A Flow-Based Approach for the Optimal Location and Sizing of Hydrogen Refueling Stations Along a Highway Corridor
Abstract
1. Introduction
2. Literature Review
3. Technological and Policy Context
3.1. Technological Configuration of HRS
3.2. Policy Framework and National Funding Programs in Italy
4. Methodology
- α = λ/μ;
- s is the number of servers;
- is the probability of having no vehicles in the system.
- , the queue length;
- , the number of vehicles in the system;
- , the average waiting time in queue;
- , the average time spent in the system.
5. Application
6. Discussion
- The link 1–s2 has a length less than dmax, so on this link, positioning a station is not needed;
- For the link s2–s4, the approach gives as output 2 stations to be located on the link: one of the two is the existing one, and the second will be placed at a distance of 34.41 km from the first;
- For the link s4–3, the approach gives as output 3 stations, the first of which is s4.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AEM | Anion Exchange Membrane |
AFIR | Alternative Fuels Infrastructure Regulation |
ALK | Alkaline |
CcH2 | Cryo-compressed Hydrogen |
CGH2 | Compressed Gaseous Hydrogen |
FCEV | Fuel Cell Electric Vehicle |
HRS | Hydrogen Refueling Stations |
LH2 | Cryogenic Liquid Hydrogen |
LOHC | Liquid Organic Hydrogen Carriers |
PEM | Proton Exchange Membrane |
PNRR | National Recovery and Resilience Plan |
sLH2 | Subcooled Liquid Hydrogen |
SO | Solid Oxide |
TEN-T | Trans-European Transport Network |
References
- IEA. Global Hydrogen Review 2024. Available online: https://www.iea.org/reports/global-hydrogen-review-2024 (accessed on 24 June 2025).
- H2-Stations. Available online: https://www.h2stations.org/ (accessed on 24 June 2025).
- General Office of the State Council Development Plan for the New Energy Vehicle Industry (2021–2035). Available online: https://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm (accessed on 30 June 2025).
- Planning Department Development Plan for New Energy Vehicle Industry (2021–2035). Available online: https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/202111/t20211101_1302487.html (accessed on 20 September 2025).
- Pak, S.B.; Lee, Y. Common but Differentiated? Policymakers’ Priorities of Social Acceptance for Expanding Hydrogen Refueling Stations in Japan and Korea. Int. J. Hydrogen Energy 2024, 89, 799–809. [Google Scholar] [CrossRef]
- Regional Clean Hydrogen Hubs. Available online: https://www.energy.gov/oced/regional-clean-hydrogen-hubs-0 (accessed on 30 June 2025).
- U.S. National Hydrogen Strategy and Roadmap|Hydrogen Program. Available online: https://www.hydrogen.energy.gov/library/roadmaps-vision/clean-hydrogen-strategy-roadmap (accessed on 30 June 2025).
- Alternative Fuels Infrastructure—European Commission. Available online: https://transport.ec.europa.eu/transport-themes/clean-transport/alternative-fuels-sustainable-mobility-europe/alternative-fuels-infrastructure_en (accessed on 27 July 2025).
- Il Green Deal Europeo—Commissione Europea. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_it (accessed on 27 July 2025).
- REPowerEU: La Politica Energetica nei Piani per la Ripresa e la Resilienza dei Paesi UE. Available online: https://www.consilium.europa.eu/it/policies/repowereu/ (accessed on 27 July 2025).
- Idrogeno: Presentata la Strategia Nazionale, Più Scenari per la Sua Diffusione. Available online: https://www.mase.gov.it/portale/-/idrogeno-presentata-la-strategia-nazionale-piu-scenari-per-la-sua-diffusione (accessed on 3 July 2025).
- Laporte, G.; Nickel, S.; da Gama, F.S. (Eds.) Introduction to Location Science. In Location Science; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–18. ISBN 978-3-319-13111-5. [Google Scholar]
- Conceição, S.V.; Pedrosa, L.H.P.; Neto, A.S.C.; Vinagre, M.; Wolff, E. The Facility Location Problem in the Steel Industry: A Case Study in Latin America. Prod. Plan. Control. 2012, 23, 26–46. [Google Scholar] [CrossRef]
- Nambiar, J.M.; Gelders, L.F.; Van Wassenhove, L.N. A Large Scale Location-Allocation Problem in the Natural Rubber Industry. Eur. J. Oper. Res. 1981, 6, 183–189. [Google Scholar] [CrossRef]
- Musolino, G.; Rindone, C.; Polimeni, A.; Vitetta, A. Planning Urban Distribution Center Location with Variable Restocking Demand Scenarios: General Methodology and Testing in a Medium-Size Town. Transp. Policy 2019, 80, 157–166. [Google Scholar] [CrossRef]
- Çakmak, E.; Önden, İ.; Acar, A.Z.; Eldemir, F. Analyzing the Location of City Logistics Centers in Istanbul by Integrating Geographic Information Systems with Binary Particle Swarm Optimization Algorithm. Case Stud. Transp. Policy 2021, 9, 59–67. [Google Scholar] [CrossRef]
- Owais, M. Traffic Sensor Location Problem: Three Decades of Research. Expert Syst. Appl. 2022, 208, 118134. [Google Scholar] [CrossRef]
- Gallo, M. Optimisation Models for the Location of Refuelling Stations for Fuel Cell Electric Freight Vehicles in Italy: Preliminary Tests. In Proceedings of the 2024 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Naples, Italy, 26–29 November 2024; pp. 1–5. [Google Scholar]
- Lin, C.C.; Lin, C.C. The p-Center Flow-Refueling Facility Location Problem. Transp. Res. Part B Methodol. 2018, 118, 124–142. [Google Scholar] [CrossRef]
- Itaoka, K.; Kimura, S.; Hirose, K. Methodology Development to Locate Hydrogen Stations for the Initial Deployment Stage. E3S Web Conf. 2019, 83, 01014. [Google Scholar] [CrossRef]
- Upchurch, C.; Kuby, M. Comparing the p-Median and Flow-Refueling Models for Locating Alternative-Fuel Stations. J. Transp. Geogr. 2010, 18, 750–758. [Google Scholar] [CrossRef]
- Honma, Y.; Kuby, M. Node-Based vs. Path-Based Location Models for Urban Hydrogen Refueling Stations: Comparing Convenience and Coverage Abilities. Int. J. Hydrogen Energy 2019, 44, 15246–15261. [Google Scholar] [CrossRef]
- Kim, H.; Eom, M.; Kim, B.-I. Development of Strategic Hydrogen Refueling Station Deployment Plan for Korea. Int. J. Hydrogen Energy 2020, 45, 19900–19911. [Google Scholar] [CrossRef]
- Gündüz, S.B.; Geçici, E.; Güler, M.G. Locating Hydrogen Fuel Stations: A Comparative Study for Istanbul. Int. J. Hydrogen Energy 2024, 52, 1234–1246. [Google Scholar] [CrossRef]
- MirHassani, S.A.; Ebrazi, R. A Flexible Reformulation of the Refueling Station Location Problem. Transp. Sci. 2013, 47, 617–628. [Google Scholar] [CrossRef]
- Li, Y.; Cui, F.; Li, L. An Integrated Optimization Model for the Location of Hydrogen Refueling Stations. Int. J. Hydrogen Energy 2018, 43, 19636–19649. [Google Scholar] [CrossRef]
- Kim, J.-G.; Kuby, M. The Deviation-Flow Refueling Location Model for Optimizing a Network of Refueling Stations. Int. J. Hydrogen Energy 2012, 37, 5406–5420. [Google Scholar] [CrossRef]
- Nicholas, M.A.; Handy, S.L.; Sperling, D. Using Geographic Information Systems to Evaluate Siting and Networks of Hydrogen Stations. Transp. Res. Rec. 2004, 1880, 126–134. [Google Scholar] [CrossRef]
- Toyota Hydrogen, Guida a Zero Emissioni, Solo Gocce D’acqua|Toyota. Available online: https://www.toyota.it/electrified/fuel-cell (accessed on 19 September 2025).
- Caratteristiche. Available online: https://www.hyundai.com/it/it/models/nexo/caratteristiche.html (accessed on 1 August 2025).
- Opel Movano HYDROGEN. Available online: https://www.media.stellantis.com/it-it/opel/press/opel-movano-hydrogen-per-un-offerta-ancora-piu-forte (accessed on 19 September 2025).
- Light-Duty Vehicles—European Commission. Available online: https://climate.ec.europa.eu/eu-action/transport-decarbonisation/road-transport/light-duty-vehicles_en (accessed on 22 September 2025).
- Franco, A.; Giovannini, C. Recent and Future Advances in Water Electrolysis for Green Hydrogen Generation: Critical Analysis and Perspectives. Sustainability 2023, 15, 16917. [Google Scholar] [CrossRef]
- Vincent, I.; Bessarabov, D. Low Cost Hydrogen Production by Anion Exchange Membrane Electrolysis: A Review. Renew. Sustain. Energy Rev. 2018, 81, 1690–1704. [Google Scholar] [CrossRef]
- Mulk, W.U.; Aziz, A.R.A.; Ismael, M.A.; Ghoto, A.A.; Ali, S.A.; Younas, M.; Gallucci, F. Electrochemical Hydrogen Production through Anion Exchange Membrane Water Electrolysis (AEMWE): Recent Progress and Associated Challenges in Hydrogen Production. Int. J. Hydrogen Energy 2024, 94, 1174–1211. [Google Scholar] [CrossRef]
- Millet, P.; Grigoriev, S. Chapter 2—Water Electrolysis Technologies. In Renewable Hydrogen Technologies; Gandía, L.M., Arzamendi, G., Diéguez, P.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 19–41. ISBN 978-0-444-56352-1. [Google Scholar]
- Wang, T.; Cao, X.; Jiao, L. PEM Water Electrolysis for Hydrogen Production: Fundamentals, Advances, and Prospects. Carb Neutrality 2022, 1, 21. [Google Scholar] [CrossRef]
- Zou, J.; Han, N.; Yan, J.; Feng, Q.; Wang, Y.; Zhao, Z.; Fan, J.; Zeng, L.; Li, H.; Wang, H. Electrochemical Compression Technologies for High-Pressure Hydrogen: Current Status, Challenges and Perspective. Electrochem. Energ. Rev. 2020, 3, 690–729. [Google Scholar] [CrossRef]
- Genovese, M.; Fragiacomo, P. Hydrogen Refueling Station: Overview of the Technological Status and Research Enhancement. J. Energy Storage 2023, 61, 106758. [Google Scholar] [CrossRef]
- Giuffrida, A.; Colbertaldo, P. Overview of Diaphragm Compressors for Hydrogen Service: Capacity, Discharge Pressure and Operational Challenges. J. Energy Storage 2025, 129, 117286. [Google Scholar] [CrossRef]
- Arjomand Kermani, N.; Petrushina, I.; Rokni, M.M. Evaluation of Ionic Liquids as Replacements for the Solid Piston in Conventional Hydrogen Reciprocating Compressors: A Review. Int. J. Hydrogen Energy 2020, 45, 16337–16354. [Google Scholar] [CrossRef]
- Cui, W.; Fu, X.; Hong, X.; Wang, D.; Liu, D.; Cao, X. Review of Suction Valve Capacity Regulation Technology in Reciprocating Compressor. Renew. Sustain. Energy Rev. 2025, 213, 115435. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, S.; Sun, H.; Yang, X.; Dong, P.; Zhao, S. Development and Experimental Research of an Integrated Dynamic Simulation Platform for an Ionic Liquid Hydrogen Compressor Utilized in Hydrogen Refueling Stations. Renew. Energy 2025, 252, 123565. [Google Scholar] [CrossRef]
- Parida, A.; Muthukumar, P.; Dalal, A. A Review on Non-Mechanical Hydrogen Compressors for Hydrogen Refuelling Stations. Int. J. Hydrogen Energy 2025, 145, 292–321. [Google Scholar] [CrossRef]
- Mekonnin, A.S.; Wacławiak, K.; Humayun, M.; Zhang, S.; Ullah, H. Hydrogen Storage Technology, and Its Challenges: A Review. Catalysts 2025, 15, 260. [Google Scholar] [CrossRef]
- Hassan, Q.; Algburi, S.; Sameen, A.Z.; Jaszczur, M.; Salman, H.M. Hydrogen as an Energy Carrier: Properties, Storage Methods, Challenges, and Future Implications. Env. Syst Decis 2024, 44, 327–350. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Gupta, R.K.; Rohit, M.V.; Lee, J.-K. Recent Developments in Hydrogen Production, Storage, and Transportation: Challenges, Opportunities, and Perspectives. Fire 2024, 7, 233. [Google Scholar] [CrossRef]
- Perna, A.; Minutillo, M.; Di Micco, S.; Jannelli, E. Design and Costs Analysis of Hydrogen Refuelling Stations Based on Different Hydrogen Sources and Plant Configurations. Energies 2022, 15, 541. [Google Scholar] [CrossRef]
- J2601_202005; Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles. Fuel Cell Standards[M1] Committee SAE International: Warrendale, PA, USA, 2020. [CrossRef]
- Pizzutilo, E.; Acher, T.; Reuter, B.; Will, C.; Schäfer, S. Subcooled Liquid Hydrogen Technology for Heavy-Duty Trucks. World Electr. Veh. J. 2024, 15, 22. [Google Scholar] [CrossRef]
- Alipour Bonab, S.; Yazdani-Asrami, M. Investigation on the Heat Transfer Estimation of Subcooled Liquid Hydrogen for Transportation Applications Using Intelligent Technique. Int. J. Hydrogen Energy 2024, 84, 468–479. [Google Scholar] [CrossRef]
- Ministero Affari Europei, PNRR e Politiche di Coesione Sesta Relazione al Parlamento Sullo Stato di Attuazione del Piano Nazionale di Ripresa e Resilienza (Sezione I e II). Available online: http://www.strutturapnrr.gov.it/it/documenti/relazioni-al-parlamento/sesta-relazione-al-parlamento-sullo-stato-di-attuazione-del-pnrr/ (accessed on 7 July 2025).
- CEF Transport Alternative Fuels Infrastructure Facility (AFIF) Call for Proposal—European Commission. Available online: https://cinea.ec.europa.eu/funding-opportunities/calls-proposals/cef-transport-alternative-fuels-infrastructure-facility-afif-call-proposal_en (accessed on 7 July 2025).
- ISO 14687:2025. Available online: https://www.iso.org/standard/82660.html (accessed on 11 July 2025).
- PFTE—Paganella Ovest. Available online: https://autobrennero.acquistitelematici.it/tender/3566 (accessed on 11 July 2025).
- PFTE—Paganella Est. Available online: https://autobrennero.acquistitelematici.it/tender/2591 (accessed on 11 July 2025).
- PFTE—Verona. Available online: https://autobrennero.acquistitelematici.it/tender/1969 (accessed on 11 July 2025).
- PFTE—Sadobre. Available online: https://autobrennero.acquistitelematici.it/tender/3687 (accessed on 11 July 2025).
- Milano Serravalle. Available online: https://www.serravalle.it/index.php/pagine/load/serraH2valle (accessed on 11 July 2025).
- Bottino, F. Pronta la Prima Stazione di Rifornimento di Idrogeno Realizzata da FNM Sulla Tangenziale di Milano. HydroNews. 30 June 2025. Available online: https://hydronews.it/pronta-la-prima-stazione-di-rifornimento-di-idrogeno-realizzata-da-fnm-sulla-tangenziale-di-milano/ (accessed on 11 July 2025).
- Bhat, U.N. An Introduction to Queueing Theory: Modeling and Analysis in Applications; Statistics for Industry and Technology; Birkhäuser: Boston, MA, USA, 2015; ISBN 978-0-8176-8420-4. [Google Scholar]
- Zheng, J.; Zhao, L.; Ou, K.; Guo, J.; Xu, P.; Zhao, Y.; Zhang, L. Queuing-Based Approach for Optimal Dispenser Allocation to Hydrogen Refueling Stations. Int. J. Hydrogen Energy 2014, 39, 8055–8062. [Google Scholar] [CrossRef]
- Breiman, L. The Poisson Tendency in Traffic Distribution. Ann. Math. Stat. 1963, 34, 308–311. [Google Scholar] [CrossRef]
- European Commission Scandinavian—Mediterranean Corridor. Available online: https://transport.ec.europa.eu/transport-themes/infrastructure-and-investment/trans-european-transport-network-ten-t/scandinavian-mediterranean-corridor_en (accessed on 9 July 2025).
- Piano-Nazionale_Mobilita-Idrogeno_integrale2019.Pdf. Available online: https://docs.google.com/viewerng/viewer?url=https://www.h2it.it/wp-content/uploads/2020/03/Piano-Nazionale_Mobilita-Idrogeno_integrale2019.pdf&hl (accessed on 18 September 2025).
- Global EV Data Explorer—Data Tools. Available online: https://www.iea.org/data-and-statistics/data-tools/global-ev-data-explorer (accessed on 29 July 2025).
- EU Hydrogen Strategy Under the EU Green Deal|European Hydrogen Observatory. Available online: https://observatory.clean-hydrogen.europa.eu/eu-policy/eu-hydrogen-strategy-under-eu-green-deal (accessed on 23 September 2025).
- Hydrogen. Available online: https://energy.ec.europa.eu/topics/eus-energy-system/hydrogen_en (accessed on 23 September 2025).
- Franke, T.; Krems, J.F. Interacting with Limited Mobility Resources: Psychological Range Levels in Electric Vehicle Use. Transp. Res. Part A Policy Pract. 2013, 48, 109–122. [Google Scholar] [CrossRef]
- Galanido, R.J.; Sebastian, L.J.; Asante, D.O.; Kim, D.S.; Chun, N.-J.; Cho, J. Fuel Filling Time Estimation for Hydrogen-Powered Fuel Cell Electric Vehicle at Different Initial Conditions Using Dynamic Simulation. Korean J. Chem. Eng. 2022, 39, 853–864. [Google Scholar] [CrossRef]
- Sahin, H. Hydrogen Refueling of a Fuel Cell Electric Vehicle. Int. J. Hydrogen Energy 2024, 75, 604–612. [Google Scholar] [CrossRef]
- Owais, M.; Moussa, G.S. Global Sensitivity Analysis for Studying Hot-Mix Asphalt Dynamic Modulus Parameters. Constr. Build. Mater. 2024, 413, 134775. [Google Scholar] [CrossRef]
- Idriss, L.K.; Owais, M. Global Sensitivity Analysis for Seismic Performance of Shear Wall with High-Strength Steel Bars and Recycled Aggregate Concrete. Constr. Build. Mater. 2024, 411, 134498. [Google Scholar] [CrossRef]
- Hydrogen as an Energy Carrier: Properties, Storage Methods, Challenges, and Future Implications|Environment Systems and Decisions. Available online: https://link.springer.com/article/10.1007/s10669-023-09932-z (accessed on 18 September 2025).
- European Hydrogen Observatory The European Hydrogen Market Landscape. November 2024. Available online: https://observatory.clean-hydrogen.europa.eu/sites/default/files/2024-11/The%20European%20hydrogen%20market%20landscape_November%202024.pdf (accessed on 23 September 2025).
Technology | Temperature (°C) | Pressure (Bar) | Durability (Hours) | Purity H2 (%) | Costs [USD/kW] | References |
---|---|---|---|---|---|---|
ALK | 60–80 | 2–35 | 10,000–40,000 | 99.3–99.9 | 2.36–6.98 | [1,33,34,35] |
PEM | 50–80 | 15–40 | 10,000–40,000 | 99.9999 | 2.5–6.8 | [33,36] |
AEM | 60–80 | 1–30 | <3000 | 99.99 | 3–7 | [34,35] |
SO | 500–1000 | 1–10 | < 20,000 | >99.5 | 2.99–7.02 | [33,37] |
Call/Funding Program | Objective | Key Requirements | Results | References |
---|---|---|---|---|
PNRR M2C2 Investment 3.3 | Hydrogen experimentation for road transport | TEN-T corridors, certified green hydrogen, public–private partnerships | 40–48 HRS | [52] |
CEF Transport Alternative Fuels Infrastructure Facility (AFIF) | Support alternative fuels infrastructure | Public–private co-financing, priority TEN-T corridors, intermodality | Deployment of hydrogen refueling stations on TEN-T network | [53] |
Italian HRS Projects | Average Daily H2 Requirement [kg] | Number of Daily Refueled LDV | Delivery Pressures [bar] | Number of Dispensing Columns | Refueling Time [kg] | Total H2 Storage [kg] | References |
---|---|---|---|---|---|---|---|
Paganella Ovest | 500 | 46 | 700 | 2 | 10 ≤ 5 min | ~2350 | [55] |
Paganella Est | 500 | 46 | 700 | 2 | 10 ≤ 5 min | ~2350 | [56] |
Verona Nord (CSA) | 3500 | 270 | 700 | 1 | 10 ≤ 5 min | 2000 @ 350 bar 1000 @ 500 bar 500 @ 940 bar | [57] |
Sadobre | 1700 | 16 | 700 | 2 | — | 1180 @ 350 bar 380 @ 500 bar 140 @ 900 bar | [58] |
Carugate Est | 1000 | — | 350/700 (1) | 3 | — | 333 @ 500 bar 115 @ 930 bar | [59,60] |
Scenario | r (Rate of FCEVs) [%] | ts (Average Service Time) [min] | plim [%] | dmax [km] |
---|---|---|---|---|
A | 5 | 6 | 10 | 50 |
B | 10 | 6 | ||
C | 15 | 5 | ||
D | 20 | 5 | ||
E | 25 | 4 | ||
F | 30 | 3 | ||
G | 35 | 2 | ||
H | 40 | 2 |
Station ID | Coordinates | Direction | Existent | Distance Interval [km] * |
---|---|---|---|---|
1 | (11.436275, 46.884503) | North-South | Yes | 34.41 |
2 | (11.611089, 46.663272) | North-South | No | 34.41 |
3 | (11.318711, 46.477766) | North-South | Yes | 46.85 |
4 | (11.086679, 46.117956) | North-South | No | 46.85 |
5 | (10.986084, 45.748814) | North-South | No | 46.85 |
6 | (10.907998, 45.430118) | North-South | No | - |
7 | (10.908106, 45.430072) | South-North | No | 46.84 |
8 | (10.986198, 45.748719) | South-North | No | 46.84 |
9 | (11.086875, 46.117795) | South-North | No | 35.13 |
10 | (11.318717, 46.477577) | South-North | Yes | 35.13 |
11 | (11.605555, 46.658260) | South-North | No | 35.13 |
12 | (11.436609, 46.884690) | South-North | Yes | - |
Technology /Component | CAPEX | OPEX | LCOH/Cost Indicator | Notes |
---|---|---|---|---|
Alkaline electrolyzer | 1666 €/kW | 43 €/kW/yr | - | Stack 408 €/kW, BoP 686 €/kW, EPC 572 €/kW |
PEM electrolyzer | 1970 €/kW | 64 €/kW/yr | - | Stack 732 €/kW, BoP 464 €/kW, EPC 774 €/kW |
Grid-connected electrolysis (EU) | 2.76 €/kg | 5.18 €/kg | 7.94 €/kg H2 | Cyprus 17.36 €/kg, Italy 10.10 €/kg, Sweden 3.43 €/kg |
Renewable-based electrolysis (EU) | 3.79 €/kg | 2.82 €/kg | 6.61 €/kg H2 | Norway 4.28 €/kg, Ireland 4.13 €/kg, Luxembourg 9.30 €/kg |
Compressor, storage & dispenser | – | – | Energy consumption: 2.43 kWh/kg H2 (GH2 HRS); 0.37 kWh/kg H2 (LH2 HRS) | Compressor is the main OPEX driver |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Micari, S.; Scardino, A.S.; Napoli, G.; Costanzo, L.; Belcore, O.M.; Polimeni, A. A Flow-Based Approach for the Optimal Location and Sizing of Hydrogen Refueling Stations Along a Highway Corridor. Energies 2025, 18, 5322. https://doi.org/10.3390/en18195322
Micari S, Scardino AS, Napoli G, Costanzo L, Belcore OM, Polimeni A. A Flow-Based Approach for the Optimal Location and Sizing of Hydrogen Refueling Stations Along a Highway Corridor. Energies. 2025; 18(19):5322. https://doi.org/10.3390/en18195322
Chicago/Turabian StyleMicari, Salvatore, Antonino Salvatore Scardino, Giuseppe Napoli, Luciano Costanzo, Orlando Marco Belcore, and Antonio Polimeni. 2025. "A Flow-Based Approach for the Optimal Location and Sizing of Hydrogen Refueling Stations Along a Highway Corridor" Energies 18, no. 19: 5322. https://doi.org/10.3390/en18195322
APA StyleMicari, S., Scardino, A. S., Napoli, G., Costanzo, L., Belcore, O. M., & Polimeni, A. (2025). A Flow-Based Approach for the Optimal Location and Sizing of Hydrogen Refueling Stations Along a Highway Corridor. Energies, 18(19), 5322. https://doi.org/10.3390/en18195322