Electromagnetic–Structural Coupling Analysis and Optimization of Bridge-Connected Modulators in Coaxial Magnetic Gears
Abstract
:1. Introduction
2. Harmonic Modeling Method of Bridge-Connected Modulator Considering Magnetic Saturation
2.1. CMG Structure Model of the Bridge Connection Modulator
2.2. Theoretical Derivation of Harmonic Modeling Methods
2.2.1. Multilayer Radial Subdivision Model
2.2.2. Complex Fourier Series Expressions
2.2.3. Permanent Magnet Magnetization and Permeability Convolution Matrices
2.3. Magnetic Saturation Processing and Iterative Algorithm for Iron Bridge Structures
2.4. Model Validation and Performance Assessment
3. Mechanical Analysis and Electromagnetic–Structural Coupling of Modulator Bridge Structures
3.1. Mechanical Load Analysis in Magnetic Gears
3.2. Structural Mechanics Model of Bridge-Connected Modulators
3.3. Electromagnetic–Structural Coupling Analysis Method
3.4. Analysis of Coupling Effects Under Typical Operating Conditions
4. Multi-Objective Optimization-Based Design of Bridge-Connected Modulators
4.1. Mathematical Formulation of the Optimization Problem
4.2. Improved NSGA-II Algorithm Design and Implementation
4.3. Optimization Results Analysis
4.4. Optimal Design Selection and Verification
5. Experimental Verification and Performance Testing
5.1. Experimental Prototype Design and Test System
5.2. Electromagnetic Performance Testing
5.3. Structural Performance Testing
5.3.1. Strength and Vibration Characteristics Testing
5.3.2. Temperature Rise and Thermal Stability
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CMGs | coaxial magnetic gears |
References
- Saha, J.; Gorla, N.B.Y.; Subramaniam, A.; Panda, S.K. Analysis of modulation and optimal design methodology for half-bridge matrix-based dual-active-bridge (MB-DAB) AC–DC converter. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 10, 881–894. [Google Scholar] [CrossRef]
- Koohi, P.; Watson, A.J.; Clare, J.C.; Soeiro, T.B.; Wheeler, P.W. A survey on multi-active bridge DC-DC converters: Power flow decoupling techniques, applications, and challenges. Energies 2023, 16, 5927. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, C.; Song, Z.; Yu, J. A Fast Optimization Scheme of Coaxial Magnetic Gears Based on Exact Analytical Model Considering Magnetic Saturation. IEEE Trans. Ind. Appl. 2021, 57, 437–447. [Google Scholar] [CrossRef]
- Sprangers, R.L.J.; Paulides, J.J.H.; Gysen, B.L.J.; Lomonova, E.A. Magnetic Saturation in Semi-Analytical Harmonic Modeling for Electric Machine Analysis. IEEE Trans. Magn. 2016, 52, 1–10. [Google Scholar] [CrossRef]
- Akcay, Y.; Cox, T.; Costabeber, A.; Sala, G. Analytical Model for Reluctance and Cage Rotor Bar Magnetic Gear. IEEE Trans. Ind. Appl. 2020, 56, 2752–2761. [Google Scholar] [CrossRef]
- Wu, Y.-C.; Jian, B.-S. Magnetic field analysis of a coaxial magnetic gear mechanism by two-dimensional equivalent magnetic circuit network method and finite-element method. Appl. Math. Model. 2015, 39, 5746–5758. [Google Scholar] [CrossRef]
- Jing, L.; Gong, J.; Ben, T. Analytical Method for Magnetic Field of Eccentric Magnetic Harmonic Gear. IEEE Access 2020, 8, 34236–34245. [Google Scholar] [CrossRef]
- Lee, H.-K.; Lee, J.-I.; Woo, J.-H.; Shin, K.-H.; Choi, J.-Y. Magnetic Field and Torque Analysis of Coaxial Magnetic Gear Using Semi-Analytical and Superposition Methods. AIP Adv. 2023, 13, 015018. [Google Scholar] [CrossRef]
- Shin, K.-H.; Park, H.-I.; Cho, H.-W.; Choi, J.-Y. Parametric Analysis and Optimized Torque Characteristics of a Coaxial Magnetic Gear Based on the Subdomain Analytical Model. AIP Adv. 2017, 7, 056619. [Google Scholar] [CrossRef]
- Gao, C.; Li, K.; Zhang, Z.; Yuan, F.; Zhang, S.; You, X.; Wang, C. Research on Power Decoupling and Optimal Control of Modular Multiactive Bridge Converter with Relay Port. IEEE Trans. Power Electron. 2024, 40, 5292–5308. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Caldognetto, T.; Mattavelli, P. Conduction loss reduction of isolated bidirectional dc-dc triple active bridge. In Proceedings of the 2021 IEEE Fourth International Conference on DC Microgrids (ICDCM), Arlington, VA, USA, 18–21 July 2021; IEEE: New York, NY, USA, 2021; pp. 1–8. [Google Scholar]
- Haque, M.; Wolfs, P.J.; Alahakoon, S.; Blaabjerg, F. High-frequency-linked three-port converter with optimized control strategies based on power system load flow concepts for PV-battery systems. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 10, 1032–1045. [Google Scholar] [CrossRef]
- Tzouganakis, P.; Gakos, V.; Kalligeros, C.; Tsolakis, A.; Spitas, V. Fast and efficient simulation of the dynamical response of coaxial magnetic gears through direct analytical torque modelling. Simul. Model. Pract. Theory 2023, 123, 102699. [Google Scholar] [CrossRef]
- Jordan, M.; Langkowski, H.; Do Thanh, T.; Schulz, D. Frequency dependent grid-impedance determination with pulse-width-modulation-signals. In Proceedings of the 2011 7th International Conference-Workshop Compatibility and Power Electronics (CPE), Tallinn, Estonia, 1–3 June 2011; IEEE: New York, NY, USA, 2011; pp. 131–136. [Google Scholar]
- Albert, J.R.; Ramasamy, K.; Jerard, V.J.M.; Boddepalli, R.; Singaram, G.; Loganathan, A. A symmetric solar photovoltaic inverter to improve power quality using digital pulsewidth modulation approach. Wirel. Pers. Commun. 2023, 130, 2059–2097. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Y.; Gu, J.; Xu, H.; Liu, W.; Yin, R.; Duan, Z.; Gao, H.; Yan, N. Design and Analysis of a 26–32-GHz 6-bit Passive Vector Modulation Phase Shifter for CMOS Bidirectional Transceiver. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2024, 33, 673–684. [Google Scholar] [CrossRef]
Torque Density | Stress Concentration | Convergence Time | |
---|---|---|---|
Conventional | 68.4 kNm/m3 | 0.77 σ/σy | 86.5 min |
Improved NSGA-II | 81.1 kNm/m3 | 0.56 σ/σy | 52.3 min |
Improvement | +18.6% | −27.3% | −39.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mai, Q.; Hu, Q.; Chen, X. Electromagnetic–Structural Coupling Analysis and Optimization of Bridge-Connected Modulators in Coaxial Magnetic Gears. Energies 2025, 18, 2069. https://doi.org/10.3390/en18082069
Mai Q, Hu Q, Chen X. Electromagnetic–Structural Coupling Analysis and Optimization of Bridge-Connected Modulators in Coaxial Magnetic Gears. Energies. 2025; 18(8):2069. https://doi.org/10.3390/en18082069
Chicago/Turabian StyleMai, Qianli, Qingchun Hu, and Xingbin Chen. 2025. "Electromagnetic–Structural Coupling Analysis and Optimization of Bridge-Connected Modulators in Coaxial Magnetic Gears" Energies 18, no. 8: 2069. https://doi.org/10.3390/en18082069
APA StyleMai, Q., Hu, Q., & Chen, X. (2025). Electromagnetic–Structural Coupling Analysis and Optimization of Bridge-Connected Modulators in Coaxial Magnetic Gears. Energies, 18(8), 2069. https://doi.org/10.3390/en18082069