Incidence Dependency of Photonic Crystal Substrate and Its Application on Solar Energy Conversion: Ag2S Sensitized WO3 in FTO Photonic Crystal Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of PC-FTO Films
2.2. In-Situ Synthesis of WO3 Platelets in PC-FTO Films
2.3. Sensitizing of WO3 with Ag2S Quantum Dots via SILAR Method
2.4. Characterization
3. Result and Discussion
3.1. Geometrical Properties
3.2. Optical Properties
3.3. Qualitative Analysis
3.4. Photocatalytic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, M.; Hou, Z.; Zhang, L.; Liu, Y.; Gao, Q.; Chen, X. n/n junctioned g-C3N4for enhanced photocatalytic H2generation, Sustain. Energy Fuels 2017, 1, 317–323. [Google Scholar]
- Zhang, M.; Robert, W.; Mitchell, H.; Huang, R.E. Douthwaite, Ordered multilayer films of hollow sphere aluminium-doped zinc oxide for photoelectrochemical solar energy conversion. J. Mater. Chem. A 2017, 5, 22193–22198. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Wu, D. Tailoring of bifunctional microencapsulated phase change materials with CdS/SiO2 double-layered shell for solar photocatalysis and solar thermal energy storage. Appl. Therm. Eng. 2018, 134, 603–614. [Google Scholar] [CrossRef]
- Pesci, F.M.; Sokolikova, M.S.; Grotta, C.; Sherrell, P.C.; Reale, F.; Sharda, K.; Ni, N.; Palczynski, P.; Mattevi, C. MoS2/WS2 Heterojunction for Photoelectrochemical Water Oxidation. ACS Catal. 2017, 7, 4990–4998. [Google Scholar] [CrossRef]
- Krbal, M.; Prikryl, J.; Zazpe, R.; Sopha, H.; Macak, J.M. CdS-coated TiO2 nanotube layers: downscaling tube diameter towards efficient heterostructured photoelectrochemical conversion. Nanoscale 2017, 9, 7755–7759. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.-H.; Wang, Z.; Gu, J.; Xiao, S.; Yuan, Y.; Zhu, Y.; Zhang, Y.; Mai, W.; Yang, S. Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes. Energy Environ. Sci. 2017, 10, 772–779. [Google Scholar] [CrossRef]
- Marandi, M.; Goudarzi, Z.; Moradi, L. Synthesis of randomly directed inclined TiO2 nanorods on the nanocrystalline TiO2 layers and their optimized application in dye sensitized solar cells. J. Alloy. Compd. 2017, 711, 603–610. [Google Scholar] [CrossRef]
- Qiao, S.; Mitchell, R.W.; Coulson, B.; Jowett, D.V.; Johnson, B.R.; Brydson, R.; Isaacs, M.; Lee, A.F.; Douthwaite, R.E. Douthwaite, Pore confinement effects and stabilization of carbon nitride oligomers in macroporous silica for photocatalytic hydrogen production. Carbon 2016, 106, 320–329. [Google Scholar] [CrossRef]
- Shuang, S.; Lv, R.; Cui, X.; Xie, Z.; Zheng, J.; Zhang, Z. Efficient photocatalysis with graphene oxide/Ag/Ag2S–TiO2 nanocomposites under visible light irradiation. RSC Adv. 2018, 8, 5784–5791. [Google Scholar] [CrossRef]
- Zheng, Z.; Xie, W.; Huang, B.; Dai, Y. Plasmon-Enhanced Solar Water Splitting on Metal-Semiconductor Photocatalysts. Chemistry 2018, 24, 18322–18333. [Google Scholar] [CrossRef]
- Nayak, A.K.; Sohn, Y.; Pradhan, D. Facile Green Synthesis of WO3·H2O Nanoplates and WO3 Nanowires with Enhanced Photoelectrochemical Performance. Cryst. Growth Des. 2017, 17, 4949–4957. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, M.; Zhang, M. Multiple layered macroporous SnO2 film for applications to photoelectrochemistry and morphology control of iron oxide nanocrystals. J. Power Sources 2018, 402, 62–67. [Google Scholar] [CrossRef]
- John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059–2062. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-F.; Liu, S.-B. Analyzing the photonic band gaps in two-dimensional plasma photonic crystals with fractal Sierpinski gasket structure based on the Monte Carlo method. AIP Adv. 2016, 6, 085116. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.-F. Investigations on the two-dimensional aperiodic plasma photonic crystals with fractal Fibonacci sequence. AIP Adv. 2017, 7, 075102. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.-F.; Chen, Y.-Q. The properties of two-dimensional fractal plasma photonic crystals with Thue-Morse sequence. Phys. Plasmas 2017, 24, 042116. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, C.Y.; Valev, V.K.; Reisner, E.; Steiner, U.; Baumberg, J.J. Plasmonic enhancement in BiVO4 photonic crystals for efficient water splitting. Small 2014, 10, 3970–3978. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.; Brydson, R.; Douthwaite, R.E. Enhancement of hydrogen production using photoactive nanoparticles on a photochemically inert photonic macroporous support. Phys. Chem. Chem. Phys. PCCP 2015, 17, 493–499. [Google Scholar] [CrossRef]
- Xu, Y.F.; Rao, H.S.; Chen, B.X.; Lin, Y.; Chen, H.Y.; Kuang, D.B.; Su, C.Y. Achieving Highly Efficient Photoelectrochemical Water Oxidation with a TiCl4 Treated 3D Antimony-Doped SnO2 Macropore/Branched alpha-Fe2O3 Nanorod Heterojunction Photoanode. Adv. Sci. 2015, 2, 1500049. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, L.; Cheng, B.; Yu, J. First-principle calculation study of tri- s -triazine-based g-C 3 N 4: A review. Appl. Catal. B Environ. 2018, 224, 983–999. [Google Scholar] [CrossRef]
- Cho, K.-H.; Sung, Y.-M. The formation of Z-scheme CdS/CdO nanorods on FTO substrates: The shell thickness effects on the flat band potentials. Nano Energy 2017, 36, 176–185. [Google Scholar] [CrossRef]
- Chen, J.I.L.; von Freymann, G.; Choi, S.Y.; Kitaev, V.; Ozin, G.A. Amplified Photochemistry with Slow Photons. Adv. Mater. 2006, 18, 1915–1919. [Google Scholar] [CrossRef]
- Schünemann, S.; Tüysüz, H. An Inverse Opal Structured Halide Perovskite Photocatalyst. Eur. J. Inorg. Chem. 2018, 2018, 2350–2355. [Google Scholar] [CrossRef]
- Cui, X.; Wang, Y.; Jiang, G.; Zhao, Z.; Xu, C.; Wei, Y.; Duan, A.; Liu, J.; Gao, J. A photonic crystal-based CdS–Au–WO3 heterostructure for efficient visible-light photocatalytic hydrogen and oxygen evolution. RSC Adv. 2014, 4, 15689–15694. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, M.; Zhang, M. Improved utilization of sun light through the incidence dependence of photonic stop band: g-C3N4 embedded FTO photonic crystal film. ChemPhotoChem 2018, 3, 101–106. [Google Scholar] [CrossRef]
- Lin, S.; Feng, Y.; Wen, X.; Harada, T.; Kee, T.W.; Huang, S.; Shrestha, S.; Conibeer, G. Observation of Hot Carriers Existing in Ag2S Nanoparticles and Its Implication on Solar Cell Application. J. Phys. Chem. C 2016, 120, 10199–10205. [Google Scholar] [CrossRef]
- Tubtimtae, A.; Wu, K.-L.; Tung, H.-Y.; Lee, M.-W.; Wang, G.J. Ag2S quantum dot-sensitized solar cells. Electrochem. Commun. 2010, 12, 1158–1160. [Google Scholar] [CrossRef]
- Park, K.-H.; Dhayal, M. Simultaneous growth of rutile TiO2 as 1D/3D nanorod/nanoflower on FTO in one-step process enhances electrochemical response of photoanode in DSSC. Electrochem. Commun. 2014, 49, 47–50. [Google Scholar] [CrossRef]
- Wu, J.-J.; Chang, R.-C.; Chen, D.-W.; Wu, C.-T. Visible to near-infrared light harvesting in Ag2S nanoparticles/ZnO nanowire array photoanodes. Nanoscale 2012, 4, 1368. [Google Scholar] [CrossRef]
- Shen, H.; Jiao, X.; Oron, D.; Li, J.; Lin, H. Efficient electron injection in non-toxic silver sulfide (Ag2S) sensitized solar cells. J. Power Sources 2013, 240, 8–13. [Google Scholar] [CrossRef]
- Tubtimtae, A.; Cheng, K.-Y.; Lee, M.-W. Ag2S quantum dot-sensitized WO3 photoelectrodes for solar cells. J. Solid State Electrochem. 2014, 18, 1627–1633. [Google Scholar] [CrossRef]
- Wang, W.; Dong, J.; Ye, X.; Li, Y.; Ma, Y.; Qi, L. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting. Small 2016, 12, 1469–1478. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Li, Y.; Jin, S.; Han, J.; Zhao, X. Facile Fabrication of 3D-Ordered Macroporous Nanocrystalline Iron Oxide Films with Highly Efficient Visible Light Induced Photocatalytic Activity. J. Phys. Chem. C 2010, 114, 9706–9712. [Google Scholar] [CrossRef]
- Brillet, J.; Gratzel, M.; Sivula, K. Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. Nano Lett. 2010, 10, 4155–4160. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Xiao, Y.; Han, G.; Zhang, Y.; Chang, Y. Titanium dioxide/zinc indium sulfide hetero-junction: An efficient photoanode for the dye-sensitized solar cell. J. Power Sources 2016, 328, 578–585. [Google Scholar] [CrossRef]
- Sakoda, K. Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals. Opt. Express 1999, 4, 167–176. [Google Scholar] [CrossRef]
- Aloshyna, M.; Sivakumar, S.; Venkataramanan, M.; Brolo, A.G.; van Veggel, F.C.J.M. Significant Suppression of Spontaneous Emission in SiO2 Photonic Crystals Made with Tb3+-Doped LaF3Nanoparticles. J. Phys. Chem. C 2007, 111, 4047–4051. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, X.; Yang, M.; Wang, W.; Luo, D.; Zhang, M. Incidence Dependency of Photonic Crystal Substrate and Its Application on Solar Energy Conversion: Ag2S Sensitized WO3 in FTO Photonic Crystal Film. Materials 2019, 12, 2558. https://doi.org/10.3390/ma12162558
Ke X, Yang M, Wang W, Luo D, Zhang M. Incidence Dependency of Photonic Crystal Substrate and Its Application on Solar Energy Conversion: Ag2S Sensitized WO3 in FTO Photonic Crystal Film. Materials. 2019; 12(16):2558. https://doi.org/10.3390/ma12162558
Chicago/Turabian StyleKe, Xi, Mengmeng Yang, Weizhe Wang, Dongxiang Luo, and Menglong Zhang. 2019. "Incidence Dependency of Photonic Crystal Substrate and Its Application on Solar Energy Conversion: Ag2S Sensitized WO3 in FTO Photonic Crystal Film" Materials 12, no. 16: 2558. https://doi.org/10.3390/ma12162558
APA StyleKe, X., Yang, M., Wang, W., Luo, D., & Zhang, M. (2019). Incidence Dependency of Photonic Crystal Substrate and Its Application on Solar Energy Conversion: Ag2S Sensitized WO3 in FTO Photonic Crystal Film. Materials, 12(16), 2558. https://doi.org/10.3390/ma12162558