Slide Valves for Single-Screw Expanders Working Under Varied Operating Conditions
Abstract
:1. Introduction
2. Slide Valve
3. Geometric Analysis of Slide Valve
3.1. Key Angles Related to Slide Valve Displacement
3.2. Mathematical Modeling of the Suction Closure/Discharge Opening Volume
4. Thermodynamic Model of the ORC System Based on SSE Integrated with Slide Valves
5. Results and Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
volume flow rate at the inlet of SSE, (m3/s) | |
number of grooves of screw rotor, (-) | |
number of teeth of the gate rotor, (-) | |
rotational speed of SSE, (rpm) | |
suction closure volume of SSE, (mm3) | |
Discharge opening volume of SSE, (mm3) | |
suction ending angle, (rad) | |
discharge starting angle, (rad) | |
tooth width of gate rotor, (mm) | |
center distance between the single-screw rotor and gate rotor, (mm) | |
radius of the screw rotor, (mm) | |
radius of the gate rotor, (mm) | |
the minimum width of the groove rib | |
heat transfer rate of the working fluid, (kW) | |
heat transfer rate of waste heat, (kW) | |
mass flow rate of working fluid, (kg/s) | |
enthalpy, (kJ/kg) | |
output power of SSE, (kW) | |
power consumption of the pump, (kW) | |
net power output of the ORC system, (kW) | |
volume ratio, (-) | |
shaft efficiency of the expander, (%) | |
the optimum shaft efficiency of the expander, (%) | |
pump efficiency, (%) | |
pressure ratio, (-) | |
optimum pressure ratio, (-) | |
Subscripts | |
sate points in cycle (in Figure 11) | |
sate points in cycle (in Figure 11) | |
Acronyms | |
ORC | organic Rankine cycle |
SSE | single-screw expander |
References
- Wu, Y.T.; Ren, N.; Wang, T.; Ma, C.F. Experimental study on optimized composition of mixed carbonate salt for sensible heat storage in solar thermal power plant. J. Therm. Anal. Calorim. 2011, 85, 1957–1966. [Google Scholar] [CrossRef]
- Younger, P.L. Geothermal Energy: Delivering on the Global Potential. Energies 2015, 8, 11737–11754. [Google Scholar] [CrossRef]
- Heberle, F.; Brüggemann, D. Thermoeconomic analysis of hybrid power plant concepts for geothermal combined heat and power generation. Energies 2014, 7, 4482–4497. [Google Scholar] [CrossRef]
- Cuellar, A.D.; Herzog, H. A Path Forward for Low Carbon Power from Biomass. Energies 2015, 8, 1701–1715. [Google Scholar] [CrossRef]
- Athari, H.; Soltani, S.; Rosen, M.A.; Mahmoudi, S.M.S.; Morosuk, T. Thermodynamic Analysis of a Power Plant Integrated with Fogging Inlet Cooling and a Biomass Gasification. Sustainability 2015, 7, 1292–1307. [Google Scholar] [CrossRef]
- Saidur, R.; Rezaei, M.; Muzammil, W.K.; Hassan, M.H.; Paria, S.; Hasanuzzaman, M. Technologies to recover exhaust heat from internal combustion engines. Renew. Sust. Energ. Rev. 2012, 16, 5649–5659. [Google Scholar] [CrossRef]
- Sprouse, C., III; Depcik, C. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery. Appl. Therm. Eng. 2013, 51, 711–722. [Google Scholar] [CrossRef]
- Capata, R.; Hernandez, G. Preliminary Design and Simulation of a Turbo Expander for Small Rated Power Organic Rankine Cycle (ORC). Energies 2014, 7, 7067–7093. [Google Scholar] [CrossRef]
- Xie, Y.P. Prospect of application and development of Low saturation steam turbine. Energy Conversat. Technol. 2011, 29, 61–65. [Google Scholar]
- Imran, M.; Usman, M.; Park, B.S.; Lee, D.H. Volumetric expanders for low grade heat and waste heat recovery applications. Renew. Sust. Energ. Rev. 2016, 57, 1090–1109. [Google Scholar] [CrossRef]
- Antonelli, M.; Martorano, L. A study on the rotary steam engine for distributed generation in small size power plants. Appl. Energy 2012, 97, 642–647. [Google Scholar] [CrossRef]
- Calise, F.; Capuano, D.; Vanoli, L. Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar-Geothermal Cogeneration Plant. Energies 2015, 8, 2606–2646. [Google Scholar] [CrossRef]
- Antonelli, M.; Baccioli, A.; Francesconi, M.; Desideri, U.; Martorano, L. Operating maps of a rotary engine used as an expander for micro-generation with various working fluids. Appl. Energy 2014, 113, 742–750. [Google Scholar] [CrossRef]
- Antonelli, M.; Baccioli, A.; Francesconi, M.; Martorano, L. Experimental and Numerical Analysis of the Valve Timing Effects on the Performances of a Small Volumetric Rotary Expansion Device. Energy Procedia 2014, 45, 1077–1086. [Google Scholar] [CrossRef]
- Quoilin, S.; Lemort, V.; Lebrun, J. Experimental study and modeling of an Organic Rankine Cycle using scroll expander. Appl. Energy 2010, 87, 1260–1268. [Google Scholar] [CrossRef]
- Chang, J.C.; Hung, T.C.; He, Y.L.; Zhang, W. Experimental study on low-temperature organic Rankine cycle utilizing scroll type expander. Appl. Energy 2015, 155, 150–159. [Google Scholar] [CrossRef]
- Lemort, V.; Quoilin, S.; Cuevas, C.; Lebrun, J. Testing and modeling a scroll expander integrated into an Organic Rankine Cycle. Appl. Therm. Eng. 2009, 29, 3094–3102. [Google Scholar] [CrossRef]
- Lemort, V.; Declaye, S.; Quoilin, S. Experimental characterization of a hermeti scroll expander for use in a micro-scale Rankine cycle. IMechE. Part A J. Power Energy 2012, 226, 126–136. [Google Scholar] [CrossRef]
- Wang, H.; Peterson, R.B.; Herron, T.; Wang, H.; Peterson, R.B.; Herron, T. Experimental performance of a compliant scroll expander for an organic Rankine cycle. IMechE. Part A J. Power Energy 2009, 223, 863–872. [Google Scholar] [CrossRef]
- Leibowitz, H.; Smith, I.K.; Stosic, N. Cost Effective Small Scale ORC Systems for Power Recovery from Low Grade Heat Sources. Int. Mech. Eng. Congr. Expo. (ASME) 2006, 521–527. [Google Scholar]
- Lu, Y.; He, W.; Wu, Y.; Ji, W.; Ma, C.; Guo, H. Performance study on compressed air refrigeration system based onsingle screw expander. Energy 2013, 55, 762–768. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Y.T.; Ma, C.F.; Xia, G.D.; Wang, J.F. Experimental study on the performance of single screw expanders by gap adjustment. Energy 2013, 62, 379–384. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Y.T.; Ma, C.F.; Liu, L.D.; Yu, J. Preliminary experimental study of single screw expander prototype. Appl. Therm. Eng. 2011, 31, 3684–3688. [Google Scholar] [CrossRef]
- He, W.; Wu, Y.; Peng, Y.; Zhang, Y.; Ma, C.; Ma, G. Influence of intake pressure on the performance of single screw expander working with compressed air. Appl. Therm. Eng. 2013, 51, 662–669. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wu, Y.T.; He, W.; Xia, G.D.; Ma, C.F.; Peng, Y.H. Experimental Study on the Influence of Rotational Speed on the Performance of a Single-screw Expander with a 175 mm Screw Diameter. Int. J. Green Energy 2015, 12, 257–264. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wu, Y.T.; Xia, G.D.; Ma, C.F.; Ji, W.N.; Liu, S.W.; Yang, K.; Yang, F.B. Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine. Energy 2014, 77, 499–508. [Google Scholar] [CrossRef]
- Desideri, A.; Gusev, S.; Martijn, V.D.B.; Lemort, V.; Quoilin, S. Experimental comparison of organic fluids for low temperature ORC (organic Rankine cycle) systems for waste heat recovery applications. Energy 2016, 97, 460–469. [Google Scholar] [CrossRef]
- Glavatskaya, Y.; Podevin, P.; Lemort, V.; Shonda, O.; Descombes, G. Reciprocating Expander for an Exhaust Heat Recovery Rankine Cycle for a Passenger Car Application. Energies 2012, 5, 1751–1765. [Google Scholar] [CrossRef]
- Qiu, G.; Liu, H.; Riffat, S. Expanders for micro-CHP systems with organic Rankine cycle. Appl. Therm. Eng. 2011, 31, 3301–3307. [Google Scholar] [CrossRef]
- Li, J.; Pei, G.; Ji, J.; Bai, X.; Li, P.; Xia, L. Design of the ORC (organic Rankine cycle) condensation temperature with respect to the expander characteristics for domestic CHP (combined heat and power) applications. Energy 2014, 77, 579–590. [Google Scholar] [CrossRef]
- Desideri, A.; Martijn, V.D.B.; Gusev, S.; Lemort, V.; Quoilin, S. Experimental campaign and modeling of a low capacity waste heat recovery system based on a single screw expander. In Proceedings of 22nd International Compressor Engineering Conference, West Lafayette, IN, USA, 14–17 July 2014; Purdue University: West Lafayette, IN, USA, 2014. [Google Scholar]
- Wu, Y.T.; Lei, B.; Ma, C.F.; Zhao, L.; Wang, J.F.; Guo, H.; Lu, Y.W. Study on the Characteristics of Expander Power Output Used for Offsetting Pumping Work Consumption in Organic Rankine Cycles. Energies 2014, 7, 4957–4971. [Google Scholar] [CrossRef]
Performance | Description | Value |
---|---|---|
x-intercept of the efficiency curve as a function of the pressure ratio | 3.076 | |
Slope of the efficiency curve close to the x-intercept | 0.7924 | |
Parameter setting the shape of the efficiency curve | 1.213 | |
Maximum efficiency for the reference conditions | 0.592 | |
Optimal pressure ratio for the reference conditions | 10 | |
Optimal rotational speed for the reference conditions | 3547 | |
Empirical parameters |
Parameters | Units | Values | |
---|---|---|---|
Engaging ratio | (-) | 11/6 | |
Screw rotor diameter | (mm) | 155 | |
Gate rotor diameter | (mm) | 155 | |
Tooth width of gate rotor | (mm) | 23.4 | |
Volume ratio (the initial position of slide valves) | (-) | 5 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Zhi, R.; Lei, B.; Wang, W.; Wang, J.; Li, G.; Wang, H.; Ma, C. Slide Valves for Single-Screw Expanders Working Under Varied Operating Conditions. Energies 2016, 9, 478. https://doi.org/10.3390/en9070478
Wu Y, Zhi R, Lei B, Wang W, Wang J, Li G, Wang H, Ma C. Slide Valves for Single-Screw Expanders Working Under Varied Operating Conditions. Energies. 2016; 9(7):478. https://doi.org/10.3390/en9070478
Chicago/Turabian StyleWu, Yuting, Ruiping Zhi, Biao Lei, Wei Wang, Jingfu Wang, Guoqiang Li, Huan Wang, and Chongfang Ma. 2016. "Slide Valves for Single-Screw Expanders Working Under Varied Operating Conditions" Energies 9, no. 7: 478. https://doi.org/10.3390/en9070478
APA StyleWu, Y., Zhi, R., Lei, B., Wang, W., Wang, J., Li, G., Wang, H., & Ma, C. (2016). Slide Valves for Single-Screw Expanders Working Under Varied Operating Conditions. Energies, 9(7), 478. https://doi.org/10.3390/en9070478