Kinetics Study on CO2 Adsorption of Li4SiO4 Sorbents Prepared from Spent Lithium-Ion Batteries
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials and Sorbents Preparation
2.2. CO2 Adsorption Test Using TGA
2.3. Characterization Methods
3. Results and Discussion
3.1. Physicochemical Characteristics of Sorbents
3.2. Effect of CO2 Concentration and Temperature
3.2.1. Intrinsic Kinetics in the Kinetic-Controlled Stage
3.2.2. Reaction Kinetics in the Diffusion-Controlled Stage
3.3. Reaction Kinetics with Different Particle Sizes
3.4. Reaction Kinetics at Different Reaction Cycles
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, G.; Lee, J.; Karakoti, A.; Bahadur, R.; Yi, J.; Zhao, D.; AlBahily, K.; Vinu, A. Emerging Trends in Porous Materials for CO2 Capture and Conversion. Chem. Soc. Rev. 2020, 49, 4360–4404. [Google Scholar] [CrossRef]
- Ahmed, S.; Khan, M.K.; Kim, J. Revolutionary Advancements in Carbon Dioxide Valorization via Metal-Organic Framework-Based Strategies. Carbon. Capture Sci. Technol. 2025, 15, 100405. [Google Scholar] [CrossRef]
- Li, J.; Gao, C.; Cheng, Y.; Ran, J.; Qin, C. Calcium Looping-Based Methane Reforming for Hydrogen and Syngas Production. Appl. Catal. Environ. Energy 2025, 379, 125674. [Google Scholar] [CrossRef]
- Jafarizadeh, H.; Yamini, E.; Zolfaghari, S.M.; Esmaeilion, F.; Assad, M.E.H.; Soltani, M. Navigating Challenges in Large-Scale Renewable Energy Storage: Barriers, Solutions, and Innovations. Energy Rep. 2024, 12, 2179–2192. [Google Scholar] [CrossRef]
- Global EV Outlook 2023–Analysis. Available online: https://www.iea.org/reports/global-ev-outlook-2023 (accessed on 28 June 2025).
- Yang, D.; Wang, M.; Luo, F.; Liu, W.; Chen, L.; Li, X. Evaluating the Recycling Potential and Economic Benefits of End-of-Life Power Batteries in China Based on Different Scenarios. Sustain. Prod. Consump. 2024, 47, 145–155. [Google Scholar] [CrossRef]
- Mrozik, W.; Ali Rajaeifar, M.; Heidrich, O.; Christensen, P. Environmental Impacts, Pollution Sources and Pathways of Spent Lithium-Ion Batteries. Energy Environ. Sci. 2021, 14, 6099–6121. [Google Scholar] [CrossRef]
- Assefi, M.; Maroufi, S.; Yamauchi, Y.; Sahajwalla, V. Pyrometallurgical Recycling of Li-Ion, Ni–Cd and Ni–MH Batteries: A Minireview. Curr. Opin. Green. Sustain. Chem. 2020, 24, 26–31. [Google Scholar] [CrossRef]
- Peng, C.; Liu, F.; Aji, A.T.; Wilson, B.P.; Lundström, M. Extraction of Li and Co from Industrially Produced Li-Ion Battery Waste–Using the Reductive Power of Waste Itself. Waste Manag. 2019, 95, 604–611. [Google Scholar] [CrossRef]
- Ji, H.; Wang, J.; Ma, J.; Cheng, H.-M.; Zhou, G. Fundamentals, Status and Challenges of Direct Recycling Technologies for Lithium Ion Batteries. Chem. Soc. Rev. 2023, 52, 8194–8244. [Google Scholar] [CrossRef]
- Linneen, N.; Bhave, R.; Woerner, D. Purification of Industrial Grade Lithium Chloride for the Recovery of High Purity Battery Grade Lithium Carbonate. Sep. Purif. Technol. 2019, 214, 168–173. [Google Scholar] [CrossRef]
- Lai, Z.; Long, J.; Lu, Y.; Luo, F.; Zeng, L.; Lai, W.; Li, Y.; Qian, Q.; Chen, Q.; Zhang, K.; et al. Direct Recycling of Retired Lithium-Ion Batteries: Emerging Methods for Sustainable Reuse. Adv. Energy Mater. 2025, 15, 2501009. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, W.; Yang, Y.; Qu, M.; Li, H. CO2 Capture by Li4SiO4 Sorbents and Their Applications: Current Developments and New Trends. Chem. Eng. J. 2019, 359, 604–625. [Google Scholar] [CrossRef]
- Tong, Y.; Qin, C.; Zhu, L.; Chen, S.; Lv, Z.; Ran, J. From Spent Lithium-Ion Batteries to Low-Cost Li4SiO4 Sorbent for CO2 Capture. Environ. Sci. Technol. 2022, 56, 5734–5742. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Qin, C.; Zhu, X.; Lv, Z.; Huang, X.; Chen, J. Recycling Spent LiFePO4 Battery to Prepare Low-Cost Li4SiO4 Sorbents for High-Temperature CO2 Capture. ACS Sustain. Chem. Eng. 2023, 11, 6722–6730. [Google Scholar] [CrossRef]
- Ruan, J.; Tong, Y.; Ran, J.; Qin, C. Simplifying and Optimizing Li4SiO4 Preparation from Spent LiFePO4 Batteries with Enhanced CO2 Adsorption. ACS Sustain. Chem. Eng. 2023, 11, 14158–14166. [Google Scholar] [CrossRef]
- Zhang, C.; Li, C.; Li, W.; Guo, X. High-Performance Li4SiO4 Sorbents Prepared from Solid Waste for CO2 Capture. Sep. Purif. Technol. 2023, 326, 124730. [Google Scholar] [CrossRef]
- Liao, T.; Qian, Y.; Yu, M.; Tang, A.; Yang, H. CO2 Capture Utilizing Li4SiO4 from Spent Lithium-Ion Batteries and Iron Tailings Offers Eco-Friendly Benefits. Chem. Eng. J. 2024, 493, 152756. [Google Scholar] [CrossRef]
- Ji, H.; Hu, G.; Wu, J.; Ma, W. Preparation of Li4SiO4 from Lithium-Ion Battery Cathode Waste and Diamond Wire Saw Silicon Powder Using a Two-Step Process. J. Environ. Chem. Eng. 2024, 12, 111865. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, X.; Wei, W.; Hu, W.; Xing, H.; Wang, S.; Liu, W. Synthesis of High-Performance Li4SiO4 Sorbent for CO2 Capture Using Li2CO3 Extracted from Spent Lithium Batteries. Sep. Purif. Technol. 2025, 353, 128605. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, W.; Sun, J.; Hu, W.; Xing, H.; Zhang, Z. High-Performance and Low-Cost Li4SiO4 Sorbent for CO2 Capture Synthesized from Spent LiCoO2 Battery and Pyrophyllite. Chem. Eng. J. 2025, 505, 159414. [Google Scholar] [CrossRef]
- Wang, X.; Han, J.; Ni, J.; Li, J.; Gao, C.; Qin, C. Recycling Spent Ternary Lithium-Ion Batteries into Li4SiO4 Sorbents and Oxygen Carriers for CO2 Separation. ACS Sustain. Chem. Eng. 2025, 13, 11835–11844. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, X.; Chen, X.; Yin, L.; Zhang, J.; Liu, W. Performance of Synthetic CaO-Based Sorbent Pellets for CO2 Capture and Kinetic Analysis. Fuel 2018, 232, 205–214. [Google Scholar] [CrossRef]
- Stefanelli, E.; Francalanci, F.; Vitolo, S.; Puccini, M. Insights into Adsorption Mechanism and Kinetic Modeling of K2CO3-Doped Li4SiO4 Pellets for CO2 Capture at High Temperature and Low Concentration. Fuel 2025, 380, 133161. [Google Scholar] [CrossRef]
- López Ortiz, A.; Escobedo Bretado, M.A.; Guzmán Velderrain, V.; Meléndez Zaragoza, M.; Salinas Gutiérrez, J.; Lardizábal Gutiérrez, D.; Collins-Martínez, V. Experimental and Modeling Kinetic Study of the CO2 Absorption by Li4SiO4. Int. J. Hydrogen Energy 2014, 39, 16656–16666. [Google Scholar] [CrossRef]
- Amorim, S.M.; Domenico, M.D.; Dantas, T.L.P.; José, H.J.; Moreira, R.F.P.M. Lithium Orthosilicate for CO2 Capture with High Regeneration Capacity: Kinetic Study and Modeling of Carbonation and Decarbonation Reactions. Chem. Eng. J. 2016, 283, 388–396. [Google Scholar] [CrossRef]
- Yang, Y.; Dai, P.; Chen, Z.; Sun, X.; Ren, X. Kinetic and Thermodynamic Investigations on the Cyclic CO2 Adsorption-Desorption Processes of Lithium Orthosilicate. Chem. Eng. J. 2023, 468, 143679. [Google Scholar] [CrossRef]
- Kaniwa, S.; Yoshino, M.; Niwa, E.; Hashimoto, T. Evaluation of Reaction Kinetics of CO2 and Li4SiO4 by Thermogravimetry under Various CO2 Partial Pressures. Mater. Res. Bull. 2018, 97, 56–60. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, D.; Zhang, S.; Ye, Q.; Wu, Y.; Ni, Y. Behaviors and Kinetic Models Analysis of Li4SiO4 under Various CO2 Partial Pressures. AIChE J. 2017, 63, 2153–2164. [Google Scholar] [CrossRef]
- Peltzer, D.; Salazar Hoyos, L.A.; Faroldi, B.; Múnera, J.; Cornaglia, L. Comparative Study of Lithium-Based CO2 Sorbents at High Temperature: Experimental and Modeling Kinetic Analysis of the Carbonation Reaction. J. Environ. Chem. Eng. 2020, 8, 104173. [Google Scholar] [CrossRef]
- Nair, S.; Raghavan, R. A Kinetic Study of CO2 Sorption/Desorption of Lithium Silicate Synthesized through a Ball Milling Method. Thermochim. Acta 2021, 699, 178918. [Google Scholar] [CrossRef]
- Stefanelli, E.; Puccini, M.; Vitolo, S.; Seggiani, M. CO2 Sorption Kinetic Study and Modeling on Doped-Li4SiO4 under Different Temperatures and CO2 Partial Pressures. Chem. Eng. J. 2020, 379, 122307. [Google Scholar] [CrossRef]
- Mu, Y.; Zhang, M.; Guo, M. Na-Doped Li4SiO4 as an Efficient Sorbent for Low-Concentration CO2 Capture at High Temperature: Superior Adsorption and Rapid Kinetics Mechanism. Sep. Purif. Technol. 2025, 352, 128268. [Google Scholar] [CrossRef]
- Wang, X.; Wei, J.; Jia, Y.; Geng, L.; Wang, D. Evaluation of Na2CO3-Doped MCM-48-Li4SiO4 Adsorbent for CO2 Capture: Performance and DFT Mechanism. Sep. Purif. Technol. 2025, 354, 129417. [Google Scholar] [CrossRef]
- Jia, Y.; Wei, J.; Yuan, Y.; Zhou, X.; Geng, L.; Liao, L. High Temperature Capture of Low Concentration CO2 by Na/Ca-Doped Lithium Orthosilicate with KIT-6 as Precursor. Mater. Today Commun. 2022, 33, 104685. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Q.; Wang, H.; Ni, Y.; Zhu, Z. Absorption Behaviors Study on Doped Li4SiO4 under a Humidified Atmosphere with Low CO2 Concentration. Int. J. Hydrogen Energy 2014, 39, 17913–17920. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Q.; Shen, C.; Ni, Y.; Wu, Y.; Wu, Q.; Zhu, Z. Self-Activation Mechanism Investigations on Large K2CO3-Doped Li4SiO4 Sorbent Particles. Ind. Eng. Chem. Res. 2015, 54, 7292–7300. [Google Scholar] [CrossRef]
- Zhao, D.; Geng, L.; Jia, Y.; Wei, J.; Zhou, X.; Liao, L. Adsorption of High-Temperature CO2 by Ca2+/Na+-Doped Lithium Orthosilicate: Characterization, Kinetics, and Recycle. Environ. Sci. Pollut. Res. 2024, 31, 21267–21278. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Li, X.; Chen, H.; Gu, X.; Cheng, Z.; Zhou, Z. Sol-Gel Derived, Na/K-Doped Li4SiO4-Based CO2 Sorbents with Fast Kinetics at High Temperature. Chem. Eng. J. 2020, 382, 122807. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, W.; Yang, Y.; Tong, X.; Chen, Q.; Zhou, Z. Synthesis of Highly Efficient, Structurally Improved Li4SiO4 Sorbents for High-Temperature CO2 Capture. Ceram. Int. 2018, 44, 16668–16677. [Google Scholar] [CrossRef]
- Qi, Z.; Daying, H.; Yang, L.; Qian, Y.; Zibin, Z. Analysis of CO2 Sorption/Desorption Kinetic Behaviors and Reaction Mechanisms on Li4SiO4. AIChE J. 2013, 59, 901–911. [Google Scholar] [CrossRef]
- Fu, J.; Huang, P.; Guo, Y.; Fan, K.; Wang, Z.; Xie, X.; Yu, J.; Zhao, C. Integrating Calcium-Looping and Reverse-Water–Gas-Shift Reaction for CO2 Capture and Conversion: Screening of Optimum Catalyst. Sep. Purif. Technol. 2023, 327, 124991. [Google Scholar] [CrossRef]
- Venegas, M.J.; Fregoso-Israel, E.; Escamilla, R.; Pfeiffer, H. Kinetic and Reaction Mechanism of CO2 Sorption on Li4SiO4: Study of the Particle Size Effect. Ind. Eng. Chem. Res. 2007, 46, 2407–2412. [Google Scholar] [CrossRef]
- Zhao, M.; Fan, H.; Yan, F.; Song, Y.; He, X.; Memon, M.Z.; Bhatia, S.K.; Ji, G. Kinetic Analysis for Cyclic CO2 Capture Using Lithium Orthosilicate Sorbents Derived from Different Silicon Precursors. Dalton Trans. 2018, 47, 9038–9050. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Q.; Peng, K.; Wang, Z.; Zou, X.; Cheng, H.; Lu, X. Elucidating the Promotion of Na2CO3 in CO2 Capture by Li4SiO4. Phys. Chem. Chem. Phys. 2021, 23, 26696–26708. [Google Scholar] [CrossRef] [PubMed]
Sorbent | Temperature (°C) | Diffusion-Controlled Stage | ||
---|---|---|---|---|
kb (s−1) | R2 | Ea (kJ/mol) | ||
LSO | 600 | 1.59 × 10−4 | 0.9893 | 323.15 |
575 | 5.94 × 10−5 | 0.9984 | ||
550 | 1.07 × 10−5 | 0.9952 | ||
Na-LSO | 600 | 1.64 × 10−5 | 0.9627 | 176.79 |
575 | 1.08 × 10−5 | 0.9307 | ||
550 | 3.76 × 10−6 | 0.9727 |
Sorbent | Particle Size (mm) | Kinetic-Controlled Stage | Diffusion-Controlled Stage | ||
---|---|---|---|---|---|
ka (s−1) | R2 | kb (s−1) | R2 | ||
LSO | 0.054–0.075 | 1.88 × 10−2 | 0.9488 | 6.96 × 10−5 | 0.9825 |
0.1–0.2 | 3.30 × 10−3 | 0.9853 | 5.18 × 10−5 | 0.9605 | |
0.5–0.6 | 8.61 × 10−4 | 0.9623 | 2.92 × 10−5 | 0.9711 | |
0.9–1 | 6.13 × 10−4 | 0.9724 | 1.65 × 10−5 | 0.9782 | |
Na−LSO | 0.054–0.075 | 1.34 × 10−3 | 0.9946 | 1.88 × 10−5 | 0.9950 |
0.1–0.2 | 8.82 × 10−4 | 0.9918 | 1.23 × 10−5 | 0.9915 | |
0.5–0.6 | 5.66 × 10−4 | 0.9730 | 2.24 × 10−6 | 0.9963 | |
0.9–1 | 5.10 × 10−4 | 0.9675 | 5.43 × 10−7 | 0.9494 |
Sorbent | Cycles Number | Kinetic-Controlled Stage | Diffusion-Controlled Stage | ||
---|---|---|---|---|---|
ka (s−1) | R2 | kb (s−1) | R2 | ||
LSO | 1 | 2.07 × 10−2 | 0.9834 | 6.95 × 10−5 | 0.9858 |
10 | 2.54 × 10−3 | 0.9923 | 1.58 × 10−5 | 0.9596 | |
20 | 2.12 × 10−3 | 0.9899 | 8.94 × 10−6 | 0.9585 | |
Na-LSO | 1 | 8.91 × 10−4 | 0.9843 | 1.86 × 10−5 | 0.9960 |
10 | 2.47 × 10−3 | 0.9981 | 3.72 × 10−5 | 0.9871 | |
20 | 4.24 × 10−3 | 0.9977 | 2.12 × 10−5 | 0.9456 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Han, J.; Ni, J.; Qin, C. Kinetics Study on CO2 Adsorption of Li4SiO4 Sorbents Prepared from Spent Lithium-Ion Batteries. Energies 2025, 18, 4237. https://doi.org/10.3390/en18164237
Wang X, Han J, Ni J, Qin C. Kinetics Study on CO2 Adsorption of Li4SiO4 Sorbents Prepared from Spent Lithium-Ion Batteries. Energies. 2025; 18(16):4237. https://doi.org/10.3390/en18164237
Chicago/Turabian StyleWang, Xinmei, Junqiang Han, Jianing Ni, and Changlei Qin. 2025. "Kinetics Study on CO2 Adsorption of Li4SiO4 Sorbents Prepared from Spent Lithium-Ion Batteries" Energies 18, no. 16: 4237. https://doi.org/10.3390/en18164237
APA StyleWang, X., Han, J., Ni, J., & Qin, C. (2025). Kinetics Study on CO2 Adsorption of Li4SiO4 Sorbents Prepared from Spent Lithium-Ion Batteries. Energies, 18(16), 4237. https://doi.org/10.3390/en18164237