Impact of Support (MCF, ZrO2, ZSM-5) on the Efficiency of Ni Catalyst in High-Temperature Conversion of Lignocellulosic Biomass to Hydrogen-Rich Gas
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Ni Catalyst Supports
2.2. Preparation of Ni Catalysts
2.3. Characterization of the Catalysts
2.4. Catalytic Activity Tests
3. Results
3.1. Catalytic Activity
3.2. Physicochemical Properties of the Catalysts
3.2.1. Surface Area and Porosity
3.2.2. X-ray Diffraction (XRD) Analysis
3.2.3. Temperature-Programmed Reduction (TPR)
3.2.4. Temperature-Programmed Desorption (TPD) of Ammonia
3.2.5. Scanning Electron Microscopy (SEM)
3.2.6. Thermogravimetric Analysis (TGA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huang, Y.F.; Chiueh, P.T.; Kuan, W.H.; Lo, S.L. Product distribution and heating performance of lignocellulosic biomass pyrolysis using microwave heating. Energy Procedia 2018, 152, 910–915. [Google Scholar] [CrossRef]
- Mahmood, H.; Moniruzzaman, M.; Iqbal, T.; Khan, M.J. Recent advances in the pretreatment of lignocellulosic biomass for biofuels and value-added products. Curr. Opin. Green Sustain. Chem. 2019, 20, 18–24. [Google Scholar] [CrossRef]
- Kucharska, K.; Hołowacz, I.; Konopacka-Łyskawa, D.; Rybarczyk, P.; Kamiński, M. Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels. Renew. Energy 2018, 129, 384–408. [Google Scholar] [CrossRef]
- Persson, H.; Yang, W. Catalytic pyrolysis of demineralized lignocellulosic biomass. Fuel 2019, 252, 200–209. [Google Scholar] [CrossRef]
- Chen, X.; Che, Q.; Li, S.; Liu, Z.; Yang, H.; Chen, Y.; Wang, X.; Shao, J.; Chen, H. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield. Fuel Process. Technol. 2019, 196, 106180. [Google Scholar] [CrossRef]
- Jing, Y.; Guo, Y.; Xia, Q.; Liu, X.; Wang, Y. Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass. Chem 2019, 5, 2520–2546. [Google Scholar] [CrossRef]
- Gai, C.; Zhu, N.; Hoekman, S.K.; Liu, Z.; Jiao, W.; Peng, N. Highly dispersed nickel nanoparticles supported on hydrochar for hydrogen-rich syngas production from catalytic reforming of biomass. Energy Convers. Manag. 2019, 183, 474–484. [Google Scholar] [CrossRef]
- Dong, Q.; Zhang, S.; Li, H.; Li, X.; Wang, Z. Catalytic cracking of biomass tar together with syngas production over red brick powder-supported nickel catalysts. Fuel Process. Technol. 2019, 194, 106123. [Google Scholar] [CrossRef]
- Grams, J.; Ruppert, A. Development of heterogeneous catalysts for thermo-chemical conversion of lignocellulosic biomass. Energies 2017, 10, 545–570. [Google Scholar] [CrossRef]
- Moghtaderi, B. Effects of controlling parameters on production of hydrogen by catalytic steam gasification of biomass at low temperatures. Fuel 2007, 86, 2422–2430. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Liao, S.; Yan, R. Hydrogen-rich gas production by air-steam gasification of rice husk using supported nano-NiO/γ-Al2O3 catalyst. Int. J. Hydrogen Energy 2010, 35, 7399–7404. [Google Scholar] [CrossRef]
- Chen, D.; He, L. Towards an efficient hydrogen production from biomass: A review of processes and materials. ChemCatChem 2011, 3, 490–511. [Google Scholar] [CrossRef]
- Lu, Y.; Li, S.; Guo, L.; Zhang, X. Hydrogen production by biomass gasification in supercritical water over Ni/γ-Al2O3 and Ni/CeO2-γ-Al2O3 catalysts. Int. J. Hydrogen Energy 2010, 35, 7161–7168. [Google Scholar] [CrossRef]
- Tomishige, K.; Kimura, T.; Nishikawa, J.; Miyazawa, T.; Kunimori, K. Promoting effect of the interaction between Ni and CeO2 on steam gasification of biomass. Catal. Commun. 2007, 8, 1074–1079. [Google Scholar] [CrossRef]
- Park, H.J.; Park, S.H.; Sohn, J.M.; Park, J.; Jeon, J.K.; Kim, S.S.; Park, Y.K. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts. Bioresour. Technol. 2010, 101, S101–S103. [Google Scholar] [CrossRef] [PubMed]
- Grams, J.; Niewiadomski, M.; Ryczkowski, R.; Ruppert, A.M.; Kwapiński, W. Activity and characterization of Ni catalyst supported on CeO2-ZrO2 for thermo-chemical conversion of cellulose. Int. J. Hydrogen Energy 2016, 41, 8679–8687. [Google Scholar] [CrossRef]
- Kong, M.; Fei, J.; Wang, S.; Lu, W.; Zheng, X. Influence of supports on catalytic behavior of nickel catalysts in carbon dioxide reforming of toluene as a model compound of tar from biomass gasification. Bioresour. Technol. 2011, 102, 2004–2008. [Google Scholar] [CrossRef]
- Matras, J.; Niewiadomski, M.; Ruppert, A.; Grams, J. Activity of Ni catalysts for hydrogen production via biomass pyrolysis. Kinet. Catal. 2012, 53, 565–569. [Google Scholar] [CrossRef]
- Silveira, E.B.; Rabelo-Neto, R.C.; Noronha, F.B. Steam reforming of toluene, methane and mixtures over Ni/ZrO2 catalysts. Catal. Today 2017, 289, 289–301. [Google Scholar] [CrossRef]
- Ruppert, A.M.; Niewiadomski, M.; Grams, J.; Kwapiński, W. Optimization of Ni/ZrO2 catalytic performance in thermochemical cellulose conversion for enhanced hydrogen production. Appl. Catal. B Environ. 2014, 145, 85–90. [Google Scholar] [CrossRef]
- Inaba, M.; Murata, K.; Saito, M.; Takahara, I. Hydrogen production by gasification of cellulose over Ni catalysts supported on zeolites. Energy Fuels 2006, 20, 432–438. [Google Scholar] [CrossRef]
- French, R.; Czernik, S. Catalytic pyrolysis of biomass for biofuels production. Fuel Process. Technol. 2010, 91, 25–32. [Google Scholar] [CrossRef]
- Melligan, F.; Hayes, M.H.B.; Kwapinski, W.; Leahy, J.J. Hydro-pyrolysis of biomass and online catalytic vapor upgrading with Ni-ZSM-5 and Ni-MCM-41. Energy Fuels 2012, 26, 6080–6090. [Google Scholar] [CrossRef]
- Karnjanakom, S.; Guan, G.; Asep, B.; Hao, X.; Kongparakul, S.; Samart, C.; Abudula, A. Catalytic upgrading of bio-oil over Cu/MCM-41 and Cu/KIT-6 prepared by β-cyclodextrin-assisted coimpregnation method. J. Phys. Chem. C 2016, 120, 3396–3407. [Google Scholar] [CrossRef]
- Grams, J.; Potrzebowska, N.; Goscianska, J.; Michalkiewicz, B.; Ruppert, A.M. Mesoporous silicas as supports for Ni catalyst used in cellulose conversion to hydrogen rich gas. Int. J. Hydrogen Energy 2016, 41, 8656–8667. [Google Scholar] [CrossRef]
- Che, Q.; Yang, M.; Wang, X.; Yang, Q.; Chen, Y.; Chen, X.; Chen, W.; Hu, J.; Zeng, K.; Yang, H.; et al. Preparation of mesoporous ZSM-5 catalysts using green templates and their performance in biomass catalytic pyrolysis. Bioresour. Technol. 2019, 289, 121729. [Google Scholar] [CrossRef]
- Wei, L.; Zhao, Y.; Zhang, Y.; Liu, C.; Hong, J.; Xiong, H.; Li, J. Fischer-Tropsch synthesis over a 3D foamed MCF silica support: Toward a more open porous network of cobalt catalysts. J. Catal. 2016, 340, 205–218. [Google Scholar] [CrossRef]
- Santamaria, L.; Arregi, A.; Alvarez, J.; Artetxe, M.; Amutio, M.; Lopez, G.; Bilbao, J.; Olazar, M. Performance of a Ni/ZrO2 catalyst in the steam reforming of the volatiles derived from biomass pyrolysis. J. Anal. Appl. Pyrolysis 2018, 136, 222–231. [Google Scholar] [CrossRef]
- Schmidt-Winkel, P.; Lukens, W.W.; Yang, P.; Margolese, D.I.; Lettow, J.S.; Ying, J.Y.; Stucky, G.D. Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores. Chem. Mater. 2000, 12, 686–696. [Google Scholar] [CrossRef]
- Schmidt-Winkel, P.; Lukens, W.W.; Zhao, D.; Yang, P.; Chmelka, B.F.; Stucky, G.D. Mesocellular siliceous foams with uniformly sized cells and windows. J. Am. Chem. Soc. 1999, 121, 254–255. [Google Scholar] [CrossRef]
- Widyaningrum, R.N.; Church, T.L.; Zhao, M.; Harris, A.T. Mesocellular-foam-silica-supported Ni catalyst: Effect of pore size on H2 production from cellulose pyrolysis. Int. J. Hydrogen Energy 2012, 37, 9590–9601. [Google Scholar] [CrossRef]
- A. Mendez-Vilas, A. Nickel functionalized mesostructured cellular foam ( MCF ) silica as a catalyst for solventless deoxygenation of palmitic acid to produce diesel-like hydrocarbons. In Materials and Processes for Energy: Communicating Current Research and Technological Developments; A. Mendez-Vilas, A. Brown Walker Press: Boca Raton, FL, USA, 2013; pp. 312–319. [Google Scholar]
- El-Kemary, M.; Nagy, N.; El-Mehasseb, I. Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Mater. Sci. Semicond. Process. 2013, 16, 1747–1752. [Google Scholar] [CrossRef]
- Possato, L.G.; Acevedo, M.D.; Padró, C.L.; Briois, V.; Passos, A.R.; Pulcinelli, S.H.; Santilli, C.V.; Martins, L. Activation of Mo and V oxides supported on ZSM-5 zeolite catalysts followed by in situ XAS and XRD and their uses in oxydehydration of glycerol. Mol. Catal. 2018. In press. [Google Scholar] [CrossRef] [Green Version]
- Davar, F.; Hassankhani, A.; Loghman-Estarki, M.R. Controllable synthesis of metastable tetragonal zirconia nanocrystals using citric acid assisted sol-gel method. Ceram. Int. 2013, 39, 2933–2941. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Zhang, J.; Chang, L.; Zhou, R.; Duan, Z. Bound-state Ni species - a superior form in Ni-based catalyst for CH4/CO2 reforming. Appl. Catal. A Gen. 2001, 210, 45–53. [Google Scholar] [CrossRef]
- Iriondo, A.; Cambra, J.F.; Güemez, M.B.; Barrio, V.L.; Requies, J.; Sánchez-Sánchez, M.C.; Navarro, R.M. Effect of ZrO2 addition on Ni/Al2O3 catalyst to produce H2 from glycerol. Int. J. Hydrogen Energy 2012, 37, 7084–7093. [Google Scholar] [CrossRef]
- Rzeznicka, I.I.; Góralski, J.; Paryjczak, T. Role of support on the reducibility of NiO. Chem. Environ. Res. 2001, 10, 47–53. [Google Scholar]
- Maia, T.A.; Assaf, E.M. Catalytic features of Ni supported on CeO2-ZrO2 solid solution in the steam reforming of glycerol for syngas production. RSC Adv. 2014, 4, 31142–31154. [Google Scholar] [CrossRef]
- Amin, R.; Liu, B.; Ullah, S.; Biao, H.Z. Study of coking and catalyst stability over CaO promoted Ni-based MCF synthesized by different methods for CH4/CO2 reforming reaction. Int. J. Hydrogen Energy 2017, 42, 21607–21616. [Google Scholar] [CrossRef]
- Sobczak, I.; Wolski, Ł. Au-Cu on Nb2O5 and Nb/MCF supports - Surface properties and catalytic activity in glycerol and methanol oxidation. Catal. Today 2015, 254, 72–82. [Google Scholar] [CrossRef]
- Veses, A.; Puértolas, B.; Callén, M.S.; García, T. Catalytic upgrading of biomass derived pyrolysis vapors over metal-loaded ZSM-5 zeolites: Effect of different metal cations on the bio-oil final properties. Microporous Mesoporous Mater. 2015, 209, 189–196. [Google Scholar] [CrossRef]
- Ryczkowski, R.; Ruppert, A.M.; Przybysz, P.; Chałupka, K.; Grams, J. Hydrogen production from biomass woodchips using Ni/CaO–ZrO2 catalysts. React. Kinet. Mech. Catal. 2017, 121, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Ou, Z.; Qin, C.; Ran, J.; Wu, C. Roles of alkali/alkaline earth metals in steam reforming of biomass tar for hydrogen production over perovskite supported Ni catalysts. Fuel 2019, 257, 116032. [Google Scholar] [CrossRef]
- Navarro, R.M.; Peña, M.A.; Fierro, J.L.G. Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass. Chem. Rev. 2007, 107, 3952–3991. [Google Scholar] [CrossRef] [PubMed]
- Minowa, T.; Ogi, T. Hydrogen production from cellulose using a reduced nickel catalyst. Catal. Today 1998, 45, 411–416. [Google Scholar] [CrossRef]
- Bulushev, D.A.; Ross, J.R.H. Catalysis for conversion of biomass to fuels via pyrolysis and gasification: A review. Catal. Today 2011, 171, 1–13. [Google Scholar] [CrossRef]
- Tanksale, A.; Beltramini, J.N.; Lu, G.Q.M. A review of catalytic hydrogen production processes from biomass. Renew. Sustain. Energy Rev. 2010, 14, 166–182. [Google Scholar] [CrossRef]
- Liu, N.; Xie, H.; Cao, H.; Shi, L.; Meng, X. Multi-technique characterization of recycled acetylene carbonylation catalyst CuY: Deactivation and coke analysis. Fuel 2019, 242, 617–623. [Google Scholar] [CrossRef]
- Gao, S.; Xu, S.; Wei, Y.; Qiao, Q.; Xu, Z.; Wu, X.; Zhang, M.; He, Y.; Xu, S.; Liu, Z. Insight into the deactivation mode of methanol-to-olefins conversion over SAPO-34: Coke, diffusion, and acidic site accessibility. J. Catal. 2018, 367, 306–314. [Google Scholar] [CrossRef]
- Titus, J.; Roussière, T.; Wasserschaff, G.; Schunk, S.; Milanov, A.; Schwab, E.; Wagner, G.; Oeckler, O.; Gläser, R. Dry reforming of methane with carbon dioxide over NiO-MgO-ZrO2. Catal. Today 2016, 270, 68–75. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Yang, Z.; He, Z. An experiment study of biomass steam gasification over NiO/Dolomite for hydrogen-rich gas production. Int. J. Hydrogen Energy 2017, 42, 76–85. [Google Scholar] [CrossRef]
- Arslan, A.; Gunduz, S.; Dogu, T. Steam reforming of ethanol with zirconia incorporated mesoporous silicate supported catalysts. Int. J. Hydrogen Energy 2014, 39, 18264–18272. [Google Scholar] [CrossRef]
- Muley, P.D.; Henkel, C.; Abdollahi, K.K.; Marculescu, C.; Boldor, D. A critical comparison of pyrolysis of cellulose, lignin, and pine sawdust using an induction heating reactor. Energy Convers. Manag. 2016, 117, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Grams, J.; Goscianska, J.; Potrzebowska, N.; Ryczkowski, R.; Michalkiewicz, B.; Ruppert, A.M. Impact of Zr incorporation into the Ni/AlSBA-15 catalyst on its activity in cellulose conversion to hydrogen-rich gas. Energy Fuels 2017, 31, 14089–14096. [Google Scholar] [CrossRef]
- Zhao, M.; Florin, N.H.; Harris, A.T. Mesoporous supported cobalt catalysts for enhanced hydrogen production during cellulose decomposition. Appl. Catal. B 2010, 97, 142–150. [Google Scholar] [CrossRef]
- Zhao, M.; Church, T.L.; Harris, A.T. SBA-15 supported Ni-Co bimetallic catalysts for enhanced hydrogen production during cellulose decomposition. Appl. Catal. B 2011, 101, 522–530. [Google Scholar] [CrossRef]
- Chen, F.; Wu, C.; Dong, L.; Vassallo, A.; Williams, P.T.; Huang, J. Characteristics and catalytic properties of Ni/CaAlOx catalyst for hydrogen-enriched syngas production from pyrolysis-steam reforming of biomass sawdust. Appl. Catal. B 2016, 183, 168–175. [Google Scholar] [CrossRef]
Catalyst | Gas Volume (mL) | H2 (mmol/g) | CO2 (mmol/g) | CH4 (mmol/g) | CO (mmol/g) |
---|---|---|---|---|---|
Without Catalyst | 220 | 1.3 | 1.2 | 0.9 | 6.2 |
ZSM-5 | 265 | 1.2 | 0.9 | 1.0 | 8.5 |
ZrO2 | 245 | 1.3 | 0.8 | 1.0 | 7.1 |
MCF | 230 | 1.4 | 0.8 | 0.9 | 6.4 |
Ni/ZSM-5 | 335 | 10.0 | 2.9 | 1.1 | 8.6 |
Ni/ZrO2 | 382 | 13.0 | 3.1 | 0.9 | 8.2 |
Ni/MCF | 407 | 15.9 | 2.5 | 0.9 | 8.7 |
Catalyst | Gas Volume (mL) | H2 (mmol/g) | CO2 (mmol/g) | CH4 (mmol/g) | CO (mmol/g) |
---|---|---|---|---|---|
Without Catalyst | 194 | 0.8 | 0.7 | 0.9 | 7.7 |
ZSM-5 | 215 | 0.7 | 0.5 | 1.0 | 8.0 |
ZrO2 | 210 | 1.0 | 0.7 | 1.0 | 7.4 |
MCF | 190 | 1.1 | 0.7 | 0.9 | 6.1 |
Ni/ZSM-5 | 310 | 4.4 | 1.1 | 1.4 | 9.4 |
Ni/ZrO2 | 337 | 7.8 | 1.4 | 1.1 | 8.1 |
Ni/MCF | 363 | 11.0 | 1.8 | 1.0 | 8.8 |
Catalyst | BET Surface Area (m2/g) | Pore Volume (mL3/g) | Pore Radius (nm) | Acidity (mmol NH3/g) | NiO Crystallite Size (nm) |
---|---|---|---|---|---|
ZSM-5 | 298 | 0.06 | 2.1 | 1120 | - |
ZrO2 | 217 | 0.37 | 2.7 | 610 | - |
MCF | 631 | 2.40 | 13.7 | 97 | - |
Ni/ZSM-5 | 237 | 0.06 | 3.1 | 905 | 31 |
Ni/ZrO2 | 127 | 0.21 | 2.7 | 187 | 22 |
Ni/MCF | 252 | 0.85 | 11.4 | 56 | 13 |
Element | Ni/ZSM-5 | Ni/ZrO2 | Ni/MCF |
---|---|---|---|
O | 27.7 | 8.7 | 30.9 |
Al | 3.4 | - | - |
Si | 48.0 | - | 57.7 |
Ni | 20.5 | 15.2 | 10.7 |
Zr | - | 67.5 | - |
Catalyst | Carbon Deposit (%) | |
---|---|---|
Cellulose | Pine | |
Ni/ZSM-5 | 15.3 | 3.3 |
Ni/ZrO2 | 6.6 | 6.1 |
Ni/MCF | 12.5 | 15.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grams, J.; Ryczkowski, R.; Chałupka, K.; Sobczak, I.; Rzeźnicka, I.; Przybysz, K. Impact of Support (MCF, ZrO2, ZSM-5) on the Efficiency of Ni Catalyst in High-Temperature Conversion of Lignocellulosic Biomass to Hydrogen-Rich Gas. Materials 2019, 12, 3792. https://doi.org/10.3390/ma12223792
Grams J, Ryczkowski R, Chałupka K, Sobczak I, Rzeźnicka I, Przybysz K. Impact of Support (MCF, ZrO2, ZSM-5) on the Efficiency of Ni Catalyst in High-Temperature Conversion of Lignocellulosic Biomass to Hydrogen-Rich Gas. Materials. 2019; 12(22):3792. https://doi.org/10.3390/ma12223792
Chicago/Turabian StyleGrams, Jacek, Robert Ryczkowski, Karolina Chałupka, Izabela Sobczak, Izabela Rzeźnicka, and Kamila Przybysz. 2019. "Impact of Support (MCF, ZrO2, ZSM-5) on the Efficiency of Ni Catalyst in High-Temperature Conversion of Lignocellulosic Biomass to Hydrogen-Rich Gas" Materials 12, no. 22: 3792. https://doi.org/10.3390/ma12223792
APA StyleGrams, J., Ryczkowski, R., Chałupka, K., Sobczak, I., Rzeźnicka, I., & Przybysz, K. (2019). Impact of Support (MCF, ZrO2, ZSM-5) on the Efficiency of Ni Catalyst in High-Temperature Conversion of Lignocellulosic Biomass to Hydrogen-Rich Gas. Materials, 12(22), 3792. https://doi.org/10.3390/ma12223792