Advancements in Heat Transfer and Fluid Mechanics (Fundamentals and Applications)
1. Introduction
2. Advancements in Heat Transfer and Fluid Flow
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Liu, S.; Hrnjak, P.S. R290 charge reduction in a residential heat pump system. In Proceedings of the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 14–17 July 2014. [Google Scholar]
- Kandlikar, S.G.; Grande, W.J. Evolution of Microchannel Flow Passages—Thermohydraulic Performance and Fabrication Technology. Heat Transf. Eng. 2003, 24, 3–17. [Google Scholar] [CrossRef]
- Park, C.Y.; Hrnjak, P. Experimental and numerical study on microchannel and round-tube condensers in a R410A residential air-conditioning system. Int. J. Refrig. 2008, 31, 822–831. [Google Scholar] [CrossRef]
- Del Col, D.; Bortolin, S.; Cavallini, A. Design and testing of a microchannel heat exchanger working as an evaporator in a heat pump. In Proceedings of the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 12–15 July 2010. [Google Scholar]
- Kaltra. Microchannel Coils for Air-Source Heat Pumps. Kaltra Insights. 18 January 2021. Available online: https://www.kaltra.com/single-post/2021/01/18/air-source-reversible-heat-pump (accessed on 5 April 2024).
- Li, H.; Hrnjak, P. Improvement of condenser performance by phase separation confirmed experimentally and by modeling. Int. J. Refrig. 2017, 78, 60–69. [Google Scholar] [CrossRef]
- García-Cascales, J.R.; Vera-García, F.; Corberán-Salvador, J.M. Assessment of boiling and condensation heat transfer correlations in the modeling of plate heat exchangers. Int. J. Refrig. 2010, 33, 1029–1041. [Google Scholar] [CrossRef]
- Zhang, C.; Tang, Z.; Zhang, Z.; Shi, J.; Chen, J.; Zhang, M. Impact of airside fouling on microchannel heat exchangers. Appl. Therm. Eng. 2018, 128, 42–50. [Google Scholar] [CrossRef]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena, 2nd ed.; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Hunt, J.C.R.; Eames, I.; Westerweel, J. The Mechanics of inhomogeneous turbulence and interfacial layers. J. Fluid Mech. 2006, 554, 499–519. [Google Scholar] [CrossRef]
- Bejan, A. Convection Heat Transfer, 4th ed.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Tritton, D.J. Physical Fluid Dynamics; Oxford University Press: Cambridge, UK, 1988. [Google Scholar]
- Tang, Y.; Wang, Y.; Long, W.; Xiao, G.; Wang, Y.; Li, W. Analysis and enhancement of methanol reformer performance for online reforming based on waste heat recovery of methanol-diesel dual direct injection engine. Energy 2023, 283, 129098. [Google Scholar] [CrossRef]
- Li, N.; Cui, X.; Zhu, J.; Zhou, M.; Liso, V.; Cinti, G.; Sahlin, S.L.; Araya, S.S. A review of reformed methanol-high temperature proton exchange membrane fuel cell systems. Renew. Sustain. Energy Rev. 2023, 182, 113395. [Google Scholar] [CrossRef]
- Yu, D.; Kim, B.; Ji, H.; Yu, S. Sensitivity Analysis of High-Pressure Methanol—Steam Reformer Using the Condensation Enthalpy of Water Vapor. Energies 2022, 15, 3832. [Google Scholar] [CrossRef]
- Wang, G.; Wang, F.; Chen, B. Performance Study on Methanol Steam Reforming Rib Micro-Reactor with Waste Heat Recovery. Energies 2020, 13, 1564. [Google Scholar] [CrossRef]
- Shanmugasundaram, S.; Thangaraja, J.; Rajkumar, S.; Ashok, S.D.; Sivaramakrishna, A.; Shamim, T. A review on green hydrogen production pathways and optimization techniques. Process Saf. Environ. Prot. 2025, 197, 107070. [Google Scholar] [CrossRef]
- Richardson, J.T. A gas fired heat-pipe reformer for small-scale hydrogen production. Stud. Surf. Sci. Catal. 1997, 107, 567–571. [Google Scholar] [CrossRef]
- Malik, F.S.; Sahibzada, S.; Nasir, S.; Lodhi, S.K. Machine Learning-Enhanced Turbulence Prediction and Flow Optimization for Advanced Aerodynamic Design in High-Speed Regimes. Eur. J. Sci. Innov. Technol. 2024, 4, 39–46. Available online: https://ejsit-journal.com/index.php/ejsit/article/view/572/515 (accessed on 1 April 2025).
- Cant, R.S.; Ahmed, U.; Fang, J.; Chakarborty, N.; Nivarti, G.; Moulinec, C.; Emerson, D.R. An unstructured adaptive mesh refinement approach for computational fluid dynamics of reacting flows. J. Comput. Phys. 2022, 468, 111480. [Google Scholar] [CrossRef]
- Brown, G.J.; Fletcher, D.F.; Leggoe, J.W.; Whyte, D.S. Application of hybrid RANS-LES models to the prediction of flow behavior in an industrial crystallizer. Appl. Math. Model. 2020, 77, 1797–1819. [Google Scholar] [CrossRef]
- Liu, X.; Xie, Z.; Yang, J.; Meng, H. Accelerating phase-change heat conduction simulations on GPUs. Case Stud. Therm. Eng. 2022, 39, 102410. [Google Scholar] [CrossRef]
- Yu, Y.; Park, H.; Novak, A.; Shemon, E. High fidelity Multiphysics tightly coupled model for a lead cooled fast reactor concept and application to statistical calculation of hot channel factors. Nucl. Eng. Des. 2025, 435, 113915. [Google Scholar] [CrossRef]
- Mason, T.E.; Abernathy, D.; Anderson, I.; Ankner, J.; Egami, T.; Ehlers, G.; Ekkebus, A.; Granroth, G.; Hagen, M.; Herwig, K.; et al. The Spallation Neutron Source in Oak Ridge: A powerful tool for materials research. Phys. B Condens. Matter 2006, 385–386, 955–960. [Google Scholar] [CrossRef]
- Chandler, D.; Bryan, C.D. High Flux Isotope Reactor (HFIR). Encycl. Nucl. Energy 2021, 64–73. [Google Scholar] [CrossRef]
- Bilheux, H.Z.; Bilheux, J.C.; Bailey, W.B.; Keener, W.S.; Davis, L.E.; Herwig, K.W.; Cekanova, M. Neutron imaging at the Oak Ridge National Laboratory: Application to biological research. In Proceedings of the 2014 Biomedical Sciences and Engineering Conference, Oak Ridge, TN, USA, 6–8 May 2014. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elatar, A. Advancements in Heat Transfer and Fluid Mechanics (Fundamentals and Applications). Energies 2025, 18, 3384. https://doi.org/10.3390/en18133384
Elatar A. Advancements in Heat Transfer and Fluid Mechanics (Fundamentals and Applications). Energies. 2025; 18(13):3384. https://doi.org/10.3390/en18133384
Chicago/Turabian StyleElatar, Ahmed. 2025. "Advancements in Heat Transfer and Fluid Mechanics (Fundamentals and Applications)" Energies 18, no. 13: 3384. https://doi.org/10.3390/en18133384
APA StyleElatar, A. (2025). Advancements in Heat Transfer and Fluid Mechanics (Fundamentals and Applications). Energies, 18(13), 3384. https://doi.org/10.3390/en18133384