Large-Scale Transmission Expansion Planning with Network Synthesis Methods for Renewable-Heavy Synthetic Grids
Abstract
1. Introduction
1.1. Literature Review on the TEP Problem and Research Gaps
1.2. Background: Network Synthesis in the Synthetic Grid Building Problem
2. Network Expansion Methodology
2.1. Problem Formulation: Transmission Decisions and Objective
2.2. Preparatory Steps: Managing Candidatates and Setting the Initial Conditions
2.3. Solution Algorithm and Methodology for Network Expansion
2.4. Design and Validation of Network Impacts on System Dynamics
3. Case Study: Texas2k Synthetic Grid
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TEP | Transmission expansion planning |
MILP | Mixed integer linear program |
EIA | United States Energy Information Administration |
IBR | Inverter-based resource |
SMIB | Single-machine, infinite bus |
References
- U.S. Department of Energy. National Transmission Needs Study. 2023. Available online: https://www.energy.gov/gdo/national-transmission-needs-study (accessed on 15 July 2025).
- Electric Reliability Council of Texas (ERCOT). 2024 Regional Transmission Plan (RTP) 345-kV Plan and Texas 765-kV Strategic Transmission Expansion Plan Comparison. 2025. Available online: https://www.ercot.com/files/docs/2025/01/27/2024-regional-transmission-plan-rtp-345-kv-plan-and-texas-765-kv-strategic-transmission-expans.pdf (accessed on 15 July 2025).
- Clean Energy Finance Corporation (CEFC). CEFC Annual Report 2023–2024. 2024. Available online: https://www.cefc.com.au/document?file=/media/d3dodzn3/cefc_annualreport2023-24.pdf (accessed on 15 July 2025).
- Birchfield, A.B.; Xu, T.; Gegner, K.M.; Shetye, K.S.; Overbye, T.J. Grid structural characteristics as validation criteria for synthetic networks. IEEE Trans. Power Syst. 2017, 32, 3258–3265. [Google Scholar] [CrossRef]
- Birchfield, A.B.; Overbye, T.J. Planning sensitivities for building contingency robustness and graph properties into large synthetic grids. In Proceedings of the Hawaii International Conference on System Sciences, Maui, HI, USA, 7–10 January 2020; pp. 1–8. [Google Scholar]
- Latorre, G.; Cruz, R.D.; Areiza, J.M.; Villegas, A. Classification of publications and models on transmission expansion planning. IEEE Trans. Power Syst. 2003, 18, 938–946. [Google Scholar] [CrossRef]
- Mahdavi, M.; Antunez, C.S.; Ajalli, M.; Romero, R. Transmission Expansion Planning: Literature Review and Classification. IEEE Syst. J. 2019, 13, 3129–3140. [Google Scholar] [CrossRef]
- Zhang, H.; Vittal, V.; Heydt, G.T.; Quintero, J. A mixed-integer linear programming approach for multi-stage security-constrained transmission expansion planning. IEEE Trans. Power Syst. 2012, 27, 1125–1133. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, Z.; Song, Y. Mixed-integer linear model for transmission expansion planning with line losses and energy storage systems. IET Gener. Transm. Distrib. 2013, 7, 919–928. [Google Scholar] [CrossRef]
- Pozo, D.; Sauma, E.E.; Contreras, J. A three-level static MILP model for generation and transmission expansion planning. IEEE Trans. Power Syst. 2013, 28, 202–210. [Google Scholar] [CrossRef]
- Aghaei, J.; Amjady, N.; Baharvandi, A.; Akbari, M.A. Generation and transmission expansion planning: MILP–based probabilistic model. IEEE Trans. Power Syst. 2014, 49, 1592–1601. [Google Scholar] [CrossRef]
- Camponogara, E.; de Almeida, K.C.; Junior, R.H. Piecewise-linear approximations for a non-linear transmission expansion planning problem. IET Gener. Transm. Distrib. 2015, 9, 1235–1244. [Google Scholar] [CrossRef]
- Zhan, J.; Chung, C.Y.; Zare, A. A fast solution method for stochastic transmission expansion planning. IEEE Trans. Power Syst. 2017, 32, 4684–4695. [Google Scholar] [CrossRef]
- Huang, S.; Dinavahi, V. A branch-and-cut benders decomposition algorithm for transmission expansion planning. IEEE Syst. J. 2019, 13, 659–669. [Google Scholar] [CrossRef]
- Majidi-Qadikolai, M.; Baldick, R. A generalized decomposition framework for large-scale transmission expansion planning. IEEE Trans. Power Syst. 2018, 33, 1635–1649. [Google Scholar] [CrossRef]
- Akbari, T.; Bina, M.T. Approximated MILP model for ac transmission expansion planning: Global solutions versus local solutions. IET Gener. Transm. Distrib. 2016, 10, 1563–1569. [Google Scholar] [CrossRef]
- Rahmani, M.; Romero, R.A.; Rider, M.J. Risk/investment-driven transmission expansion planning with multiple scenarios. IET Gener. Transm. Distrib. 2013, 7, 154–165. [Google Scholar] [CrossRef]
- García-Bertrand, R.; Mínguez, R. Dynamic robust transmission expansion planning. IEEE Trans. Power Syst. 2017, 32, 2618–2628. [Google Scholar] [CrossRef]
- Orfanos, G.A.; Georgilakis, P.; Hatziargyriou, N.D. Transmission expansion planning of systems with increasing wind power integration. IEEE Trans. Power Syst. 2013, 28, 1355–1362. [Google Scholar] [CrossRef]
- Mínguez, R.; García-Bertrand, R.; Arroyo, J.M.; Alguacil, N. On the solution of large-scale robust transmission network expansion planning under uncertain demand and generation capacity. IEEE Trans. Power Syst. 2018, 33, 1242–1251. [Google Scholar] [CrossRef]
- Bolgaryn, R.; Wang, Z.; Scheidler, A.; Braun, M. Active power curtailment in power system planning. IEEE Open Access J. Power Energy 2021, 8, 399–408. [Google Scholar] [CrossRef]
- Peng, L.; Zabihi, A.; Azimian, M.; Shirvani, H.; Shahnia, F. Developing a robust expansion planning approach for transmission networks and privately-owned renewable sources. IEEE Access 2023, 11, 76046–76058. [Google Scholar] [CrossRef]
- Dehghan, S.; Amjady, N.; Conejo, A.J. Reliability-constrained robust power system expansion planning. IEEE Trans. Power Syst. 2016, 31, 2383–2392. [Google Scholar] [CrossRef]
- Moreira, A.; Street, A.; Arroyo, J.M. An adjustable robust optimization approach for contingency-constrained transmission expansion planning. IEEE Trans. Power Syst. 2015, 30, 2013–2022. [Google Scholar] [CrossRef]
- Shortle, J.; Rebennack, S.; Glover, F.W. Transmission-capacity expansion for minimizing blackout probabilities. IEEE Trans. Power Syst. 2014, 29, 43–52. [Google Scholar] [CrossRef]
- Zhang, X.; Tomsovic, K. Security constrained multi-stage transmission expansion planning considering a continuously variable series reactor. IEEE Trans. Power Syst. 2017, 32, 4442–4450. [Google Scholar] [CrossRef]
- Meneses, M.; Nascimento, E.; Macedo, L.H.; Romero, R. Transmission network expansion planning considering line switching. IEEE Access 2020, 8, 115148–115158. [Google Scholar] [CrossRef]
- da Silva, A.M.L.; Rezende, L.S.; Honorio, L.M.; Manso, L.A.F. Performance comparison of metaheuristics to solve the multi-stage transmission expansion planning problem. IET Gener. Transm. Distrib. 2011, 5, 360–367. [Google Scholar] [CrossRef]
- Gallego, R.A.; Alves, A.B.; Monticelli, A.; Romero, R. Parallel simulated annealing applied to long term transmission network expansion planning. IEEE Trans. Power Syst. 1997, 12, 181–188. [Google Scholar] [CrossRef]
- Murugan, P. Modified particle swarm optimisation with a novel initialisation for finding optimal solution to the transmission expansion planning problem. IET Gener. Transm. Distrib. 2012, 6, 1132–1142. [Google Scholar] [CrossRef]
- Huang, S.; Dinavahi, V. Multi-group particle swarm optimisation for transmission expansion planning solution based on LU decomposition. IET Gener. Transm. Distrib. 2017, 11, 1434–1442. [Google Scholar] [CrossRef]
- Mahdavi, M.; Kimiyaghalam, A.; Alhelou, H.H.; Javadi, M.S.; Ashouri, A.; Catalão, J.P.S. Transmission expansion planning considering power losses, expansion of substations and uncertainty in fuel price using discrete artificial bee colony algorithm. IEEE Access 2021, 9, 135983–135995. [Google Scholar] [CrossRef]
- Alhamrouni, I.; Khairuddin, A.; Ferdavani, A.K.; Salem, M. Transmission expansion planning using AC-based differential evolution algorithm. IET Gener. Transm. Distrib. 2014, 8, 1637–1644. [Google Scholar] [CrossRef]
- Barati, F.; Seifi, H.; Sepasian, M.S.; Nateghi, A.; Shafie-khah, M.; Catalao, J.P.S. Multi-period integrated framework of generation, transmission, and natural gas grid expansion planning for large-scale systems. IEEE Trans. Power Syst. 2015, 30, 2527–2537. [Google Scholar] [CrossRef]
- Moradi, M.; Abdi, H.; Lumbreras, S.; Ramos, A.; Karimi, S. Transmission expansion planning in the presence of wind farms with a mixed AC and DC power flow model using an imperialist competitive algorithm. Elect. Power Syst. Res. 2016, 140, 493–506. [Google Scholar] [CrossRef]
- Rawa, M. Towards avoiding cascading failures in transmission expansion planning of modern active power systems using hybrid snake-sine cosine optimization algorithm. Mathematics 2022, 10, 1323. [Google Scholar] [CrossRef]
- Zoppei, R.T.; Delgado, M.A.J.; Macedo, L.H.; Rider, M.J.; Romero, R. A branch and bound algorithm for transmission network expansion planning using nonconvex mixed-integer nonlinear programming models. IEEE Access 2022, 10, 39875–39888. [Google Scholar] [CrossRef]
- Liu, G.; Sasaki, H.; Yorino, N. Application of network topology to long range composite expansion planning of generation and transmission lines. Elect. Power Syst. Res. 2001, 57, 157–162. [Google Scholar] [CrossRef]
- Armaghani, S.; Naghshbandy, A.H.; Shahrtash, S.M. A novel multi-stage adaptive transmission network expansion planning to countermeasure cascading failure occurrence. Electr. Power Energy Syst. 2020, 115, 105415. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, J.; Zhang, Y.; Li, Q. A network search space reduction method for robust coordinated energy storage and transmission expansion planning. IET Gener. Transm. Distrib. 2024, 18, 1449–1465. [Google Scholar] [CrossRef]
- Soltan, S.; Zussman, G. Generation of synthetic spatially embedded power grid networks. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 19 July 2016; pp. 1–5. [Google Scholar]
- Espejo, R.; Lumbreras, S.; Ramos, A. A Complex-Network Approach to the Generation of Synthetic Power Transmission Networks. IEEE Syst. J. 2019, 13, 3050–3058. [Google Scholar] [CrossRef]
- Birchfield, A.B.; Schweitzer, E.; Athari, M.H.; Xu, T.; Overbye, T.J.; Scaglione, A.; Wang, Z. A metric-based validation process to assess the realism of synthetic power grids. Energies 2017, 10, 1233. [Google Scholar] [CrossRef]
- Xu, T.; Birchfield, A.B.; Overbye, T.J. Modeling, tuning, and validating system dynamics in synthetic electric grids. IEEE Trans. Power Syst. 2018, 33, 6501–6509. [Google Scholar] [CrossRef]
- Baek, J.; Birchfield, A.B. A tuning method for exciters and governors in realistic synthetic grids with dynamics. In Proceedings of the 2023 North American Power Symposium (NAPS), Asheville, NC, USA, 15–17 October 2023; pp. 1–6. [Google Scholar]
- ERCOT. 2025 ERCOT System Planning Long-Term Hourly Peak Demand and Energy Forecast. 2025. Available online: https://www.ercot.com/files/docs/2025/04/08/2025-LTLF-Report.pdf (accessed on 15 July 2025).
- U.S. Energy Information Association, Form EIA-860. 2024. Available online: http://www.eia.gov/electricity/data/eia860/ (accessed on 15 July 2025).
- Texas A&M University Electric Grid Test Case Repository. Available online: https://electricgrids.engr.tamu.edu/texas2k-series25/ (accessed on 15 July 2025).
Reference | Buses in the Largest Case | Candidate Lines Considered in the Largest Case | Year |
---|---|---|---|
[22] | 24 | 105 | 2023 |
[27] | 24 | 123 | 2020 |
[32] | 17 | 19 | 2021 |
[37] | 93 | 24 | 2022 |
[39] | 118 | 186 | 2020 |
[40] | 271 | 376 | 2024 |
All Values in MW | Installed | Committed | Dispatched | Committed Percentage | Dispatch Percentage |
---|---|---|---|---|---|
BIT (bituminous coal) | 13,538 | 11,688 | 4145 | 86% | 35% |
DFO (distillate fuel oil) | 514 | 406 | 170 | 79% | 42% |
MWH (energy storage) | 14,277 | 7304 | 7304 | 51% | 100% |
NG (natural gas) | 58,087 | 29,164 | 19,496 | 50% | 67% |
NUC (nuclear) | 4980 | 4980 | 4775 | 100% | 96% |
OBL (other biomass liquids) | 160 | 142 | 142 | 89% | 100% |
OTH (other) | 228 | 138 | 138 | 61% | 100% |
SUN (solar) | 32,313 | 21,120 | 21,120 | 65% | 100% |
WAT (water) | 552 | 480 | 480 | 87% | 100% |
WND (wind) | 41,832 | 32,534 | 32,534 | 78% | 100% |
Total | 166,481 | 107,956 | 90,304 | 65% | 84% |
Objective Value | ||||
---|---|---|---|---|
Initial | 70,181 | 12,890 | 47,700 | 130,772 |
Final incumbent | 55,361 | 2724 | 23,783 | 81,868 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birchfield, A.B.; Baek, J.-o.; Xia, J. Large-Scale Transmission Expansion Planning with Network Synthesis Methods for Renewable-Heavy Synthetic Grids. Energies 2025, 18, 3844. https://doi.org/10.3390/en18143844
Birchfield AB, Baek J-o, Xia J. Large-Scale Transmission Expansion Planning with Network Synthesis Methods for Renewable-Heavy Synthetic Grids. Energies. 2025; 18(14):3844. https://doi.org/10.3390/en18143844
Chicago/Turabian StyleBirchfield, Adam B., Jong-oh Baek, and Joshua Xia. 2025. "Large-Scale Transmission Expansion Planning with Network Synthesis Methods for Renewable-Heavy Synthetic Grids" Energies 18, no. 14: 3844. https://doi.org/10.3390/en18143844
APA StyleBirchfield, A. B., Baek, J.-o., & Xia, J. (2025). Large-Scale Transmission Expansion Planning with Network Synthesis Methods for Renewable-Heavy Synthetic Grids. Energies, 18(14), 3844. https://doi.org/10.3390/en18143844