Comparative Analysis of Energy and Emission Properties of Hazelnut Shell Biomass from Temperate and Subtropical Climates
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carmona Rene, J.; Riquelme Alejandro, A. Gonzalez Gillian European Hazelnut Shell as a Source of Extractives and Bio-Oil. Chem. Eng. Trans. 2024, 109, 349–354. [Google Scholar]
- Solís, A.; Rocha, S.; König, M.; Adam, R.; Garcés, H.; Candia, C.; Muñoz, R.; Azócar, L. Preliminary Assessment of Hazelnut Shell Biomass as a Raw Material for Pellet Production. Fuel 2023, 333, 126517. [Google Scholar] [CrossRef]
- Food Agricultural Organization of the United Nations, FAO. Available online: http://www.Fao.Org/Faostat/En/#data/QC (accessed on 1 May 2025).
- International Nut and Dried Fruit Council Foundation (INC). Statistical Yearbook 457 2022/2023. Available online: https://www.Nutfruit.Org/Industry/Technical458resources?Category=statistical-Yearbooks (accessed on 6 May 2025).
- Semih Uzundumlu, A.; Kurtoğlu, S.; Şerefoğlu, C. The Role of Turkey in the World Hazelnut Production and Ex-Porting. Emir. J. Food Agric. 2022, 34. [Google Scholar] [CrossRef]
- FAOSTAT. Production of Hazelnuts, in Shell—2023 Data. Available online: https://www.Fao.Org/Faostat/En/#data/QCL (accessed on 25 August 2025).
- ReportLinker. Poland Nuts Industry Outlook 2022–2026. Available online: https://www.Reportlinker.Com/Clp/Country/4050/726383 (accessed on 25 August 2025).
- Hazelnuts in Shell Yield by Country December 2021. Available online: https://www.Theworldranking.Com/Statistics/916/Hazelnuts-in-Shell-Yield-by-Country/1733/ (accessed on 30 June 2025).
- Torreiro, Y.; Pérez, L.; Piñeiro, G.; Pedras, F.; Rodríguez-Abalde, A. The Role of Energy Valuation of Agroforestry Biomass on the Circular Economy. Energies 2020, 13, 2516. [Google Scholar] [CrossRef]
- Rahimi, Z.; Anand, A.; Gautam, S. An Overview on Thermochemical Conversion and Potential Evaluation of Biofuels Derived from Agricultural Wastes. Energy Nexus 2022, 7, 100125. [Google Scholar] [CrossRef]
- Borkowska, A.; Klimek, K.; Maj, G.; Kapłan, M. Analysis of the Energy Potential of Hazelnut Husk Depending on the Variety. Energies 2024, 17, 3933. [Google Scholar] [CrossRef]
- Ceylan, F.D.; Adrar, N.; Bolling, B.W.; Capanoglu, E. Valorisation of Hazelnut By-Products: Current Applications and Future Potential. Biotechnol. Genet. Eng. Rev. 2022, 39, 586–621. [Google Scholar] [CrossRef]
- Balik, H.I.; Balık, S.K.; Beyhan, N.; Erdogan, V. Hazelnut Cultivars; Trabzon Commodity Exchange: Trabzon, Türkiye, 2016; ISBN 978-605-137-559-5. [Google Scholar]
- Ciemniewska-Żytkiewicz, H. Physicochemical and Technological Characteristics of Hazelnuts (Corylus avellana L.) Grown in Polish Climatic Conditions. Ph.D. Thesis, Warsaw University of Life Sciences, Warsaw, Poland, 2016. [Google Scholar]
- Ciemniewska, H.; Ratusz, K. Characteristics of Hazelnuts from Three Hazel Cultivars Grown in Poland. Rośliny Oleiste 2012, 33, 273–283. [Google Scholar]
- Ollani, S.; Peano, C.; Sottile, F. Recent Innovations on the Reuse of Almond and Hazelnut By-Products: A Review. Sustainability 2024, 16, 2577. [Google Scholar] [CrossRef]
- An, N.; Turp, M.T.; Türkeş, M.; Kurnaz, M.L. Mid-Term Impact of Climate Change on Hazelnut Yield. Agriculture 2020, 10, 159. [Google Scholar] [CrossRef]
- Pérez-Armada, L.; Rivas, S.; González, B.; Moure, A. Extraction of Phenolic Compounds from Hazelnut Shells by Green Processes. J. Food Eng. 2019, 255, 1–8. [Google Scholar] [CrossRef]
- Mateo, J.J.; Maicas, S. Valorization of Winery and Oil Mill Wastes by Microbial Technologies. Food Res. Int. 2015, 73, 13–25. [Google Scholar] [CrossRef]
- Matin, B.; Matin, A.; Brandić, I.; DJurović, A.; Ištvanić, J.; Antonović, A. Lignocellulose Composition, Proximate Analysis and Heat Value of Certain Forest and Energy Crop Biomasses and Their Potential as Raw Materials for the Production of Solid Biofuels. In Proceedings of the 6th International Scientific Wood Technology & Product Design, Ohrid, North Macedonia, 13–15 September 2023; Faculty of Design and Technologies of Furniture and Interior: Skopje, North Macedonia, 2023; p. 200. [Google Scholar]
- Mladenovic, M.; Vucicevic, B.; Marinkovic, A.; Buha-Markovic, J. Combustion of Waste Solids in a Fluidized Bed to Generate Sustainable Energy. Hem. Ind. 2024, 61, 8. [Google Scholar] [CrossRef]
- Güleç, F.; Pekaslan, D.; Williams, O.; Lester, E. Predictability of Higher Heating Value of Biomass Feedstocks via Proximate and Ultimate Analyses—A Comprehensive Study of Artificial Neural Network Applications. Fuel 2022, 320, 123944. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Song, Y.-C.; Li, W.-Y.; Feng, J. Ash Contents and Ash-Forming Elements of Biomass and Their Significance for Solid Biofuel Combustion. Fuel 2017, 208, 377–409. [Google Scholar] [CrossRef]
- Acampora, A.; Civitarese, V.; Sperandio, G.; Rezaei, N. Qualitative Characterization of the Pellet Obtained from Hazelnut and Olive Tree Pruning. Energies 2021, 14, 4083. [Google Scholar] [CrossRef]
- Gürdil, G.; DemiRel, B.; Baz, Y.Ö.; Demirel, C. Pelleting Hazelnut Husk Residues for Biofuel. In Proceedings of the 6th International Conference on Trends in Agricultural Engineering, Prague, Czech Republic, 7–9 September 2016. [Google Scholar]
- Gürdil, G.; DemiRel, B.; Herak, D.; Baz, Y.Ö. Performance of a Manually Fed Pelleting Machine with a Horizontal Rotating Matrix. In Current Methods of Construction Design: Proceedings of the ICMD 2018; Springer International Publishing: Cham, Switzerland, 2020; pp. 599–604. ISBN 978-3-030-33145-0. [Google Scholar]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualising the Circular Economy: An Analysis of 114 Definitions. Re-Sources Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Korhonen, J.; Nuur, C.; Feldmann, A.; Birkie, S.E. Circular Economy as an Essentially Contested Concept. J. Clean. Prod. 2018, 175, 544–552. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Pieroni, M.P.P.; Pigosso, D.C.; Soufani, K. Circular Business Models: A Review. J. Clean. Prod. 2020, 277, 123741. [Google Scholar] [CrossRef]
- Staśkiewicz, M.; Lelicińska-Serafin, K.; Anthropogenic Minerals and the Circular Economy. Polish Coal Market. 2025. Available online: https://Polskirynekwegla.Pl/Sites/Default/Files/Elfinder/GOZ/Mineraly-Antropogeniczne.Pdf (accessed on 9 September 2025).
- Calà, E.; Fracchia, A.; Robotti, E.; Gulino, F.; Gullo, F.; Oddone, M.; Massacane, M.; Cordone, G.; Aceto, M. On the Traceability of the Hazelnut Production Chain by Means of Trace Elements. Molecules 2022, 27, 3854. [Google Scholar] [CrossRef]
- Aydemir, B.; Yilgin, M. Investigation of the Torrefaction and Combustion Behaviour of Walnut Shells. Karadeniz Fen Bilim. Derg. 2022, 12, 51–65. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.; Lin, H.; Lin, Z. Hazelnut and Its By-Products: A Comprehensive Review of Nutrition, Phyto-Chemical Profile, Extraction, Bioactivities and Applications. Food Chem. 2023, 413, 135576. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Turkiewicz, I.P.; Tkacz, K.; Nowicka, P.; Bobak, Ł. Nuts as Functional Foods: Variation of Nutri-Tional and Phytochemical Profiles and Their in Vitro Bioactive Properties. Food Chem. X 2022, 15, 100418. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Salvadó, J.-S.; Ros, E. Bioactives and Health Benefits of Nuts and Dried Fruits. Food Chem. 2020, 314, 126192. [Google Scholar] [CrossRef] [PubMed]
- Kaya, E.D.; Türkhan, A.; Bulut, M.; Koyuncu, M.; Güler, E.; Sayın, F.; Muradoğlu, F. The Effect of Altitude on Phenolic, Antioxidant and Fatty Acid Compositions of Some Turkish Hazelnut (Coryllus Avellana L.). Cultiv. Mol. 2023, 28, 5067. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yaman, M.; Balta, M.F.; Karakaya, O.; Kaya, T.; Necas, T.; Yildiz, E.; Dirim, E. Assessment of Fatty Acid Composition, Bioactive Compounds, and Mineral Composition in Hazelnut Genetic Resources: Implications for Nutritional Value and Breeding Programs. Horticulturae 2023, 9, 1008. [Google Scholar] [CrossRef] [PubMed Central]
- Tüfekci, F.; Karataş, Ş. Determination of Geographical Origin Turkish Hazelnuts According to Fatty Acid Composition. Food Sci Nutr. 2018, 6, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.K.; Helms, U.; Rohrer, C.; Möhler, M.; Hellwig, F.; Glei, M.; Schwerdtle, T.; Lorkowski, S.; Dawczynski, C. Nutrient Composition of Different Hazelnut Cultivars Grown in Germany. Foods 2020, 9, 1596. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ivanović, S.; Avramović, N.; Dojčinović, B.; Trifunović, S.; Novaković, M.; Tešević, V.; Mandić, B. Chemical Composition, Total Phenols and Flavonoids Contents and Antioxidant Activity as Nutritive Potential of Roasted Hazelnut Skins (Corylus avellana L.). Foods 2020, 9, 430. [Google Scholar] [CrossRef]
- EN-ISO 1928:2020; Coal and Coke—Determination of Gross Calorific Value. ISO: Geneva, Switzerland, 2020.
- EN-ISO 18122:2022; Solid Biofuels. Determination of Ash Content. ISO: Geneva, Switzerland, 2022.
- EN-ISO 18123:2023; Solid Fuels—Determination of Volatile Matter. ISO: Geneva, Switzerland, 2023.
- EN-ISO 18134-1:2023; Solid Biofuels—Determination of Moisture Content Part 1: Reference Method. ISO: Geneva, Switzerland, 2022.
- Choudhury, N.D.; Saha, N.; Phukan, B.R.; Kataki, R. Characterization and Evaluation of Energy Properties of Pellets Produced from Coir Pith, Saw Dust and Ipomoea Carnea and Their Blends. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 47, 4517–4534. [Google Scholar] [CrossRef]
- EN-ISO 16948:2015-07; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. ISO: Geneva, Switzerland, 2015.
- ISO 16994:2016; Solid Biofuels—Determination of Total Content of Sulphur and Chlorine. ISO: Geneva, Switzerland, 2016.
- Alves, J.L.F.; da Silva, J.C.G.; Mumbach, G.D.; Domenico, M.D.; da Silva Filho, V.F.; de Sena, R.F.; Machado, R.A.F.; Marangoni, C. Insights into the Bioenergy Potential of Jackfruit Wastes Considering Their Physicochemical Properties, Bioenergy Indicators, Combustion Behaviors, and Emission Characteristics. Renew. Energy 2020, 155, 1328–1338. [Google Scholar] [CrossRef]
- Maj, G. Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector. Energies 2018, 11, 1516. [Google Scholar] [CrossRef]
- Kovacs, H.; Szemmelveisz, K.; Koós, T. Theoretical and Experimental Metals Flow Calculations during Biomass Combustion. Fuel 2016, 185, 524–531. [Google Scholar] [CrossRef]
- Paraschiv, L.S.; Serban, A.; Paraschiv, S. Calculation of Combustion Air Required for Burning Solid Fuels (Coal/Biomass/Solid Waste) and Analysis of Flue Gas Composition. Energy Rep. 2020, 6, 36–45. [Google Scholar] [CrossRef]
- Ceylan, S.; Topçu, Y. Pyrolysis Kinetics of Hazelnut Husk Using Thermogravimetric Analysis. Bioresour. Technol. 2014, 156, 182–188. [Google Scholar] [CrossRef]
- Bayrakdar Ates, E. Synthesis of Ni/Clinoptilolite Catalyst by Modified Polyol Method for Upgrading of Bio-Oil Produced from Hazelnut Husk Pyrolysis. Renew. Energy 2023, 219, 119560. [Google Scholar] [CrossRef]
- Kara, F.; Adigüzel, D.; Atmaca, U.; Çelik, M.; Naktiyok, J. Characterization and Kinetics Analysis of the Thermal Decomposition of the Humic Substance from Hazelnut Husk. Turk. J. Chem. 2020, 44, 1483–1494. [Google Scholar] [CrossRef]
PARAMETER | METHOD | EQUIPMENT |
---|---|---|
Energetic properties | ||
Higher Heating Value (HHV; MJ·kg−1) | EN-ISO 1928:2020 [41] | isoperibolic calorimeter LECO AC 600 (Devon, United Kingdom) |
Lower Heating Value (LHV; MJ·kg−1) | ||
Proximate Analysis | ||
Ash (A; %) | EN-ISO 18122:2022 [42] | thermogravimetric analyser LECO TGA 701 (Devon, United Kingdom) |
Volatile matter (V; %) | EN-ISO 18123:2023 [43] | |
Moisture (MC; %) | EN-ISO 18134:2023 [44] | |
Fixed carbon (FC; %) | FC = 100 − V − A − M [45] | |
Ultimate Analysis | ||
Carbon (C; %) | EN-ISO 16948:2015 [46] | elemental analyser LECO CHNS 628 (Devon, United Kingdom) |
Hydrogen (H;%) | ||
Nitrogen (N; %) | ||
Sulphur (S; %) | EN-ISO 16994:2016 [47] | |
Oxygen (O; %) | O = 100 − A − H − C − S − N [48] |
PARAMETER | METHOD AND EQUIPMENT |
---|---|
Carbon monoxide emission factor (Ec) of chemically pure coal (CO; kg·mg−1) | ·(C/CO), CO—Carbon monoxide emission factor (kg∙kg−1), - molar mass ratio of carbon monoxide and carbon, EC—Emission factor of chemically pure coal (kg∙kg−1), C/CO—Part of the carbon emitted as CO (for biomass 0.06). |
Carbon dioxide emission factor (CO2; kg·mg−1) | CO2—carbon dioxide emission factor (kg∙kg−1)—molar mass ratio of carbon dioxide and pure coal—molar mass ratio of carbon dioxide and carbon monoxide—molar mass ratio of carbon and methane, ECH4—methane emission factor, ENMVOC—emission index of non-methane VOCs (for biomass 0.009). |
Sulphur dioxide emission factor (SO2; kg·mg−1) | SO2–sulphur dioxide emission factor (kg∙kg−1), 2—molar mass ratio of SO2 and sulphur, S—sulphur content in fuel (%), r—coefficient determining the part of total sulphur retained in the ash. |
Emission factor was calculated from (NOX; kg·mg−1) | , NOx—NOx emission factor (kg∙kg−1)—molar mass ratio of nitrogen dioxide to nitrogen. The molar mass of nitrogen dioxide is considered due to the fact that nitrogen oxide in the air oxidises very soon to nitrogen dioxide, N/C—nitrogen to carbon ratio in biomass, NOx/N—part of nitrogen emitted as NOx (for biomass 0.122). |
PARAMETER | METHOD AND EQUIPMENT |
---|---|
Theoretical oxygen demand (VO2; Nm3·kg−1) | , C—biomass carbon content (%), H—biomass hydrogen content (%), S—biomass sulphur content (%), O—biomass oxygen content. |
The stoichiometric volume of dry air required to burn 1 kg of biomass (Voa; Nm3·kg−1) | Since the oxygen content in the air is 21%, which participates in the combustion process in the boiler, the stoichiometric volume of dry air required to burn 1 kg of biomass. |
Carbon dioxide content of the combustion products (VCO2; Nm3·kg−1) | |
Content of sulphur dioxide (VSO2; Nm3·kg−1) | , |
Water vapor content of the exhaust gas (VH2O; Nm3·kg−1) | , ; M-fuel moisture content (%), x-air absolute humidity (kg H2O·kg−1 dry air). |
The theoretical nitrogen content in the exhaust gas ; Nm3·kg−1) | , Considering that the nitrogen in the exhaust comes from the fuel composition and the combustion air, and the nitrogen content in the air is 79%. |
The total stoichiometric volume of dry exhaust gas Nm3·kg−1) | |
The total volume of exhaust gases ; Nm3·kg−1) | Assuming that biomass combustion is carried out under stoichiometric conditions, i.e., using the minimum amount of air required for combustion (λ = 1), a minimum exhaust gas volume will be obtained. |
Climate Zone | Technical Analysis Parameters | |||||
---|---|---|---|---|---|---|
HHV (MJ·kg−1) | LHV (MJ·kg−1) | MC (%) | A (%) | V (%) | FC (%) | |
Moderate | 17.29 ± 0.28 b | 16.13 ± 0.29 b | 7.38 ± 1.04 b | 0.87 ± 0.12 b | 66.33 ± 0.66 a | 24.21 ± 5.06 b |
Subtropical | 18.76 ± 0.26 a | 17.46 ± 0.27 a | 10.35 ± 0.78 a | 1.15 ± 0.12 a | 66.04 ± 0.65 a | 33.72 ± 7.35 a |
p-value | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Material | Energy Parameters | |||||
---|---|---|---|---|---|---|
HHV (MJ·kg−1) | LHV (MJ·kg−1) | MC | A | V | FC | |
Hazel husk—Turkey [52] | 18.50 | 7.24 | 5.27 | 73.86 | 20.87 | |
Hazel husk—Turkey [26] | 18.35 | 7.19 | ||||
Hazelnut husk—Turkey [53] | 16.20 | 8.2 | 9.16 | 57.5 | 25.06 | |
Hazelnut husk—Olga variety—Poland [11] | 18.68 | 17.39 | 8.9 | 0.79 | 67.96 | 22.34 |
Hazelnut husk—Webba cenny variety—Poland [11] | 18.61 | 17.33 | 9.01 | 0.99 | 67.2 | 22.8 |
Climate Zone | Ultimate Analysis | |||||||
---|---|---|---|---|---|---|---|---|
C | H | N | S | O | H/C | N/C | O/C | |
Moderate | 46.49 ± 0.02 b | 7.46 ± 0.16 a | 0.33 ± 0.03 b | 0.01 ± 0.00 a | 44.90 ± 0.34 b | 1.60 ± 0.04 b | 0.007 ± 0.00 b | 0.97 ± 0.01 b |
Subtropical | 43.68 ± 0.03 a | 7.27 ± 0.19 a | 0.47 ± 0.04 a | 0.03 ± 0.00 b | 44.41 ± 0.46 a | 1.66 ± 0.05 a | 0.011 ± 0.00 a | 1.02 ± 0.01 a |
p-value | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Material | Ultimate Analysis | |||||||
---|---|---|---|---|---|---|---|---|
C | H | N | S | O | H/C | N/C | O/C | |
Hazel husk—Turkey [52] | 42.61 | 5.509 | 1.129 | 0.137 | 50.615 | |||
Hazelnut husk—Turkey [54] | 42.62 | 5.2 | 0.9 | 0.08 | 45.4 | 1.47 | 0.8 | |
Hazelnut husk—Turkey [53] | 44.107 | 5.833 | 1.169 | 0 | 48.891 | |||
Hazelnut husk—Olga variety—Poland [11] | 46.55 | 7.58 | 0.29 | 0.01 | 44.77 | 1.63 | 0.01 | 0.72 |
Hazelnut husk—Webba Cenny variety—Poland [11] | 46.17 | 7.5 | 0.36 | 0.02 | 44.97 | 1.62 | 0.01 | 0.73 |
Climate Zone | Emission Factor (kg·mg−1) | ||||
---|---|---|---|---|---|
CO | CO2 | NOx | SO2 | Dust | |
Moderate | 52.81 ± 0.66 b | 1293.28 ± 16.21 b | 1.15 ± 0.14 b | 0.03 ± 0.01 b | 1.11 ± 0.15 b |
Subtropical | 57.51 ± 0.65 a | 1408.37 ± 15.89 a | 1.66 ± 0.15 a | 0.05 ± 0.01 a | 1.45 ± 0.15 a |
p-value | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Climate Zone | Exhaust Gas Parameters | |||||||
---|---|---|---|---|---|---|---|---|
VoO2 | Voa | VCO2 | VSO2 | VoH2O | VN2 | Voga | Vogu | |
Moderate | 0.93 ± 0.03 b | 4.41 ± 0.14 b | 0.80 ± 0.01 b | 0.00 ± 0.00 a | 1.59 ± 0.05 b | 4.02 ± 0.05 b | 6.58 ± 0.08 b | 4.89 ± 0.06 b |
Subtropical | 0.97 ± 0.02 a | 4.61 ± 0.08 a | 0.87 ± 0.01 a | 0.00 ± 0.00 a | 1.69 ± 0.04 a | 5.19 ± 0.15 a | 7.58 ± 0.20 a | 5.99 ± 0.16 a |
p-value | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maj, G.; Borkowska, A.; Klimek, K.E.; Kordali, S.; Yilmaz, F. Comparative Analysis of Energy and Emission Properties of Hazelnut Shell Biomass from Temperate and Subtropical Climates. Energies 2025, 18, 5055. https://doi.org/10.3390/en18195055
Maj G, Borkowska A, Klimek KE, Kordali S, Yilmaz F. Comparative Analysis of Energy and Emission Properties of Hazelnut Shell Biomass from Temperate and Subtropical Climates. Energies. 2025; 18(19):5055. https://doi.org/10.3390/en18195055
Chicago/Turabian StyleMaj, Grzegorz, Anna Borkowska, Kamila E. Klimek, Saban Kordali, and Ferah Yilmaz. 2025. "Comparative Analysis of Energy and Emission Properties of Hazelnut Shell Biomass from Temperate and Subtropical Climates" Energies 18, no. 19: 5055. https://doi.org/10.3390/en18195055
APA StyleMaj, G., Borkowska, A., Klimek, K. E., Kordali, S., & Yilmaz, F. (2025). Comparative Analysis of Energy and Emission Properties of Hazelnut Shell Biomass from Temperate and Subtropical Climates. Energies, 18(19), 5055. https://doi.org/10.3390/en18195055