Dual-Band Perfect Metamaterial Absorber Based on an Asymmetric H-Shaped Structure for Terahertz Waves
Abstract
:1. Introduction
2. Design and Results
3. Interference Theory
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ostmann, T.K.; Nagatsuma, T. A review on terahertz communications research. J. Infrared Millim. Terahertz Waves 2011, 32, 143–171. [Google Scholar] [CrossRef]
- Federici, J.F.; Schulkin, B.; Huang, F.; Gary, D.; Barat, R.; Oliveira, F.; Zimdars, D. THz imaging and sensing for security applications—Explosives, weapons and drugs. Semicond. Sci. Technol. 2005, 20, S266–S280. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, X.; Yang, K.; Liu, Y.; Liu, Y.; Fu, W.L.; Luo, Y. Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 2016, 34, 810–824. [Google Scholar] [CrossRef] [PubMed]
- Landy, N.I.; Bingham, C.M.; Tyler, T.; Jokerst, N.; Smith, D.R.; Padilla, W.J. Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging. Phys. Rev. B 2008, 79, 125104. [Google Scholar] [CrossRef]
- Wu, M.; Zhao, X.; Zhang, J.; Schalch, J.; Duan, G.; Cremin, K.; Averit, R.D.; Zhang, X. A three-dimensional all-metal terahertz metamaterial perfect absorber. Appl. Phys. Lett. 2017, 111, 051101. [Google Scholar] [CrossRef]
- Chiang, Y.J.; Yang, C.S.; Yang, Y.H.; Pan, C.L.; Yen, T.J. An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial. Appl. Phys. Lett. 2011, 99, 1919099. [Google Scholar] [CrossRef]
- Alves, F.; Grbovic, D.; Kearney, B.; Karunasiri, G. Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber. Opt. Lett. 2012, 37, 1886–1888. [Google Scholar] [CrossRef] [PubMed]
- Alves, F.; Kearney, B.; Grbovic, D.; Karunasiri, G. Narrowband terahertz emitters using metamaterial films. Opt. Express 2012, 20, 21025–21032. [Google Scholar] [CrossRef] [PubMed]
- Vakil, A.; Engheta, N. Transformation optics using graphene. Science 2011, 332, 1291–1294. [Google Scholar] [CrossRef] [PubMed]
- Alaee, R.; Farhat, M.; Rockstuhl, C.; Lederer, F. A perfect absorber made of a graphene micro-ribbon metamaterial. Opt. Express 2012, 20, 28107–28114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, Y.; Zhu, B.; Zhao, J.; Jiang, T. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt. Express 2014, 22, 22743–22752. [Google Scholar] [CrossRef] [PubMed]
- La Spada, L.; Vegni, L. Electromagnetic Nanoparticles for Sensing and Medical Diagnostic Applications. Materials 2018, 11, 603. [Google Scholar] [CrossRef] [PubMed]
- Veselago, V.G. The electrodynamics of substances with simultaneously negative values of ɛ and μ. Sov. Phys. Usp. 1968, 10, 509–514. [Google Scholar] [CrossRef]
- Hu, T.; Bingham, C.M.; Strikwerda, A.C.; Pilon, D.; Shrekenhamer, D.; Landy, N.I.L.; Fan, K.; Zhang, X.; Padilla, W.J.; Averitt, R.D. Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication and characterization. Phys. Rev. B 2008, 78, 241103. [Google Scholar]
- Tak, J.; Jin, Y.; Choi, J. A dual-band metamaterial microwave absorber. Microw. Opt. Technol. Lett. 2016, 58, 2052–2057. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, R.; Ding, C.; Zang, Y.; Yao, J. Multiband Metamaterial Absorber at Terahertz Frequencies. Chin. Phys. Lett. 2014, 31, 054205. [Google Scholar] [CrossRef]
- Landy, H.S.; Yang, H.L.; Guo, L.Y. Ultra-broadband electromagnetically induced transparency using tunable self-asymmetric planar metamaterials. J. Appl. Phys. 2013, 114, 163507. [Google Scholar]
- He, X.; Yan, S.; Ma, Q.; Jia, P.; Wu, F.; Jiang, J. Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials. Opt. Commun. 2015, 340, 44–49. [Google Scholar] [CrossRef]
- Liu, N.; Langguth, L.; Weiss, T.; Kästel, J.; Fleischhauer, M.; Pfau, T.; Giessen, H. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 2009, 8, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gu, J.; Singh, R.; Ma, Y.; Zhu, J.; Tian, Z.; He, M.; Han, J.; Zhang, W. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode. Appl. Phys. Lett 2012, 100, 131101. [Google Scholar]
- Aydin, K.; Pryce, I.M.; Atwater, H.A. Symmetry breaking and strong coupling in planar optical metamaterials. Opt. Express 2010, 18, 13407–13417. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Jin, H.B.; Rehman, F.; Hou, Z.L.; Li, J.B.; Butt, F.K.; Ali, Z. Dual-band tunable negative refractive index metamaterial with F-Shape structure. Open Phys. 2014, 12, 578–581. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Li, H.; Zhan, S.; Cao, G.; Xu, H.; Yang, H.; Xu, X. PIT-like effect in asymmetric and symmetric C-shaped metamaterials. Opt. Mater. 2013, 35, 948–953. [Google Scholar] [CrossRef]
- Omaghali, N.E.J.; Volodymyr, T.; Antonello, A.; Abbate, G. Optical Sensing Using Dark Mode Excitation in an Asymmetric Dimer Metamaterial. Sensors 2014, 14, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Ma, W.; Bailey, J.; Matmon, G.; Yu, X. Broadband Terahertz Metamaterial Absorber Based on Asymmetric Resonators with Perfect Absorption. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 406–411. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, Z.W.; Fu, S.J.; Wang, M.; Peng, R.W.; Hao, X.P.; Sun, C. Realization of negative refractive index with double-layered H-shaped resonator array. Appl. Phys. Lett 2011, 99, 181905. [Google Scholar] [CrossRef]
- Mandal, P. H-Shape Plasmonic Metasurface as Refractive Index Sensor. Plasmonics 2015, 10, 439–445. [Google Scholar] [CrossRef]
- Hossain, T.M.; Jamlos, M.F.; Jamlos, M.A.; Soh, P.J.; Islam, M.I.; Khan, R. Modified H-shaped DNG metamaterial for multiband microwave application. Appl. Phys. A 2018, 124, 183. [Google Scholar] [CrossRef]
- Cheng, Z.; Chen, L.; Zang, X.; Cai, B.; Peng, Y.; Zhu, Y. Tunable plasmon-induced transparency effect based on self-asymmetric H-shaped resonators meta-atoms. J. Opt. 2015, 17, 035103. [Google Scholar] [CrossRef]
- Yuan, B.; Zhou, W.; Wang, J. Novel H-shaped plasmon nanoresonators for efficient dual-band SERS and optical sensing applications. J. Opt. 2014, 16, 105013. [Google Scholar] [CrossRef]
- Hao, F.; Sonnefraud, Y.; Dorpe, P.V.; Maier, S.A.; Halas, N.J.; Nordlander, P. Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance. Nano Lett. 2008, 8, 3983–3988. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Rhee, J.; Jang, W.; Lee, Y. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance. Opt. Express 2010, 17, 15372–15380. [Google Scholar]
- Hu, T.; Landy, N.I.; Bingham, C.M.; Zhang, X.; Averitt, R.D.; Padilla, W.J. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Opt. Express 2008, 16, 7181–7188. [Google Scholar]
- Zhang, S.; Genov, D.A.; Wang, Y.; Liu, M.; Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 2008, 101, 047401. [Google Scholar] [CrossRef] [PubMed]
- La Spada, L.; Vegni, L. Metamaterial-based wideband electromagnetic wave absorber. Opt. Express 2016, 24, 5763–5772. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, G.; Wang, L. Design of a novel dual-band terahertz metamaterial absorber. Plasmonics 2016, 11, 523–530. [Google Scholar] [CrossRef]
- Dong, G.; Xie, Q.; Zhang, Q.; Wang, B.; Huang, W. Plasmon-Induced Transparency Based on Triple Arc-Ring Resonators. Materials 2018, 11, 964. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Ding, P.; Wang, J.; Fan, C.; Liang, E. Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption. Opt. Express 2015, 23, 6083–6091. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yuan, B.; Fan, C.; He, J.; Ding, P.; Xue, Q.; Liang, E. A novel planar metamaterial design for electromagnetically induced transparency and slow light. Opt. Express 2013, 21, 25159–25166. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Huang, G. Plasmon dromions in a metamaterial via plasmon-induced transparency. Phys. Rev. A 2016, 93, 013818. [Google Scholar] [CrossRef]
- Xiong, H.; Tang, M.; Hong, J. Analysis of single-layer metamaterial absorber with reflection theory. J. Appl. Phys. 2015, 117, 154906. [Google Scholar] [CrossRef]
- Chen, H.T. Interference theory of metamaterial perfect absorbers. Opt. Express 2012, 20, 7165–7172. [Google Scholar] [CrossRef] [PubMed]
- Wanghuang, T.; Chen, W.; Huang, Y.; Wen, G. Analysis of metamaterial absorber in normal and oblique incidence by using interference theory. AIP Adv. 2013, 3, 102118. [Google Scholar] [CrossRef] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, T.; Zhang, D.; Qiu, P.; Lian, J.; Jing, M.; Yu, B.; Wen, J.; Zhuang, S. Dual-Band Perfect Metamaterial Absorber Based on an Asymmetric H-Shaped Structure for Terahertz Waves. Materials 2018, 11, 2193. https://doi.org/10.3390/ma11112193
Lu T, Zhang D, Qiu P, Lian J, Jing M, Yu B, Wen J, Zhuang S. Dual-Band Perfect Metamaterial Absorber Based on an Asymmetric H-Shaped Structure for Terahertz Waves. Materials. 2018; 11(11):2193. https://doi.org/10.3390/ma11112193
Chicago/Turabian StyleLu, Taiguo, Dawei Zhang, Peizhen Qiu, Jiqing Lian, Ming Jing, Binbin Yu, Jing Wen, and Songlin Zhuang. 2018. "Dual-Band Perfect Metamaterial Absorber Based on an Asymmetric H-Shaped Structure for Terahertz Waves" Materials 11, no. 11: 2193. https://doi.org/10.3390/ma11112193
APA StyleLu, T., Zhang, D., Qiu, P., Lian, J., Jing, M., Yu, B., Wen, J., & Zhuang, S. (2018). Dual-Band Perfect Metamaterial Absorber Based on an Asymmetric H-Shaped Structure for Terahertz Waves. Materials, 11(11), 2193. https://doi.org/10.3390/ma11112193