Thermogravimetric Analysis of Blended Fuel of Pig Manure, Straw, and Coal
Abstract
1. Introduction
2. Material and Methods
2.1. Material
2.2. Thermogravimetric Experiment
2.3. Analytical Method
3. Results and Discussion
3.1. Combustion Characteristics of Different Materials
3.2. Influence of Biomass Ratios
3.3. The Synergistic Effect of Blended Fuel
3.4. Kinetic Analysis
4. Conclusions
- (1)
- The entire fuel mixture’s combustion performance can be enhanced by adding pig manure and straw, and this performance will also improve when the blending ratio is increased. When pig manure is blended with coal, the increase in the ratio of pig manure blended makes the ignition temperature decrease from 696 K to 675 K, and the ignition performance is improved, and the same straw has the same effect. Similarly, the addition of biomass also improves the stability of combustion.
- (2)
- The synergistic effect can be seen in the blending of pig manure and coal, and the synergistic effect of adding pig manure is very obvious. The strongest synergistic combustion is exhibited at a blending ratio of 5%, yet the synergistic effect does not increase with increasing ratio but rather demonstrates a fluctuating trend. It is noteworthy that the majority of the blended fuels continue to exhibit a synergistic effect even at temperatures exceeding 913 K.
- (3)
- At 10% and 30% pig manure ratios, respectively, the activation energy was 75.82 KJ mol−1 and 44.33 KJ mol−1, which shows that the activation energy was reduced and it was easier for the reaction to take place. The activation energy of straw blended at 15% and 20% was 70.38 KJ mol−1 and 78.40 KJ mol−1, respectively, whereas pig manure blended at 15% and 20% had an activation energy that was less than 70 KJ mol−1 at the same blending ratio, which indicates that pig manure blended with coal at this ratio is more reactive than that of straw blended. It can be inferred that a 15% blending ratio of pig manure to coal can result in improved combustion outcomes when combined with other indicators such as the activation energy and combustion characteristic index.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
A | Pre-exponential factor | R2 | Goodness of fit |
Aar | Ash content as received basis | S | Comprehensive combustion characteristics index |
B | Biomass | St, ar | Sulfur element as received basis |
C | Coal | Tb | Burnout temperature |
Car | Carbon element as received basis | Ti | Ignition temperature |
Ci | Flammability index | Net calorific value as received basis | |
Stable Combustion Characteristic Index | R | Universal gas constant | |
DTGmax | Maximum burning speed | Change of entropy | |
DTGmean | Average burning speed | Weight loss of biomass | |
E | Activation energy | Calculated rates of weight loss | |
FCar * | Fixed carbon as received basis | Weight loss of coal | |
Gibbs Free Energy | Experimental rates of weight loss | ||
h | Planck constant | ΔTG | Total weight loss |
Har | Hydrogen element as received basis | Tm | Maximum temperature |
change of enthalpy | Var | Volatile as received basis | |
kB | Boltzmann constant | α | Conversion rate |
Mar | Moisture as received basis | β | Steady rate of temperature rise |
Nar | Nitrogen element as received basis | Contents of biomass | |
Oar | Oxygen element as received basis | Contents of coal | |
PM | Pig manure |
References
- Zhang, H.; Liu, W.; Cao, J.; Wu, K.; Luo, S.; Fan, W. Progress and Prospect of Research on the Reaction Mechanism of Oxyfuel Combustion of Pulverized Coal. Clean Coal Technol. 2025, 31, 80–92. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, Z.; Hu, X.; You, Z.; Wang, Z.; Zhou, J.; Cen, K. Oxy-fuel combustion characteristics and kinetic parameters of lignite coal from thermo-gravimetric data. Thermochim. Acta 2013, 553, 54–59. [Google Scholar] [CrossRef]
- Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R.B.; Bland, A.E.; Wright, I. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. 2008, 20, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Miroshnichenko, D.; Zhylina, M.; Shmeltser, E. Modern Use of Biochar in Various Technologies and Industries. A Review. Chem. Chem. Technol. 2024, 18, 232–243. [Google Scholar] [CrossRef]
- Ma, X.; Ning, H.; Zang, Z.; Ma, P.; Hu, X.; Xing, X. Co-combustion characteristics and kinetic analyses of coal slime and moso bamboo blends under oxy-fuel conditions. Biomass Convers. Biorefinery 2025, 1–19. [Google Scholar] [CrossRef]
- Dorokhov, V.; Kuznetsov, G.; Paushkina, K.; Strizhak, P. Kinetics of thermal oxidation of coals, industrial wastes, and their mixtures. Powder Technol. 2025, 454, 120712. [Google Scholar] [CrossRef]
- Dai, G.; Li, X.; Lin, H.; Zhang, Y.; Zhang, J.; Tan, H.; Wang, X. Experimental study on the soot emission characteristics of biomass during pressurized pyrolysis. Clean Coal Technol. 2024, 1–8. (In Chinese) [Google Scholar]
- He, M.; Yang, J.; Guo, H.; Chen, H.; Shang, T. Comparison of thermal efficiency and content of harmful gas released between honeycomb cattle manure and several conventional fuels. China Cattle Sci. 2024, 50, 25–28. (In Chinese) [Google Scholar]
- Xu, D.; Wen, L.; Xue, L.; Jiang, Z. Analysis of direct combustion characteristics of pig manure based on thermogravimetry. Trans. Chin. Soc. Agric. Eng. 2014, 30, 162–168. [Google Scholar] [CrossRef]
- Shen, X.; Huang, G.; Yang, Z.; Han, L. Compositional characteristics and energy potential of Chinese animal manure by type and as a whole. Appl. Energy 2015, 160, 108–119. [Google Scholar] [CrossRef]
- Ni, Z.; Song, Z.; Bi, H.; Jiang, C.; Sun, H.; Qiu, Z.; He, L.; Lin, Q. The effect of cellulose on the combustion characteristics of coal slime: TG-FTIR, principal component analysis, and 2D-COS. Fuel 2023, 333, 126310. [Google Scholar] [CrossRef]
- Fahmy, T.Y.A.; Fahmy, Y.; Mobarak, F.; El-Sakhawy, M.; Abou-Zeid, R.E. Biomass pyrolysis: Past, present, and future. Environ. Dev. Sustain. 2020, 22, 17–32. [Google Scholar] [CrossRef]
- Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D.L. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 2021, 139, 110691. [Google Scholar] [CrossRef]
- Pstrowska, K.; Łużny, R.; Fałtynowicz, H.; Jaroszewska, K.; Postawa, K.; Pyshyev, S.; Witek-Krowiak, A. Unlocking Sustainability: A Comprehensive Review of Up-Recycling Biomass Waste into Biochar for Environmental Solutions. Chem. Chem. Technol. 2024, 18, 211–231. [Google Scholar] [CrossRef]
- Prayoga, M.Z.E.; Putra, H.P.; Adelia, N.; Luktyansyah, I.M.; Ifanda, I.; Prismantoko, A.; Darmawan, A.; Hartono, J.; Wirawan, S.S.; Aziz, M.; et al. Co-combustion performance of oil palm biomass with coal: Thermodynamics and kinetics analyses. J. Therm. Anal. Calorim. 2024, 149, 2873–2891. [Google Scholar] [CrossRef]
- Luo, Y.; Li, J.; Guo, Z. Kinetic characterization of coupled low calorific value coal/biomass combustion based on thermogravimetric analysis. Coal Technol. 2025, 44, 228–233. (In Chinese) [Google Scholar] [CrossRef]
- Qin, S.; Chen, C.; He, L.; Li, B.; Peng, G.; Ma, X. Co-combustion characteristics, interaction and kinetic analysis of multiple coal and eucalyptus. Ind. Crops Prod. 2024, 222, 119980. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, M.; He, H.; Song, F.; Chen, X.; Guo, F.; Chen, J.; Lu, S.; Sang, S.; Wu, J. Co-pyrolysis and co-combustion characteristics of low-rank coal and waste biomass: Insights into interactions, kinetics and synergistic effects. J. Energy Inst. 2025, 118, 101918. [Google Scholar] [CrossRef]
- Sahu, R.K.; Gangil, S. Thermo-kinetic analysis of pyrolysis of chickpea stalk using thermogravimetric analysis and artificial neural network. Biomass Bioenergy 2025, 198, 107860. [Google Scholar] [CrossRef]
- Liu, L.; Liang, X.; Li, J.; Wang, D.; Luo, H.; Ren, S. Characterization and kinetic analysis of combustion of cow manure mixed with corn stover. Acta Energiae Solaris Sin. 2024, 45, 635–642. (In Chinese) [Google Scholar] [CrossRef]
- Zuo, X.; Wang, G.; Wang, J.; Xue, Q. Study of Mixed Combustion Behavior of Pulverized Municipal Solid Waste and Anthracite Coal. Processes 2024, 12, 2853. [Google Scholar] [CrossRef]
- Guo, F.; Zhong, Z. Optimization of the co-combustion of coal and composite biomass pellets. J. Clean. Prod. 2018, 185, 399–407. [Google Scholar] [CrossRef]
- GB/T 28731-2012; Proximate analysis of solid biofuels. State Administration of Market Supervision and Administration (SACMA), Standardization Administration of China: Beijing, China, 2012. (In Chinese)
- GB/T 28734-2012; Determination of Carbon and Hydrogen in Solid Biofuels. Administration of the People’s Republic of China for Quality Supervision and Inspection and Quarantine, Standardization Administration of China: Beijing, China, 2012. (In Chinese)
- GB/T 212-2008; Proximate Analysis of Coal. State General Administration of the People’s Republic of China for Quality Supervision and Inspection and Quarantine, Standardization Administration of China: Beijing, China, 2008. (In Chinese)
- GB/T 30733-2014; Determination of Total Carbon, Hydrogen and Nitrogen Content in Coal―Instrumental Method. Testing and Research Branch of the General Research Institute of Coal Science (GRIC),Shenhua Trading Group Limited, Changsha Kaiyuan Instrument Co.: Beijing, China, 2014. (In Chinese)
- GB/T 30727-2014; Determination of Calorific Value in Solid Biofuels. Administration of the People’s Republic of China for Quality Supervision and Inspection and Quarantine, Standardization Administration of China: Beijing, China, 2014. (In Chinese)
- GB/T213-2008; Determination of Calorific Value of Coal. Administration of the People’s Republic of China for Quality Supervision and Inspection and Quarantine, Standardization Administration of China: Beijing, China, 2008. (In Chinese)
- Xie, C.; Liu, J.; Zhang, X.; Xie, W.; Sun, J.; Chang, K.; Kuo, J.; Xie, W.; Liu, C.; Sun, S.; et al. Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks. Appl. Energy 2018, 212, 786–795. [Google Scholar] [CrossRef]
- Liao, X.; Singh, S.; Yang, H.; Wu, C.; Zhang, S. A thermogravimetric assessment of the tri-combustion process for coal, biomass and polyethylene. Fuel 2021, 287, 119355. [Google Scholar] [CrossRef]
- Jia, G. Combustion Characteristics and Kinetic Analysis of Biomass Pellet Fuel Using Thermogravimetric Analysis. Processes 2021, 9, 868. [Google Scholar] [CrossRef]
- Xie, W.; Wen, S.; Liu, J.; Xie, W.; Kuo, J.; Lu, X.; Sun, S.; Chang, K.; Buyukada, M.; Evrendilek, F. Comparative thermogravimetric analyses of co-combustion of textile dyeing sludge and sugarcane bagasse in carbon dioxide/oxygen and nitrogen/oxygen atmospheres: Thermal conversion characteristics, kinetics, and thermodynamics. Bioresour. Technol. 2018, 255, 88–95. [Google Scholar] [CrossRef]
- Liu, H.P.; Liang, W.X.; Qin, H.; Wang, Q. Synergy in co-combustion of oil shale semi-coke with torrefied cornstalk. Appl. Therm. Eng. 2016, 109, 653–662. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, G.; Reinmöller, M.; Meyer, B. Effect of inherent mineral matter on the co-pyrolysis of highly reactive brown coal and wheat straw. Fuel 2019, 239, 1194–1203. [Google Scholar] [CrossRef]
- Dong, L.; Huang, X.; Ren, J.; Deng, L.; Da, Y. Thermogravimetric Assessment and Differential Thermal Analysis of Blended Fuels of Coal, Biomass and Oil Sludge. Appl. Sci. 2023, 13, 11058. [Google Scholar] [CrossRef]
- Maia, A.A.D.; de Morais, L.C. Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresour. Technol. 2016, 204, 157–163. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Wang, J.; Cui, S.; Li, Z.; Meng, W. Research on coal combustion catalysts for cement kiln via comprehensive evaluation method based on combustion characteristics. Case Stud. Therm. Eng. 2023, 50, 103440. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J.P. Kinetic Parameters from Thermogravimetric Data. Nature 1964, 201, 68–69. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Wang, C.a.; Che, D. Experimental study on interaction and kinetic characteristics during combustion of blended coals. J. Therm. Anal. Calorim. 2012, 107, 935–942. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Tariq, R.; Hameed, Z.; Ali, I.; Naqvi, M.; Chen, W.H.; Ceylan, S.; Rashid, H.; Ahmad, J.; Taqvi, S.A.; et al. Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method. Renew. Energy 2019, 131, 854–860. [Google Scholar] [CrossRef]
- Ro, K.S.; Libra, J.A.; Bae, S.; Berge, N.D.; Flora, J.R.V.; Pecenka, R. Combustion Behavior of Animal-Manure-Based Hydrochar and Pyrochar. ACS Sustain. Chem. Eng. 2019, 7, 470–478. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mohanty, K. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour. Technol. 2018, 251, 63–74. [Google Scholar] [CrossRef]
- Dwivedi, K.K.; Prabhansu, S.; Kumar, K.M.; Kumar, P.A.; Chatterjee, P.K. A comparative study on pyrolysis characteristics of bituminous coal and low-rank coal using thermogravimetric analysis (TGA). Int. J. Coal Prep. Util. 2022, 42, 1–11. [Google Scholar] [CrossRef]
- Sharara, M.A.; Sadaka, S.S.; Costello, T.A.; VanDevender, K.; Carrier, J.; Popp, M.; Thoma, G.; Djioleu, A. Combustion kinetics of swine manure and algal solids. J. Therm. Anal. Calorim. 2016, 123, 687–696. [Google Scholar] [CrossRef]
- Fernandez-Lopez, M.; Pedrosa-Castro, G.J.; Valverde, J.L.; Sanchez-Silva, L. Kinetic analysis of manure pyrolysis and combustion processes. Waste Manag. 2016, 58, 230–240. [Google Scholar] [CrossRef]
- Si, F.; Zhang, H.; Feng, X.; Xu, Y.; Zhang, L.; Zhao, L.; Li, L. Thermodynamics and synergistic effects on the co-combustion of coal and biomass blends. J. Therm. Anal. Calorim. 2024, 149, 7749–7761. [Google Scholar] [CrossRef]
- Mallick, D.; Mahanta, P.; Moholkar, V.S. Synergistic Effects in Gasification of Coal/Biomass Blends: Analysis and Review. In Coal and Biomass Gasification: Recent Advances and Future Challenges; De, S., Agarwal, A.K., Moholkar, V.S., Thallada, B., Eds.; Springer: Singapore, 2018; pp. 473–497. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, H.; Yang, T.; Zhu, Y.; Li, R. Combustion Characterization and Kinetic Analysis of Mixed Sludge and Lignite Combustion. ACS Omega 2024, 9, 6912–6923. [Google Scholar] [CrossRef] [PubMed]
Sample | Proximate Analysis (wt. %) | Ultimate Analysis (wt. %) | (J/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FCad * | Cad | Had | Nad | Oad * | St, ad | |||
Biomass | 15.68 | 16.74 | 56.7 | 10.9 | 32.86 | 2.99 | 1.48 | 29.73 | 0.52 | 15.93 | |
Pig Manure | 1.36 | 3.5 | 77.2 | 18.0 | 48.8 | 4.54 | 0.28 | 41.45 | 0.07 | 9.81 | |
Coal | 4.30 | 19.12 | 29.58 | 47.00 | 61.08 | 3.62 | 0.80 | 10.31 | 0.77 | 20.28 |
Sample | Ash Composition/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Fe2O3 | Al2O3 | CaO | MgO | SiO2 | TiO2 | SO3 | K2O | Na2O | MnO2 | |
Biomass | 3.40 | 8.44 | 31.14 | 5.71 | 26.11 | 0.40 | 2.26 | 12.17 | 0.79 | 0.124 |
Pig Manure | 2.77 | 8.67 | 24.49 | 7.16 | 27.80 | 0.27 | 4.04 | 2.49 | 0.76 | 0.536 |
Coal | 6.06 | 18.97 | 8.95 | 0.90 | 57.44 | 1.09 | 1.40 | 1.82 | 0.63 | 0.127 |
0.05 PM + 0.95 C | 6.57 | 17.78 | 9.69 | 1.24 | 51.12 | 1.12 | 5.76 | 1.66 | 0.62 | 0.133 |
0.1 PM + 0.9 C | 5.88 | 21.62 | 8.46 | 1.40 | 50.49 | 1.06 | 4.43 | 1.71 | 0.64 | 0.128 |
0.15 PM + 0.85 C | 5.71 | 19.85 | 10.80 | 1.73 | 50.49 | 1.08 | 4.69 | 1.86 | 0.66 | 0.173 |
0.2 PM + 0.8 C | 4.68 | 22.33 | 12.16 | 1.67 | 45.94 | 1.32 | 6.15 | 1.56 | 0.57 | 0.175 |
0.3 PM + 0.7 C | 7.09 | 19.95 | 12.90 | 2.41 | 46.00 | 0.93 | 4.80 | 1.93 | 0.71 | 0.222 |
0.15 B + 0.85 C | 5.37 | 19.01 | 13.39 | 1.07 | 49.66 | 1.26 | 6.86 | 1.98 | 0.70 | 0.159 |
0.2 B + 0.8 C | 4.51 | 22.44 | 7.96 | 1.05 | 50.22 | 1.15 | 5.82 | 1.86 | 0.57 | 0.088 |
0.025 B + 0.125 PM + 0.85 C | 5.71 | 25.35 | 9.20 | 1.34 | 50.45 | 0.71 | 4.75 | 1.44 | 0.54 | 0.125 |
0.033 B + 0.167 PM + 0.8 C | 6.91 | 18.67 | 10.68 | 1.68 | 49.48 | 1.09 | 5.61 | 1.84 | 0.65 | 0.168 |
0.056 B + 0.094 PM + 0.85 C | 5.03 | 31.22 | 5.49 | 0.94 | 48.30 | 2.51 | 3.06 | 0.95 | 0.35 | 0.116 |
0.075 B + 0.125 PM + 0.8 C | 6.23 | 20.13 | 11.42 | 1.91 | 47.92 | 1.11 | 5.73 | 1.84 | 0.65 | 0.167 |
Sample | Ti (K) | Tb (K) | Dw (%·s−1·K−2) | Ci (%·s−1·K−2) | S (%·s−1·K−2) |
---|---|---|---|---|---|
B | 561 | 636 | 5.22 × 10−8 | 5.92 × 10−8 | 1.21 × 10−13 |
PM | 539 | 664 | 2.00 × 10−8 | 2.46 × 10−8 | 3.17 × 10−14 |
C | 699 | 833 | 1.55 × 10−8 | 1.85 × 10−8 | 2.40 × 10−14 |
0.05PM + 0.95C | 696 | 803 | 2.04 × 10−8 | 2.36 × 10−8 | 3.27 × 10−14 |
0.1PM + 0.9C | 692 | 810 | 1.72 × 10−8 | 2.02 × 10−8 | 2.61 × 10−14 |
0.15PM + 0.85C | 689 | 809 | 1.80 × 10−8 | 2.11 × 10−8 | 2.82 × 10−14 |
0.2PM + 0.8C | 687 | 812 | 1.70 × 10−8 | 2.00 × 10−8 | 2.63 × 10−14 |
0.3PM + 0.7C | 675 | 809 | 1.63 × 10−8 | 1.95 × 10−8 | 2.53 × 10−14 |
0.15B + 0.85C | 691 | 840 | 1.44 × 10−8 | 1.75 × 10−8 | 2.27 × 10−14 |
0.2B + 0.8C | 687 | 810 | 1.87 × 10−8 | 2.20 × 10−8 | 3.08 × 10−14 |
0.025B + 0.125PM + 0.85C | 688 | 821 | 1.58 × 10−8 | 1.88 × 10−8 | 2.46 × 10−14 |
0.033B + 0.167PM + 0.8C | 689 | 802 | 1.90 × 10−8 | 2.21 × 10−8 | 2.98 × 10−14 |
0.056B + 0.094PM + 0.85C | 690 | 830 | 1.37 × 10−8 | 1.64 × 10−8 | 2.01 × 10−14 |
0.075B + 0.125PM + 0.8C | 690 | 803 | 1.88 × 10−8 | 2.19 × 10−8 | 3.02 × 10−14 |
Sample | Rate (K/s) | α | E (KJ mol−1) | A (mol−1) | R2 | f(α) |
---|---|---|---|---|---|---|
C | 0.17 | 0.2~0.8 | 79.07 | 29,549.00 | 0.997 | −ln(1 − α) |
0.05 PM + 0.95 C | 0.17 | 0.2~0.8 | 85.66 | 129,453.30 | 0.989 | −ln(1 − α) |
0.1 PM + 0.9 C | 0.17 | 0.2~0.8 | 75.82 | 22,749.02 | 0.990 | −ln(1 − α) |
0.15 PM + 0.85 C | 0.17 | 0.2~0.8 | 64.98 | 3633.13 | 0.974 | −ln(1 − α) |
0.2 PM + 0.8 C | 0.17 | 0.2~0.8 | 64.75 | 3445.02 | 0.975 | −ln(1 − α) |
0.3 PM + 0.7 C | 0.17 | 0.2~0.8 | 44.33 | 98.23 | 0.938 | −ln(1 − α) |
PM | 0.17 | 0.2~0.8 | 30.86 | 32.06 | 0.910 | −ln(1 − α) |
B | 0.17 | 0.2~0.8 | 35.27 | 85.54 | 0.840 | −ln(1 − α) |
0.15 B + 0.85 C | 0.17 | 0.2~0.8 | 70.38 | 6783.20 | 0.996 | −ln(1 − α) |
0.2 B + 0.8 C | 0.17 | 0.2~0.8 | 78.40 | 35,843.80 | 0.993 | −ln(1 − α) |
0.025 B + 0.125 PM + 0.85 C | 0.17 | 0.2~0.8 | 58.07 | 991.88 | 0.975 | −ln(1 − α) |
0.033 B + 0.167 PM + 0.8 C | 0.17 | 0.2~0.8 | 75.10 | 22,450.52 | 0.983 | −ln(1 − α) |
0.056 B + 0.094 PM + 0.85 C | 0.17 | 0.2~0.8 | 61.32 | 1561.06 | 0.981 | −ln(1 − α) |
0.075 B + 0.125 PM + 0.8 C | 0.17 | 0.2~0.8 | 69.93 | 9022.97 | 0.979 | −ln(1 − α) |
Sample | Rate (K/s) | ΔH | ΔS | ΔG |
---|---|---|---|---|
C | 0.17 | 72.81 | −0.18 | 204.75 |
0.05 PM + 0.95 C | 0.17 | 79.55 | −0.16 | 199.28 |
0.1 PM + 0.9 C | 0.17 | 69.65 | −0.18 | 201.38 |
0.15 PM + 0.85 C | 0.17 | 58.81 | −0.19 | 201.84 |
0.2 PM + 0.8 C | 0.17 | 58.42 | −0.19 | 205.63 |
0.3 PM + 0.7 C | 0.17 | 38.18 | −0.22 | 202.97 |
PM | 0.17 | 26.14 | −0.23 | 156.58 |
B | 0.17 | 30.35 | −0.22 | 161.77 |
0.15 B + 0.85 C | 0.17 | 63.99 | −0.19 | 209.23 |
0.2 B + 0.8 C | 0.17 | 72.13 | −0.17 | 203.17 |
0.025 B + 0.125 PM + 0.85 C | 0.17 | 51.70 | −0.20 | 207.77 |
0.033 B + 0.167 PM + 0.8 C | 10 | 68.83 | −0.18 | 202.80 |
0.056 B + 0.094 PM + 0.85 C | 10 | 54.91 | −0.20 | 209.13 |
0.075 B + 0.125 PM + 0.8 C | 10 | 63.66 | −0.19 | 203.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, C.; Zhang, Y.; Liu, G.; Wang, D.; Zhang, J.; Yang, K.; Wen, X.; Sun, Q.; Dou, X.; Zhang, Y.; et al. Thermogravimetric Analysis of Blended Fuel of Pig Manure, Straw, and Coal. Energies 2025, 18, 3447. https://doi.org/10.3390/en18133447
Shen C, Zhang Y, Liu G, Wang D, Zhang J, Yang K, Wen X, Sun Q, Dou X, Zhang Y, et al. Thermogravimetric Analysis of Blended Fuel of Pig Manure, Straw, and Coal. Energies. 2025; 18(13):3447. https://doi.org/10.3390/en18133447
Chicago/Turabian StyleShen, Chengzhe, Yan Zhang, Gengsheng Liu, Dongxu Wang, Jinbao Zhang, Kai Yang, Xintong Wen, Quan Sun, Xuejun Dou, Yong Zhang, and et al. 2025. "Thermogravimetric Analysis of Blended Fuel of Pig Manure, Straw, and Coal" Energies 18, no. 13: 3447. https://doi.org/10.3390/en18133447
APA StyleShen, C., Zhang, Y., Liu, G., Wang, D., Zhang, J., Yang, K., Wen, X., Sun, Q., Dou, X., Zhang, Y., Mao, J., & Deng, L. (2025). Thermogravimetric Analysis of Blended Fuel of Pig Manure, Straw, and Coal. Energies, 18(13), 3447. https://doi.org/10.3390/en18133447