Defect Prevention in Selective Laser Melting Components: Compositional and Process Effects
Abstract
:1. Introduction
2. Printability of Austenitic Stainless Steels
2.1. Solidification Cracking
- (1)
- Austenitic (A) ()
- (2)
- Austenitic-ferritic (AF) ()
- (3)
- Ferritic-austenitic (FA) ()
- (4)
- Ferritic (F) ()
2.2. Porosity Formation
3. Methodology
3.1. Optimisation of Chemical Composition for Crack Prevention
3.2. Porosity Formation Prevention Criteria
Model for Melt Pool Dimensions
4. Model Validation
4.1. Cracking Behaviour of 316L Stainless Steel
4.2. Porosity and Defect Formation Behaviour of 316L Stainless Steel
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- DebRoy, T.; Wei, H.; Zuback, J.; Mukherjee, T.; Elmer, J.; Milewski, J.; Beese, A.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Mukherjee, T.; DebRoy, T. Printability of 316 stainless steel. Sci. Technol. Weld. Join. 2019, 24, 412–419. [Google Scholar] [CrossRef]
- Lippold, J.C.; Kotecki, D.J. Welding metallurgy and weldability of stainless steels. In Welding Metallurgy and Weldability of Stainless Steels; Lippold, J.C., Kotecki, D.J., Eds.; Wiley-VCH: Weinheim, Germany, 2005; p. 376. ISBN 0-471-47379-0. [Google Scholar]
- Philo, A.; Mehraban, S.; Holmes, M.; Sillars, S.; Sutcliffe, C.; Sienz, J.; Brown, S.; Lavery, N. A pragmatic continuum level model for the prediction of the onset of keyholing in laser powder bed fusion. Int. J. Adv. Manuf. Technol. 2019, 101, 697–714. [Google Scholar] [CrossRef]
- Bertoli, U.S.; MacDonald, B.E.; Schoenung, J.M. Stability of cellular microstructure in laser powder bed fusion of 316L stainless steel. Mater. Sci. Eng. A 2019, 739, 109–117. [Google Scholar] [CrossRef]
- Evans, J.A.; Anderson, S.A.; Faierson, E.J.; Perez-Nunez, D.; McDeavitt, S.M. Anisotropic Radiation-Induced Changes in Type 316L Stainless Steel Rods Built by Laser Additive Manufacturing. Nucl. Technol. 2019, 205, 563–581. [Google Scholar] [CrossRef]
- Heiden, M.J.; Deibler, L.A.; Rodelas, J.M.; Koepke, J.R.; Tung, D.J.; Saiz, D.J.; Jared, B.H. Evolution of 316L stainless steel feedstock due to laser powder bed fusion process. Addit. Manuf. 2019, 25, 84–103. [Google Scholar] [CrossRef]
- Obeidi, M.A.; McCarthy, E.; O’Connell, B.; Ul Ahad, I.; Brabazon, D. Laser Polishing of Additive Manufactured 316L Stainless Steel Synthesized by Selective Laser Melting. Materials 2019, 12, 991. [Google Scholar] [CrossRef]
- Song, M.; Wang, M.; Lou, X.; Rebak, R.B.; Was, G.S. Radiation damage and irradiation-assisted stress corrosion cracking of additively manufactured 316L stainless steels. J. Nucl. Mater. 2019, 513, 33–44. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, Y.; Khonsari, M.; Yang, H. Wear anisotropy of selective laser melted 316L stainless steel. Wear 2019, 428, 376–386. [Google Scholar] [CrossRef]
- Yin, Y.; Sun, J.; Guo, J.; Kan, X.; Yang, D. Mechanism of high yield strength and yield ratio of 316 L stainless steel by additive manufacturing. Mater. Sci. Eng. A 2019, 744, 773–777. [Google Scholar] [CrossRef]
- Chen, W.; Yin, G.; Feng, Z.; Liao, X. Effect of Powder Feedstock on Microstructure and Mechanical Properties of the 316L Stainless Steel Fabricated by Selective Laser Melting. Metals 2018, 8, 729. [Google Scholar] [CrossRef]
- Montero-Sistiaga, M.L.; Godino-Martinez, M.; Boschmans, K.; Kruth, J.P.; Van Humbeeck, J.; Vanmeensel, K. Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting). Addit. Manuf. 2018, 23, 402–410. [Google Scholar] [CrossRef]
- Yan, F.; Xiong, W.; Faierson, E.; Olson, G.B. Characterization of nano-scale oxides in austenitic stainless steel processed by powder bed fusion. Scr. Mater. 2018, 155, 104–108. [Google Scholar] [CrossRef]
- Yusuf, S.M.; Nie, M.; Chen, Y.; Yang, S.; Gao, N. Microstructure and corrosion performance of 316L stainless steel fabricated by Selective Laser Melting and processed through high-pressure torsion. J. Alloy Compd. 2018, 763, 360–375. [Google Scholar] [CrossRef]
- Yu, J.; Rombouts, M.; Maes, G. Cracking behavior and mechanical properties of austenitic stainless steel parts produced by laser metal deposition. Mater. Des. 2013, 45, 228–235. [Google Scholar] [CrossRef]
- Röttger, A.; Geenen, K.; Windmann, M.; Binner, F.; Theisen, W. Comparison of microstructure and mechanical properties of 316 L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material. Mater. Sci. Eng. A 2016, 678, 365–376. [Google Scholar] [CrossRef]
- Geenen, K.; Röttger, A.; Theisen, W. Corrosion behavior of 316L austenitic steel processed by selective laser melting, hot-isostatic pressing, and casting. Mater. Corros. 2017, 68, 764–775. [Google Scholar] [CrossRef]
- Gray, G.T., III; Livescu, V.; Rigg, P.; Trujillo, C.P.; Cady, C.M.; Chen, S.R.; Carpenter, J.S.; Lienert, T.J.; Fensin, S.J. Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel. Acta Mater. 2017, 138, 140–149. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, C.N.; Zhang, X.; Goh, P.C.; Wei, J.; Hardacre, D.; Li, H. Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L: Influence of processing parameters. Mater. Sci. Eng. A 2017, 703, 251–261. [Google Scholar] [CrossRef]
- Wang, W.H.; Liu, X.Y. Effect of linear energy density on pores of 316L stainless steel by selective laser melting. IOP Conf. Ser. Earth Environ. Sci. 2019, 233, 032008. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, L.; Wikman, S.; Cui, D.; Shen, Z. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J. Nucl. Mater. 2016, 470, 170–178. [Google Scholar] [CrossRef]
- Shankar, V.; Gill, T.; Mannan, S.; Sundaresan, S. Solidification cracking in austenitic stainless steel welds. Sadhana 2003, 28, 359–382. [Google Scholar] [CrossRef]
- Pang, J.H.L.; Kaminski, J.; Pepin, H. Characterisation of porosity, density, and microstructure of directed energy deposited stainless steel AISI 316L. Addit. Manuf. 2019, 25, 286–296. [Google Scholar]
- Gong, H.; Rafi, K.; Gu, H.; Starr, T.; Stucker, B. Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Addit. Manuf. 2014, 1, 87–98. [Google Scholar] [CrossRef]
- Ciurana, J.; Hernandez, L.; Delgado, J. Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material. Int. J. Adv. Manuf. Technol. 2013, 68, 1103–1110. [Google Scholar] [CrossRef]
- Gunenthiram, V.; Peyre, P.; Schneider, M.; Dal, M.; Coste, F.; Koutiri, I.; Fabbro, R. Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process. J. Mater. Process. Technol. 2018, 251, 376–386. [Google Scholar] [CrossRef]
- Gu, D.D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 2012, 57, 133–164. [Google Scholar] [CrossRef]
- King, W.E.; Barth, H.D.; Castillo, V.M.; Gallegos, G.F.; Gibbs, J.W.; Hahn, D.E.; Kamath, C.; Rubenchik, A.M. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol. 2014, 214, 2915–2925. [Google Scholar] [CrossRef]
- Mukherjee, T.; Zuback, J.; De, A.; Reports, T.D.S. Printability of alloys for additive manufacturing. Sci. Rep. 2016, 6, 19717. [Google Scholar] [CrossRef]
- Menou, E.; Ramstein, G.; Bertrand, E.; Tancret, F. Multi-objective constrained design of nickel-base superalloys using data mining-and thermodynamics-driven genetic algorithms. Model. Simul. Mater. Sci. Eng. 2016, 24, 055001. [Google Scholar] [CrossRef]
- Mathers, G. The Welding of Aluminium and Its Alloys; Woodhead Publishing: Sawston, Cambridge, MA, USA, 2002. [Google Scholar]
- Hunt, J.; Derguti, F.; Todd, I. Selection of steels suitable for additive layer manufacturing. Ironmak. Steelmak. 2014, 41, 254–256. [Google Scholar] [CrossRef]
- Xu, W.; Rivera-Díaz-del Castillo, P.; Van Der Zwaag, S. Computational design of UHS maraging stainless steels incorporating composition as well as austenitisation and ageing temperatures as optimisation parameters. Philos. Mag. 2009, 89, 1647–1661. [Google Scholar] [CrossRef] [Green Version]
- Toda-Caraballo, I.; Rivera-Díaz-del Castillo, P.E. Modelling solid solution hardening in high entropy alloys. Acta Mater. 2015, 85, 14–23. [Google Scholar] [CrossRef]
- Cverna, F. ASM Ready Reference: Thermal Properties of Metals; ASM International: Novelty, OH, USA, 2002. [Google Scholar]
- Toda-Caraballo, I.; Galindo-Nava, E.I.; Rivera-Díaz-del Castillo, P.E. Unravelling the materials genome: Symmetry relationships in alloy properties. J. Alloy Compd. 2013, 566, 217–228. [Google Scholar] [CrossRef]
- Schaeffler, A.L. Constitution diagram for stainless steel weld metal. Met. Prog. 1949, 56, 680. [Google Scholar]
- Long, C. The ferrite content of austenitic stainless steel weld metal. Weld. J. 1973, 52, 281s–297s. [Google Scholar]
- Kotecki, D.; Siewert, T. WRC-1992 constitution diagram for stainless steel weld metals: A modification of the WRC-1988 diagram. Weld. J. 1992, 71, 171–178. [Google Scholar]
- Hammar, O. Influence of steel composition on segregation and microstructure during solidification of austenitic stainless steels. Solidif. Cast. Met. 1979, 401. [Google Scholar]
- Hull, F. Delta ferrite and martnesite formation in stainless steels. Weld. J. 1973, 52, 193. [Google Scholar]
- Faulkner, R.; Williams, J.; Sanchez, E.G.; Marshall, A. Influence of Co, Cu and W on microstructure of 9% Cr steel weld metals. Mater. Sci. Technol. 2003, 19, 347–354. [Google Scholar] [CrossRef]
- Suutala, N. Effect of manganese and nitrogen on the solidification mode in austenitic stainless steel welds. Metall. Trans. A 1982, 13, 2121–2130. [Google Scholar] [CrossRef]
- Pellini, W. Strain theory of hot tearing. Foundry 1952, 80, 125–133. [Google Scholar]
- Huang, Y.; Long, M.; Liu, P.; Chen, D.; Chen, H.; Gui, L.; Liu, T.; Yu, S. Effects of partition coefficients, diffusion coefficients, and solidification paths on microsegregation in Fe-based multinary alloy. Metall. Mater. Trans. B 2017, 48, 2504–2515. [Google Scholar] [CrossRef]
- Eskandari Sabzi, H. Powder bed fusion additive layer manufacturing of titanium alloys. Mater. Sci. Technol. 2019, 35, 875–890. [Google Scholar] [CrossRef]
- Prithivirajan, V.; Sangid, M.D. The role of defects and critical pore size analysis in the fatigue response of additively manufactured IN718 via crystal plasticity. Mater. Des. 2018, 150, 139–153. [Google Scholar] [CrossRef]
- Tang, M.; Pistorius, P.C.; Beuth, J.L. Prediction of lack-of-fusion porosity for powder bed fusion. Addit. Manuf. 2017, 14, 39–48. [Google Scholar] [CrossRef]
- Lee, J.Y.; Ko, S.H.; Farson, D.F.; Yoo, C.D. Mechanism of keyhole formation and stability in stationary laser welding. J. Phys. D Appl. Phys. 2002, 35, 1570. [Google Scholar] [CrossRef]
- Taheri, H.; Shoaib, M.R.B.M.; Koester, L.; Bigelow, T.; Collins, P.C.; Bond, L.J. Powder-based additive manufacturing–a review of types of defects, generation mechanisms, detection, property evaluation and metrology. Int. J. Addit. Subtract. Mater. Manuf. 2017, 1, 172. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.C.; Attar, H.; Calin, M.; Eckert, J. Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications. Mater. Technol. 2016, 31, 66–76. [Google Scholar] [CrossRef]
- Cheng, B.; Chou, K. Melt pool geometry simulations for powder-based electron beam additive manufacturing. In Proceedings of the 24th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 12–14 August 2013; pp. 644–654. [Google Scholar]
- Ion, J.C.; Shercliff, H.R.; Ashby, M.F. Diagrams for laser materials processing. Acta Metall. Mater. 1992, 40, 1539–1551. [Google Scholar] [CrossRef]
- Johnson, L.; Mahmoudi, M.; Zhang, B.; Seede, R.; Maier, J.T.; Maier, H.J.; Karaman, I.; Elwany, A.; Arroyave, R. Assessing Printability Maps in Additive Manufacturing of Metal Alloys. Acta Mater. 2019, 176, 199–210. [Google Scholar] [CrossRef]
- Promoppatum, P.; Yao, S.C.; Pistorius, P.C.; Rollett, A.D. A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder-bed fusion. Engineering 2017, 3, 685–694. [Google Scholar] [CrossRef]
- Rubenchik, A.M.; King, W.E.; Wu, S.S. Scaling laws for the additive manufacturing. J. Mater. Process. Technol. 2018, 257, 234–243. [Google Scholar] [CrossRef]
- Elangeswaran, C.; Cutolo, A.; Muralidharan, G.K.; de Formanoir, C.; Berto, F.; Vanmeensel, K.; Van Hooreweder, B. Effect of post-treatments on the fatigue behaviour of 316L stainless steel manufactured by laser powder bed fusion. Int. J. Fatigue 2019, 123, 31–39. [Google Scholar] [CrossRef]
- Shrestha, R.; Simsiriwong, J.; Shamsaei, N. Fatigue behavior of additive manufactured 316L stainless steel parts: Effects of layer orientation and surface roughness. Addit. Manuf. 2019, 28, 23–38. [Google Scholar] [CrossRef]
- Harun, W.; Asri, R.; Romlay, F.; Sharif, S.; Jan, N.; Tsumori, F. Surface characterisation and corrosion behaviour of oxide layer for SLMed-316L stainless steel. J. Alloy Compd. 2018, 748, 1044–1052. [Google Scholar] [CrossRef]
- Kunkel, M.H.; Gebhardt, A.; Mpofu, K.; Kallweit, S. Statistical assessment of mechanical properties of selective laser melted specimens of stainless steel. Int. J. Adv. Manuf. Technol. 2018, 98, 1409–1431. [Google Scholar] [CrossRef]
- Lodhi, M.; Deen, K.; Haider, W. Corrosion behavior of additively manufactured 316L stainless steel in acidic media. Materialia 2018, 2, 111–121. [Google Scholar] [CrossRef]
- Heeling, T.; Cloots, M.; Wegener, K. Melt pool simulation for the evaluation of process parameters in selective laser melting. Addit. Manuf. 2017, 14, 116–125. [Google Scholar] [CrossRef]
- Masmoudi, A.; Bolot, R.; Coddet, C. Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process. J. Mater. Process. Technol. 2015, 225, 122–132. [Google Scholar] [CrossRef]
- Andreau, O.; Koutiri, I.; Peyre, P.; Penot, J.D.; Saintier, N.; Pessard, E.; De Terris, T.; Dupuy, C.; Baudin, T. Texture control of 316L parts by modulation of the melt pool morphology in selective laser melting. J. Mater. Process. Technol. 2019, 264, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.S.; Brown, D.W.; Kumar, M.; Gallegos, G.F.; King, W.E. An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel. Metall. Mater. Trans. A 2014, 45, 6260–6270. [Google Scholar] [CrossRef]
- Kamath, C.; El-dasher, B.; Gallegos, G.F.; King, W.E.; Sisto, A. Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. Int. J. Adv. Manuf. Technol. 2014, 74, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Bidare, P.; Bitharas, I.; Ward, R.; Attallah, M.; Moore, A.J. Fluid and particle dynamics in laser powder bed fusion. Acta Mater. 2018, 142, 107–120. [Google Scholar] [CrossRef]
i | Ni | Cr | Mo | W | C | N | Si | Fe (FCC) |
---|---|---|---|---|---|---|---|---|
[MPa at%−3/2] | 112 | 101.71 | 637 | 826 | 1984 | 1984 | - | - |
[10−6 K−1] | 20.3 | 19 | 16.5 | 11.6 | - | - | 3.8 | 23.3 |
Impurity Element | Partition Coefficient in | Partition Coefficient in |
---|---|---|
Sulphur | 0.035 | 0.091 |
Phosphorus | 0.13 | 0.23 |
Silicon | 0.52 | 0.77 |
Phenomenon | Criteria | Ref. | Notes |
---|---|---|---|
Microcracks | STR minimisation | Imposed to reduce formation of low melting point eutectics | |
maximisation | Defined as thermal shock resistance | ||
Presence of δ-ferrite | Alleviating detrimental effects | ||
during solidification | of impurity elements | ||
Lack of fusion | [30] | A ratio of 1.1 has been suggested by Mukherjee et al. | |
[49] | Tang et al. claimed the criteria for lack of fusion | ||
prevention is | |||
Keyholes | [55] | Johnson et al. suggested a ratio of 1.5 rather than 2 | |
[29] | King et al. suggested a threshold of 30 rather than 7 | ||
Balling | [54] | - |
Cr | Ni | Mn | Mo | C | N | Si | P | S | STR | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
16.17 | 12.57 | 0.23 | 2.33 | 0.098 | - | 0.6 | 0.014 | 0.014 | 50 | 1.32 | 1.28 | [17] |
20.7 | 11.4 | 1.32 | 2.45 | 0.02 | 0.09 | 0.5 | 0.02 | 0.01 | 60 | 1.46 | 1.58 | [19] |
17.26 | 11.48 | 1.41 | 2.32 | 0.018 | - | 0.71 | 0.01 | 0.01 | 39 | 1.19 | 1.68 | [12] |
17.34 | 10.74 | 1.14 | 2.28 | 0.01 | 0.1 | 0.63 | 0.026 | 0.014 | 43 | 1.36 | 1.57 | [5] |
17.5 | 11.5 | 2 | 2.25 | 0.03 | 0.11 | 1 | 0.045 | 0.03 | 57 | 1.45 | 1.54 | [58] |
17.42 | 12.53 | 0.6 | 2.36 | 0.02 | 0.06 | 0.51 | 0.01 | 0.01 | 32 | 1.36 | 1.45 | [8] |
17 | 12 | 1 | 2.5 | 0.015 | 0.05 | 0.5 | 0.023 | 0.01 | 38 | 1.35 | 1.51 | [59] |
17.75 | 12.75 | 1.5 | 2.4 | 0.02 | - | - | 0.01 | 0.001 | 33 | 1.24 | 1.49 | [10] |
16.7 | 11.9 | 0.6 | 2.5 | 0.02 | - | 0.6 | 0.01 | 0.02 | 33 | 1.22 | 1.61 | [11] |
16.7 | 10.3 | 0.99 | 2.2 | 0.01 | - | 0.69 | 0.02 | 0.05 | 37 | 1.12 | 1.85 | [60] |
17.9 | 12.8 | 1.15 | 2.35 | 0.018 | 0.09 | 0.66 | 0.01 | 0.004 | 33 | 1.42 | 1.4 | [61] |
17.5 | 11.2 | 2.2 | 2.3 | 0.03 | - | - | 0.05 | 0.03 | 61 | 1.22 | 1.67 | [62] |
16.3 | 10.3 | 1.31 | 2.09 | 0.026 | - | 0.49 | 0.026 | 0.006 | 44 | 1.14 | 1.72 | [14] |
18.43 | 12.2 | 1.86 | 2.46 | 0.02 | - | 0.75 | 0.032 | 0.01 | 54 | 1.26 | 1.69 | [15] |
Alloy | P | V | t | h | L | W | D | Prediction | Pores | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 200 | 850 | 30 | 90 | - | 146 | 110 | N/A | K | 0.4 % | [63] |
1 | 200 | 1000 | 30 | 90 | - | 130 | 85 | N/A | K | 0.5 % | [63] |
1 | 200 | 1150 | 30 | 90 | - | 104 | 85 | N/A | K | 0.45 % | [63] |
1 | 200 | 1300 | 30 | 90 | - | 104 | 70 | N/A | K | 0.85 % | [63] |
1 | 200 | 1450 | 30 | 90 | - | 104 | 75 | N/A | K | 1.7 % | [63] |
1 | 200 | 1600 | 30 | 90 | - | 100 | 70 | N/A | K | 2.5 % | [63] |
2 | 100 | 100 | 50 | 40 | - | 180 | 30 | N/A | LOF | Not reported | [64] |
2 | 100 | 200 | 50 | 40 | - | 140 | 20 | N/A | LOF | Not reported | [64] |
2 | 100 | 300 | 50 | 40 | - | 120 | 10 | N/A | LOF | Not reported | [64] |
2 | 100 | 400 | 50 | 40 | - | 110 | 5 | N/A | LOF | Not reported | [64] |
3 | 175 | 500 | 30 | 140 | - | 175 | 75 | 6.9 | No pores | No pores | [65] |
3 | 400 | 1100 | 30 | 140 | - | 250 | 110 | 4.3 | No pores | No pores | [65] |
4 | 250 | 1500 | - | - | 526 | 105.6 | 52.8 | 41.8 | B | 0.9 % | [66] |
4 | 250 | 1800 | - | - | 523.5 | 100.8 | 48 | 38.2 | B | 1.39 % | [66] |
4 | 400 | 1800 | - | - | 846.4 | 129.6 | 60 | 61.1 | B | 1.2 % | [66] |
4 | 100 | 400 | - | - | 212.4 | 129.6 | 59.5 | 32.4 | No B/K | 0.93 % | [66] |
5 | 400 | 1800 | 30 | 112 | 32 | 112 | 105 | 8.7 | K | 0.5 % | [67] |
5 | 400 | 1500 | 30 | 112 | 79 | 103 | 119 | 9.4 | LOF/K | 0.8 % | [67] |
5 | 300 | 1800 | 30 | 112 | 57 | 94 | 65 | 7.1 | LOF/K | 0.7 % | [67] |
5 | 300 | 1500 | 30 | 112 | 35 | 83 | 94 | 7.5 | LOF/K | 0.7 % | [67] |
5 | 200 | 1500 | 30 | 112 | 26 | 84 | 57 | 6.9 | LOF/K | 1.3 % | [67] |
5 | 200 | 1200 | 30 | 112 | 45 | 104 | 68 | 7.1 | LOF/K | 0.5 % | [67] |
5 | 200 | 800 | 30 | 112 | 24 | 123 | 116 | 7.3 | K | 1.3 % | [67] |
5 | 150 | 1200 | 30 | 112 | 21 | 79 | 30 | 5.12 | LOF | 4.5 % | [67] |
5 | 150 | 800 | 30 | 112 | 44 | 109 | 67 | 6.8 | LOF/K | 1.5 % | [67] |
5 | 150 | 500 | 30 | 112 | 40 | 115 | 120 | 7.8 | K | 1 % | [67] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eskandari Sabzi, H.; Rivera-Díaz-del-Castillo, P.E.J. Defect Prevention in Selective Laser Melting Components: Compositional and Process Effects. Materials 2019, 12, 3791. https://doi.org/10.3390/ma12223791
Eskandari Sabzi H, Rivera-Díaz-del-Castillo PEJ. Defect Prevention in Selective Laser Melting Components: Compositional and Process Effects. Materials. 2019; 12(22):3791. https://doi.org/10.3390/ma12223791
Chicago/Turabian StyleEskandari Sabzi, Hossein, and Pedro E. J. Rivera-Díaz-del-Castillo. 2019. "Defect Prevention in Selective Laser Melting Components: Compositional and Process Effects" Materials 12, no. 22: 3791. https://doi.org/10.3390/ma12223791