicz, W. Critical distance method to estimate the fatigue life time of friction stir welded profiles. Int. J. Fatigue 2012, 37, 60–68. [Google Scholar] [CrossRef]
- Lin, H.; Wu, Y.; Liu, S. Impact of initial temper of base metal on microstructure and mechanical properties of friction stir welded AA 7055 alloy. Mater. Charact. 2018, 146, 159–168. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Nie, Z.; Huang, H.; Sun, J. Microstructure and mechanical properties of a new Al–Zn–Mg–Cu alloy joints welded by laser beam. Mater. Des. 2015, 83, 451–458. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, H.; Li, S.; Du, S.; Sekulic, D.P. Improving mechanical properties of a joint through tilt probe penetrating friction stir welding. Mater. Sci. Eng. A. 2018, 731, 107–118. [Google Scholar] [CrossRef]
- Bahrami, M.; Givi, M.K.B.; Dehghani, K.; Parvin, N. On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique. Mater. Des. 2014, 53, 519–527. [Google Scholar] [CrossRef]
- Embury, J.; Nicholson, R. The nucleation of precipitates: The system Al-Zn-Mg. Acta Metall. 1965, 13, 403–417. [Google Scholar] [CrossRef]
- Sharma, C.; Dwivedi, D.K.; Kumar, P. Effect of post weld heat treatments on microstructure and mechanical properties of friction stir welded joints of Al–Zn–Mg alloy AA7039. Mater. Des. 2013, 43, 134–143. [Google Scholar] [CrossRef]
- Rodríguez, A.; Calleja, A.; López de Lacalle, L.; Pereira, O.; González, H.; Urbikain, G.; Laye, J. Burnishing of FSW Aluminum Al–Cu–Li Components. Metals 2019, 9, 260. [Google Scholar] [CrossRef] [Green Version]
- Sánchez Egea, A.J.; Rodríguez, A.; Celentano, D.; Calleja, A.; de Lacalle, L.L.N. Joining metrics enhancement when combining FSW and ball-burnishing in a 2050 aluminium alloy. Surf. Coat. Technol. 2019, 367, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Salari, E.; Jahazi, M.; Khodabandeh, A.; Ghasemi-Nanesa, H. Influence of tool geometry and rotational speed on mechanical properties and defect formation in friction stir lap welded 5456 aluminum alloy sheets. Mater. Des. 2014, 58, 381–389. [Google Scholar] [CrossRef]
- Arora, K.S.; Pandey, S.; Schaper, M.; Kumar, R. Effect of process parameters on friction stir welding of aluminum alloy 2219-T87. Int. J. Adv. Manuf. Technol. 2010, 50, 941–952. [Google Scholar] [CrossRef]
- Ni, Y.; Fu, L.; Chen, H.Y. Effects of travel speed on mechanical properties of AA7075-T6 ultra-thin sheet joints fabricated by high rotational speed micro pinless friction stir welding. J. Mater. Process. Technol. 2019, 265, 63–70. [Google Scholar] [CrossRef]
- Dong, P.; Li, H.; Sun, D.; Gong, W.; Liu, J. Effects of welding speed on the microstructure and hardness in friction stir welding joints of 6005A-T6 aluminum alloy. Mater. Des. 2013, 45, 524–531. [Google Scholar] [CrossRef]
- Zeng, X.H.; Xue, P.; Wang, D.; Ni, D.R.; Xiao, B.L.; Ma, Z.Y. Effect of Processing Parameters on Plastic Flow and Defect Formation in Friction-Stir-Welded Aluminum Alloy. Metall. Mater. Trans. A 2018, 49, 2673–2683. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, B.L.; Ma, Z.Y. Effect of welding parameters on microstructure and mechanical properties of friction stir welded 2219Al-T6 joints. J. Mater. Sci. 2012, 47, 4075–4086. [Google Scholar] [CrossRef]
- Ahmed, M.M.Z.; Wynne, B.P.; Rainforth, W.M.; Addison, A.; Martin, J.P.; Threadgill, P.L. Effect of Tool Geometry and Heat Input on the Hardness, Grain Structure, and Crystallographic Texture of Thick-Section Friction Stir-Welded Aluminium. Metall. Mater. Trans. A 2019, 50, 271–284. [Google Scholar] [CrossRef]
- Tamadon, A.; Pons, D.J.; Clucas, D.; Sued, K. Texture Evolution in AA6082-T6 BFSW Welds: Optical Microscopy and EBSD Characterisation. Materials 2019, 12, 3215. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Luo, S.; Xu, W. Influence of Welding Speed on Zigzag Line Feature and Tensile Property of a Friction-Stir-Welded Al-Zn-Mg Aluminum Alloy. J. Mater. Eng. Perform. 2019, 28, 1790–1800. [Google Scholar] [CrossRef]
- Liu, H.J.; Zhang, H.J.; Yu, L. Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy. Mater. Des. 2011, 32, 1548–1553. [Google Scholar] [CrossRef]
- Sakthivel, T.; Sengar, G.S.; Mukhopadhyay, J. Effect of welding speed on microstructure and mechanical properties of friction-stir-welded aluminum. Int. J. Adv. Manuf. Technol. 2008, 43, 468–473. [Google Scholar] [CrossRef]
- ASTM International. ASTM E8/E8M-16a: Standard Test Methods for Tension Testing of Metallic Materials; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Sullivan, A.; Robson, J.D. Microstructural properties of friction stir welded and post-weld heat-treated 7449 aluminium alloy thick plate. Mater. Sci. Eng. A 2008, 478, 351–360. [Google Scholar] [CrossRef]
- McNelley, T.R.; Swaminathan, S.; Su, J.Q. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr. Mater. 2008, 58, 349–354. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Zhang, D.; Zhang, W.; Zhang, W.; Qiu, C. Microstructure Evolution during Dissimilar Friction Stir Welding of AA7003-T4 and AA6060-T4. Materials 2018, 11, 342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.F.; Luo, Y.X.; Fu, M.W. Microstructure evolution in the conventional single side and bobbin tool friction stir welding of thick rolled 7085-T7452 aluminum alloy. Mater. Charact. 2018, 138, 48–55. [Google Scholar] [CrossRef]
- Etter, A.L.; Baudin, T.; Fredj, N.; Penelle, R. Recrystallization mechanisms in 5251 H14 and 5251 O aluminum friction stir welds. Mater. Sci. Eng. A 2007, 445–446, 94–99. [Google Scholar] [CrossRef]
- Rhodes, C. Fine-grain evolution in friction-stir processed 7050 aluminum. Scr. Mater. 2003, 48, 1451–1455. [Google Scholar] [CrossRef]
- Su, J.Q.; Nelson, T.W.; Sterling, C.J. Microstructure evolution during FSW/FSP of high strength aluminum alloys. Mater. Sci. Eng. A 2005, 405, 277–286. [Google Scholar] [CrossRef]
- Tang, W.; Guo, X.; McClure, J.C.; Murr, L.E.; Nunes, A. Heat Input and Temperature Distribution in Friction Stir Welding. J. Mater. Process. Manuf. Sci. 1998, 7, 163–172. [Google Scholar] [CrossRef]
- Neto, D.M.; Neto, P. Numerical modeling of friction stir welding process: A literature review. Int. J. Adv. Manuf. Technol. 2012, 65, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Bowen, A. Texture development in high strength aluminium alloys. Mater. Sci. Technol. 1990, 6, 1058–1071. [Google Scholar] [CrossRef]
- Humphreys, F.J.; Hatherly, M. Recrystallization and Related Annealing Phenomena, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar] [CrossRef]
- Su, J.Q.; Nelson, T.W.; Mishra, R.; Mahoney, M. Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Mater. 2003, 51, 713–729. [Google Scholar] [CrossRef]
- Mahoney, M.; Rhodes, C.; Flintoff, J.; Bingel, W.; Spurling, R. Properties of friction-stir-welded 7075 T651 aluminum. Metall. Mater. Trans. A 1998, 29, 1955–1964. [Google Scholar] [CrossRef]
- Martinez, N.; Kumar, N.; Mishra, R.S.; Doherty, K.J. Microstructural comparison of friction-stir-welded aluminum alloy 7449 starting from different tempers. J. Mater. Sci. 2018, 53, 9273–9286. [Google Scholar] [CrossRef]
- Wu, P.; Deng, Y.; Fan, S.; Ji, H.; Zhang, X. A Study on Dissimilar Friction Stir Welded between the Al(-)Li(-)Cu and the Al(-)Zn(-)Mg(-)Cu Alloys. Materials 2018, 11, 1132. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Peng, B.; Xu, G.; Pan, Q.; Yin, Z.; Ye, R.; Wang, Y.; Lu, L. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al–Zn–Mg alloys. Mater. Sci. Eng. A 2015, 639, 500–513. [Google Scholar] [CrossRef]
- Lin, H.; Wu, Y.; Liu, S.; Zhou, X. Effect of cooling conditions on microstructure and mechanical properties of friction stir welded 7055 aluminium alloy joints. Mater. Charact. 2018, 141, 74–85. [Google Scholar] [CrossRef]
- Banik, A.; Barma, J.D.; Saha, S.C. Effect of Threaded Pin Tool for Friction Stir Welding of AA6061-T6 at Varying Traverse Speeds: Torque and Force Analysis. Iran. J. Sci. Technol. Trans. Mech. Eng. 2019, 1–16. [Google Scholar] [CrossRef]
Element | Si | Fe | Cu | Mn | Mg | Cr | Zn | Zr | Ti | Al |
---|---|---|---|---|---|---|---|---|---|---|
Content | 0.044 | 0.08 | 0.14 | 0.36 | 1.34 | 0.17 | 4.82 | 0.13 | 0.057 | Bal. |
Sample | Tool Rotational Speed (rpm) | Tool Travel Speed (mm/min) | Tool Tilt Angle (°) |
---|---|---|---|
A | 450 | 50 | 2.5 |
B | 100 | ||
C | 150 | ||
D | 200 |
Acronyms | Details | Acronyms | Details |
---|---|---|---|
AS | Advancing side | RS | Retreating side |
AGS | Average grain size | SAZ | Shoulder heat-affected zone |
BM | Base material | SEM | Scanning electron microscope |
EBSD | Electron back-scattering diffraction | SZ | Stir zone |
FSW | Friction stir welding | TEM | Transmission electron microscope |
HAGBs | High-angle grain boundaries | TMAZ | Thermo-mechanically affected zone |
HAZ | Heat-affected zone | UST | Ultimate tensile strength |
NZ | Nugget zone | YS | Yield strength |
Samples | YS, MPa | UTS, MPa | A50, % | UTSFSW/UTSBM, % | Fracture Locations |
---|---|---|---|---|---|
BM | 344.0 ± 5.3 | 387.5 ± 5.5 | 18.5 ± 0.3 | - | - |
A | 266.0 ± 13.8 | 308.5 ± 1.2 | 10.9 ± 0.3 | 79.6 ± 0.4 | RS-HAZ |
B | 270.4 ± 6.9 | 325.1 ± 7.2 | 11.5 ± 1.4 | 83.9 ± 2.2 | AS-HAZ |
C | 275.1 ± 5.3 | 336.8 ± 3.7 | 11.0 ± 0.4 | 86.9 ± 1.1 | AS-HAZ |
D | 281.6 ± 6.6 | 346.0 ± 4.6 | 10.8 ± 0.7 | 89.3 ± 1.3 | AS-HAZ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.; Tang, J.; Liu, S.; Deng, Y.; Lin, H.; Ji, H.; Ye, L.; Zhang, X. Effect of Travel Speed on Microstructure and Mechanical Properties of FSW Joints for Al–Zn–Mg Alloy. Materials 2019, 12, 4178. https://doi.org/10.3390/ma12244178
Lin S, Tang J, Liu S, Deng Y, Lin H, Ji H, Ye L, Zhang X. Effect of Travel Speed on Microstructure and Mechanical Properties of FSW Joints for Al–Zn–Mg Alloy. Materials. 2019; 12(24):4178. https://doi.org/10.3390/ma12244178
Chicago/Turabian StyleLin, Sen, Jianguo Tang, Shengdan Liu, Yunlai Deng, Huaqiang Lin, Hua Ji, Lingying Ye, and Xinming Zhang. 2019. "Effect of Travel Speed on Microstructure and Mechanical Properties of FSW Joints for Al–Zn–Mg Alloy" Materials 12, no. 24: 4178. https://doi.org/10.3390/ma12244178
APA StyleLin, S., Tang, J., Liu, S., Deng, Y., Lin, H., Ji, H., Ye, L., & Zhang, X. (2019). Effect of Travel Speed on Microstructure and Mechanical Properties of FSW Joints for Al–Zn–Mg Alloy. Materials, 12(24), 4178. https://doi.org/10.3390/ma12244178