Effect of Addition of Ca2+ and CO32− Ions with Temperature Control on Self-Healing of Hardened Cement Paste
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Specimen Overview
2.2. Experimental Methods
2.3. Characterization
3. Results and Discussion
3.1. Absolute Dry Weight Ratio Change by Self-Healing
3.2. Change in Porosity Reduction by Pore Filling of Self-Healing
3.3. Crystallographic Change in Calcium Carbonate (CaCO3) by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD)
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Choi, H.S.; Inoue, M.; Kwon, S.M.; Choi, H.G.; Lim, M.K. Effective crack control of concrete by self-healing of cementitious composites using synthetic fiber. J. Mater. 2016, 9, 248. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, S. Effect of cracking and healing on chloride transport in OPC concrete. Cem. Concr. Res. 1996, 26, 869–881. [Google Scholar] [CrossRef]
- Wang, J.; Basheer, P.A.M.; Nanukuttan, S.V.; Adrian, E.L.; Yun, B. Influence of service loading and the resulting micro-cracks on chloride resistance of concrete. Constr. Build. Mater. 2016, 108, 56–66. [Google Scholar]
- Wang, J.; Basheer, P.A.M.; Nanukuttan, S.V.; Yun, B. Influence of cracking caused by structural loading on chloride-induced corrosion process in reinforced concrete elements: A review. In Durability of Reinforced Concrete from Composition to Protection; Andrade, C., Gulikers, J., Polder, R., Eds.; Springer: Basel, Switzerland, 2015; pp. 99–113. [Google Scholar]
- Japan Concrete Institute. Practical Guideline For Investigation, Repair and Strengthening of Cracked Concrete Structure; Japan Concrete Institute: Tokyo, Japan, 2013. (In Japanese) [Google Scholar]
- Romildo, D.; Filho, T. Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibers. Cem. Concr. Compos. 2005, 27, 537–546. [Google Scholar]
- Wang, K.; Jansen, D.C.; Shah, S.P. Permeability study of cracked concrete. Cem. Concr. Res. 1997, 27, 381–393. [Google Scholar] [CrossRef]
- Khatri, R.P.; Sirivivatnanon, V. Role of permeability in sulfate attack. Cem. Concr. Res. 1997, 27, 1179–1189. [Google Scholar] [CrossRef]
- Neville, A.M. Properties Concrete; Longman London: Harlow, UK, 1995. [Google Scholar]
- Sanjun, M.A. Effectiveness of crack control at early age on the corrosion of steel bars in low modulus sisal and coconut fiber-reinforced mortars. Cem. Concr. Res. 1998, 28, 555–565. [Google Scholar] [CrossRef]
- Jacobsen, S. SEM Observations of the microstructure of frost deteriorated and self-healed concrete. Cem. Concr. Res. 1995, 25, 1781–1790. [Google Scholar] [CrossRef]
- Edvardsen, C. Water permeability and autogenous healing of cracks in concrete. Mater. J. 1999, 96, 448–454. [Google Scholar]
- Wang, Y.; He, F.; Wang, J.; Hu, Q. Comparison of effects of sodium bicarbonate and sodium carbonate on the hydration and properties of Portland cement paste. J. Mater. 2019, 12, 1033. [Google Scholar]
- Wang, J.; Liu, E.; Li, L. Characterization on the recycling of waste seashells with Portland cement towards sustainable cementitious materials. J. Clean. Prod. 2019, 220, 235–252. [Google Scholar]
- Nishiwaki, T.; Koda, M.; Yamada, M.; Mihashi, H.; Kikuta, T. Experimental study on self-healing capability of FRCC using different types of synthetic fibers. J. Adv. Concr. Technol. 2012, 10, 195–206. [Google Scholar] [CrossRef]
- Homma, D.; Mihashi, H.; Nishiwaki, T. Self-healing capability of fiber reinforced cementitious composites. J. Adv. Concr. Technol. 2009, 7, 217–228. [Google Scholar] [CrossRef]
- Gruyaert, E.; Van Tittelboom, K.; Sucaet, J.; Anrijs, J.; Van Vlierberghe, S.; Dubruel, P.; De Geest, B.G.; Remon, J.P.; De Belie, N. Capsules with evolving brittleness to resist the preparation of self-healing concrete. J. Mater. Const. 2016, 66, 092. [Google Scholar]
- Hilloulin, B.; Van Tittelboom, K.; Gruyaert, E.; De Belie, N.; Loukili, A. Design of polymeric capsules for self-healing concrete. Cem. Concr. Compos. 2015, 55, 298–307. [Google Scholar] [CrossRef]
- Jonkers, H.M. Bacteria-based self-healing concrete. Heron 2011, 56, 1–12. [Google Scholar]
- Fukuda, D.; Nara, Y.; Kobayashi, Y.; Maruyama, M.; Koketsu, M.; Hayashi, D.; Ogawa, H.; Kaneko, K. Investigation of self-sealing in high-strength and ultra-low-permeability concrete in water using micro-focus X-ray CT. Cem. Concr. Res. 2012, 42, 1494–1500. [Google Scholar] [CrossRef]
- Hilloulin, B.; Legland, J.-B.; Lys, E.; Abraham, O.; Loukili, A.; Grondin, F.; Durand, O.; Tournat, V. Monitoring of autogenous crack healing in cementitious materials by the nonlinear modulation of ultrasonic coda waves, 3D microscopy and X-ray microtomography. Constr. Build. Mater. 2016, 123, 143–152. [Google Scholar]
- Kishi, T.; Ahn, T.-H.; Hosoda, A.; Suzuki, S.; Takaoka, H. Self-healing behavior by cementitious recrystallization of cracked concrete incorporating expansive agent. In Proceedings of the First International Conference on Self-Healing Materials, Noordwijk aan Zee, The Netherlands, 18–20 April 2007. [Google Scholar]
- Snoeck, D.; Belie, D.N. Repeated autogenous healing in strain-hardening cementitious composites by using superabsorbent polymers. J. Mater. Civ. Eng. 2015, 28, 1–11. [Google Scholar] [CrossRef]
- Snoeck, D.; Dewanckele, J.; Cnudde, V.; de Belie, N. X-ray computed microtomography to study autogenous healing of cementitious materials promoted by superabsorbent polymers. Cem. Concr. Compos. 2016, 65, 83–93. [Google Scholar] [CrossRef]
- Yang, Y.; Lepech, M.D.; Yang, E.-H.; Li, V.C. Autogenous healing of engineered cementitious composites under wet-dry cycles. Cem. Concr. Res. 2009, 39, 382–390. [Google Scholar] [CrossRef]
- Choi, H.-S.; Inoue, M.; Sengoku, R. Change in crystal polymorphism of CaCO3 generated in cementitious material under various pH conditions. Constr. Build. Mater. 2018, 188, 1–8. [Google Scholar] [CrossRef]
- Choi, H.-S.; Inoue, M.; Choi, H.-G.; Lim, M.-K.; Nishiwaki, T.; Kawajiri, S. The fundamental study of the crack control by self-healing of PVA fiber reinforced cementitious composites. J. Civ. Eng. Archit. Res. 2016, 9, 1680–1688. [Google Scholar]
- Choi, H.-S.; Inoue, M.; Sengoku, R.; Choi, H.-G. Control of polymorphism of calcium carbonate compounds produced in cracked part of cementitious materials by self-healing. J. Appl. Sci. 2017, 7, 1–16. [Google Scholar]
- Matsumoto, M. Polymorph control of calcium carbonate by reactive crystallization using microbubble technique. Chem. Eng. Res. Des. 2010, 88, 1624–1630. [Google Scholar] [CrossRef]
- Kojima, Y. Controls of polymorphism and morphology of calcium carbonate compounds formed by crystallizing amorphous calcium carbonate hydrate. J. Ceram. Soc. Jpn. 1994, 12, 1128–1136. (In Japanese) [Google Scholar] [CrossRef]
- Wada, N.; Takao, U. Effect of cation (Sr, Pb and Ba) on calcium carbonate polymorphs under diffusional conditions. Gypsum Lime 1993, 245, 211–219. (In Japanese) [Google Scholar]
- ASTM C150/C150M-19a. Standard Specification for Portland Cement; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- Nakayama, K.; Shoji, T.; Makino, K. Influence of alcohol addiction on the specific surface area of calcium hydroxide powder prepared from quicklime -In case of the alcohol/water successive treatment. J. Assoc. Mater. Eng. Resour. Jpn. 2001, 14, 29–34. (In Japanese) [Google Scholar] [CrossRef][Green Version]
- Papadakis, V.G.; Vayenas, C.G.; Fardis, M.N. Physical and Chemical Characteristics Affecting the Durability of Concrete. ACI Mater. J. 1991, 88, 186–196. [Google Scholar]
- Kim, J.-H.; Kitakaki, R.; Warita, S. A study on the effect of packing voids by carbonation reaction using CO2 nano-bubbles. J. JCI 2015, 37, 1543–1548. (In Japanese) [Google Scholar]
- Brunauer, S.; Copeland, L.-E. Chemistry of Cement of Concrete. J. Sci. Am. 1986, 210, 82–110. [Google Scholar]
- Taylor, H.-F.-W. Chemistry of Cement Hydration. In Proceedings of the 8th International Congress on the Chemistry of Cement, Rio de Janeiro, Brazil, 22–27 September 1986. [Google Scholar]
- Tai, C.Y.; Chen, C. Particle morphology, habit, and size control of using reverse microemulsion technique. J. Chem. Eng. Sci. 2008, 63, 3632–3642. [Google Scholar] [CrossRef]
- Saraya, M.E.-S.I.; Rokbaa, H.H.A.L. Preparation of Vaterite Calcium Carbonate in the Form of Spherical Nano-size Particles with the Aid of Polycarboxylate Superplasticizer as a Capping Agent. Am. J. Nanomater. 2016, 4, 44–51. [Google Scholar]
Specimen: Hardened Cement Paste (Water/Cement Ratio: 0.4) | |||
---|---|---|---|
Self-Healing Condition [29,30] | Temperature: 20 °C and 40 °C (Constant pH of 12) | Ca(OH)2 + CO2 Nano-bubble (CH) CaO + Ethanol + CO2 Nano-bubble (CE) | |
Self-healing period | Prior to self-healing | ||
After self-healing | CH, CE (5 h) + CO2 nano-bubble (4 h) | Ⅰ | |
CH, CE (10 h) + CO2 nano-bubble (4 h) | Ⅱ | ||
CH, CE (15 h) + CO2 nano-bubble (4 h) | Ⅲ | ||
CH, CE (20 h) + CO2 nano-bubble (4 h) | Ⅳ |
Step | Experimental Sequence | Subject and Method of Evaluation | |
---|---|---|---|
Physical Property Change | Self-Healing Substances | ||
A | Prior to self-healing | -Absolute dry weight -Absolute dry weight ratio -Porosity reduction by carbonation | -SEM -XRD |
B | After self-healing |
Temp. | Type | Increased Absolute Dry Weight (g) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | |||||||||||
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅰ | Ⅱ | Ⅲ | Ⅳ | ||
20 °C | CH20 | 0.018 | 0.026 | 0.046 | 0.076 | 0.016 | 0.023 | 0.044 | 0.076 | 0.018 | 0.024 | 0.047 | 0.077 |
CE20 | 0.025 | 0.060 | 0.078 | 0.090 | 0.021 | 0.058 | 0.074 | 0.088 | 0.024 | 0.059 | 0.080 | 0.089 | |
40 °C | CH40 | 0.024 | 0.046 | 0.078 | 0.088 | 0.025 | 0.045 | 0.080 | 0.087 | 0.026 | 0.047 | 0.077 | 0.091 |
CE40 | 0.035 | 0.072 | 0.096 | 0.123 | 0.033 | 0.070 | 0.095 | 0.119 | 0.033 | 0.069 | 0.101 | 0.124 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.; Inoue, M.; Kim, D.; Choi, H.; Sengoku, R. Effect of Addition of Ca2+ and CO32− Ions with Temperature Control on Self-Healing of Hardened Cement Paste. Materials 2019, 12, 2456. https://doi.org/10.3390/ma12152456
Choi H, Inoue M, Kim D, Choi H, Sengoku R. Effect of Addition of Ca2+ and CO32− Ions with Temperature Control on Self-Healing of Hardened Cement Paste. Materials. 2019; 12(15):2456. https://doi.org/10.3390/ma12152456
Chicago/Turabian StyleChoi, Heesup, Masumi Inoue, Dongmin Kim, Hyeonggil Choi, and Risa Sengoku. 2019. "Effect of Addition of Ca2+ and CO32− Ions with Temperature Control on Self-Healing of Hardened Cement Paste" Materials 12, no. 15: 2456. https://doi.org/10.3390/ma12152456
APA StyleChoi, H., Inoue, M., Kim, D., Choi, H., & Sengoku, R. (2019). Effect of Addition of Ca2+ and CO32− Ions with Temperature Control on Self-Healing of Hardened Cement Paste. Materials, 12(15), 2456. https://doi.org/10.3390/ma12152456