Performance Assessment of CCGT Integrated with PTSA-Based CO2 Capture: Effect of Sorbent Type and Operating Conditions
Abstract
1. Introduction
2. Methodology
2.1. Model
- Mass balance
- Energy balance during the adsorption
- Temperature changes during the adsorption
- Flue gas pressure loss
- Energy balance during the desorption
- Heating medium pressure loss
- Energy balance during the sorbent cooling
- Cooling medium pressure loss
2.2. Sorbent
2.3. Conditions of Simulation
3. Results and Discussion
3.1. Analysis of the Results Depending on the Volume of Exhaust Gas Directed to the PTSA Unit
3.2. Analysis of the Operation of the PTSA Unit as a Function of Adsorption and Desorption Pressure
3.3. Model Validation and Results Comparison with the Literature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Glossary
Symbols | |
Mass flow [kg/s] | |
p | Pressure [bar] |
t | Temperature [°C] |
h | Enthalpy [J/kg] |
Q | Sorption heat [kJ/kgCO2] |
Heat transfer [W] | |
a | Sorption capacity [kg/kg] |
X | Mass share of the exhaust gas components [kg/kg] |
Temperature drop [°C] | |
Pressure drop [bar] | |
Power plant efficiency [-] | |
P | Power [W] |
Subscripts | |
1 | Exhaust gas |
2 | Clear carbon dioxide |
3 | Exhaust gas without CO2 |
4 | Sorbent regeneration steam inlet |
5 | Sorbent regeneration steam outlet |
6 | PTSA cooling water inlet |
7 | PTSA cooling water outlet |
8 | Sorbent after desorption |
9 | Cooled sorbent after desorption |
10 | Sorbent before desorption |
a | Adsorption |
d | Desorption |
trans | Heat transferred to the sorbent during adsorption |
sorb | Sorbent |
tr1 | Heating the sorbent during desorption |
tr2 | Heating the CO2 during desorption |
sp | Exhaust gas |
g | Sorbent regeneration steam |
ch | PTSA cooling water |
el,gross | Total electricity |
fuel | Chemical power |
el,own cons. | Electricity consumption of auxiliary equipment |
References
- Crippa, M.; Guizzardi, D.; Banja, M.; Solazzo, E.; Muntean, M.; Schaaf, E.; Pagani, F.; Monforti-Ferrario, F. CO2 Emissions of All World Countries; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- International Energy Agency. How much CO2 does Poland Emit? Available online: https://www.iea.org/countries/poland/emissions (accessed on 4 June 2025).
- European Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 4 June 2025).
- Paris Agreement. Available online: https://www.un.org/en/climatechange/paris-agreement (accessed on 4 June 2025).
- Jain, A.; Yamujala, S.; Gaur, A.; Das, P.; Bhakar, R.; Mathur, J. Power sector decarbonization planning considering renewable resource variability and system operational constraints. Appl. Energy 2023, 331, 120404. [Google Scholar] [CrossRef]
- BP. BP Energy Outlook 2023; BP: London, UK, 2023. [Google Scholar]
- Papadis, E.; Tsatsaronis, G. Challenges in the decarbonization of the energy sector. Energy 2020, 205, 118025. [Google Scholar] [CrossRef]
- Garcia, J.A.; Villen-Guzman, M.; Rodriguez-Maroto, J.M.; Paz-Garcia, J.M. Technical analysis of CO2 capture pathways and technologies. J. Environ. Chem. Eng. 2022, 10, 108470. [Google Scholar] [CrossRef]
- McLaughlin, H.; Littlefield, A.A.; Menefee, M.; Kinzer, A.; Hull, T.; Sovacool, B.K.; Bazilian, M.D.; Kim, J.; Griffiths, S. Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world. Renew. Sustain. Energy Rev. 2023, 177, 113215. [Google Scholar] [CrossRef]
- Ben-Mansour, R.; Habib, M.A.; Bamidele, O.E.; Basha, M.; Qasem, N.A.A.; Peedikakkal, A.; Laoui, T.; Ali, M. Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations—A review. Appl. Energy 2016, 161, 225–255. [Google Scholar] [CrossRef]
- Hong, W.Y. A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Sci. Technol. 2022, 3, 100044. [Google Scholar] [CrossRef]
- Zhao, R.; Zhao, L.; Deng, S.; Song, C.; He, J.; Shao, Y.; Li, S. A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle. Energy 2017, 137, 495–509. [Google Scholar] [CrossRef]
- Akdag, A.S.; Durán, I.; Gullu, G.; Pevida, C. Performance of TSA and VSA post-combustion CO2capture processes with a biomass waste-based adsorbent. J. Environ. Chem. Eng. 2022, 10, 108759. [Google Scholar] [CrossRef]
- Rebello, C.M.; Nogueira, I.B.R. Optimizing CO2 capture in pressure swing adsorption units: A deep neural network approach with optimalit. Sep. Purif. Technol. 2024, 340, 126811. [Google Scholar] [CrossRef]
- Liao, Y.; Wright, A.; Li, J. Simulation and optimisation of vacuum (pressure) swing adsorption with simultaneous consideration of real vacuum pump data and bed fluidisation. Sep. Purif. Technol. 2025, 358, 130354. [Google Scholar] [CrossRef]
- Zhan, G.; Bai, L.; Wu, B.; Cao, F.; Duan, Y.; Chang, F.; Shang, D.; Bai, Y.; Li, Z.; Zhang, X.; et al. Dynamic process simulation and optimization of CO2 removal from confined space with pressure and temperature swing adsorption. Chem. Eng. J. 2021, 416, 129104. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Z.; Yin, Y.; Xu, H.; Wang, Y.; Yang, K.; Zhang, Z.; Wang, J.; He, X. Efficient capture and separation of CO2-Boosted carbon neutralization enabled by tailorable metal-organic frameworks: A review. EcoEnergy 2023, 1, 217–247. [Google Scholar] [CrossRef]
- Babu, P.E.; Tejes, P.K.S.; Naik, B.K. Parametric investigation on CO2 separation from flue gas through temperature swing adsorption process using different sorbent materials. Carbon Capture Sci. Technol. 2023, 7, 100103. [Google Scholar] [CrossRef]
- Henrotin, A.; Heymans, N.; Duprez, M.E.; Mouchaham, G.; Serre, C.; Wong, D.; Robinson, R.; Mulrooney, D.; Casaban, J.; De Weireld, G. Lab-scale pilot for CO2 capture vacuum pressure swing adsorption: MIL-160(Al) vs zeolite 13X. Carbon Capture Sci. Technol. 2024, 12, 100224. [Google Scholar] [CrossRef]
- Skjervold, V.T.; Mondino, G.; Riboldi, L.; Nord, L.O. Investigation of control strategies for adsorption-based CO2 capture from a thermal power plant under variable load operation. Energy 2023, 268, 126728. [Google Scholar] [CrossRef]
- Gupta, T.; Ghosh, R. Rotating bed adsorber system for carbon dioxide capture from flue gas. Int. J. Greenh. Gas Control 2015, 32, 172–188. [Google Scholar] [CrossRef]
- Song, C.; Kansha, Y.; Fu, Q.; Ishizuka, M.; Tsutsumi, A. Reducing energy consumption of advanced PTSA CO2 capture process-Experimental and numerical study. J. Taiwan Inst. Chem. Eng. 2016, 64, 69–78. [Google Scholar] [CrossRef]
- García-Mariaca, A.; Llera-Sastresa, E.; Moreno, F. CO2 capture feasibility by Temperature Swing Adsorption in heavy-duty engines from an energy perspective. Energy 2024, 292, 130511. [Google Scholar] [CrossRef]
- Si, H.; Hong, Q.; Chen, X.H.; Jiang, L. Pressure swing adsorption for oxygen production: Adsorbents, reactors, processes and perspective. Chem. Eng. J. 2025, 509, 161273. [Google Scholar] [CrossRef]
- Zafanelli, L.F.A.S.; Aly, E.; Henrique, A.; Rodrigues, A.E.; Silva, J.A.C. Dual-stage vacuum pressure swing adsorption for green hydrogen recovery from natural gas grids. Sep. Purif. Technol. 2025, 360, 130869. [Google Scholar] [CrossRef]
- Bharath, Y.; Rajendran, A. Evaluation of a tetramine-appended MOF for post combustion CO2 capture from natural gas combined cycle flue gas by steam-assisted temperature swi. Int. J. Greenh. Gas Control 2024, 131, 104016. [Google Scholar] [CrossRef]
- Zima, W.; Pawłowski, A.; Grądziel, S.; Cebula, A.; Piwowarczyk, M.; Kozak-Jagieła, E.; Majdak, M.; Mondino, G.; Skjervold, V.T. CO2 capture from flue gases in a temperature swing moving bed—Simulation results vs. the experiment. Energy 2025, 327, 136445. [Google Scholar] [CrossRef]
- Riboldi, L.; Bolland, O. Evaluating Pressure Swing Adsorption as a CO2 separation technique in coal-fired power plants. Int. J. Greenh. Gas Control 2015, 39, 1–16. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Y.; Shen, W.; Kong, X.; Li, P.; Yu, J.; Rodrigues, A.E. CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units. Ind. Eng. Chem. Res. 2013, 52, 7947–7955. [Google Scholar] [CrossRef]
- Zhao, R.; Liu, L.; Zhao, L.; Deng, S.; Li, S.; Zhang, Y.; Li, H. Techno-economic analysis of carbon capture from a coal-fired power plant integrating solar-assisted pressure-temperature swing adsorption (PTSA). J. Clean. Prod. 2019, 214, 440–451. [Google Scholar] [CrossRef]
- Wilkes, M.D.; Brown, S. Flexible CO2 capture for open-cycle gas turbines via vacuum-pressure swing adsorption: A model-based assessment. Energy 2022, 250, 123805. [Google Scholar] [CrossRef]
- Subramanian, N.; Madejski, P. Analysis of CO2 capture process from flue-gases in combined cycle gas turbine power plant using post-combustion capture technology. Energy 2023, 282, 128311. [Google Scholar] [CrossRef]
- Skorek, J.; Kalina, J. Gazowe Układy Kogeneracyjne; Wydawnictwa Naukowo-Techniczne: Warszawa, Poland, 2005. [Google Scholar]
- Wang, J.; Guo, Z.; Deng, S.; Zhao, R.; Chen, L.; Xue, J. A rapid multi-objective optimization of pressure and temperature swing adsorption for CO2 capture based on simplified equilibrium model. Sep. Purif. Technol. 2021, 279, 119663. [Google Scholar] [CrossRef]
- Sztekler, K. Modelowanie Procesu Ograniczania Emisji Dwutlenku Węgla ze Spalin w Układzie Bloku Energetycznego. Ph.D. Thesis, Politechnika Częstochowska, Częstochowa, Poland, 2012. [Google Scholar]
- Majchrzak-Kucęba, I. Badania Usuwania i Zagospodarowania Dwutlenku Węgla ze Spalin Kotłowych przy Użyciu Zeolitów. Ph.D. Thesis, Politechnika Częstochowska, Częstochowa, Poland, 2001. [Google Scholar]
- Merel, J.; Clausse, M.; Meunier, F. Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites. Ind. Eng. Chem. Res. 2008, 47, 209–215. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Kong, X.; Li, P.; Yu, J.; Rodrigues, A.E. Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant. Ind. Eng. Chem. Res. 2012, 51, 7355–7363. [Google Scholar] [CrossRef]
- Liu, Z.; Grande, C.A.; Li, P.; Yu, J.; Rodrigues, A.E. Multi-bed vacuum pressure swing adsorption for carbon dioxide capture from flue gas. Sep. Purif. Technol. 2011, 81, 307–317. [Google Scholar] [CrossRef]
Fuel composition (mass fraction) | C2H6: 0.0391 C3H8: 0.0062 CH4: 0.9339 CO2: 0.0061 N2: 0.0087 |
Fuel parameters | Pressure p = 36 bar Temperature t = 5 °C Mass flow rate m = 13.543 kg/s |
Gas turbine parameters | Mechanical efficiency ηm = 0.99 Isentropic efficiency ηs = 0.90 Pressure ratio of the compressor pratio = 18.3 |
Steam turbine parameters | High-pressure turbine inlet: p = 144 bar Medium-pressure turbine inlet: p = 20.7 bar Low-pressure turbine inlet: p = 3.8 bar |
Parameter | Unit | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7 | Case 8 | Case 9 | Case 10 | Case 11 | Case 12 | Case 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Adsorption pressure | Bar | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.35 |
Desorption pressure | Bar | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.03 | 0.06 | 0.09 | 0.12 | 0.15 | 0.15 |
Parameter | Flue Gas Before PTSA | Flue Gas After PTSA (CO2-Free) |
---|---|---|
Mass flow rate, kg/s | 587.94 | 551.14 |
Temperature, °C | 79.09 | 84.73 |
Pressure, bar | 1.07 | 0.907 |
Composition (mass fraction), - | CO2: 0.0626 H2O: 0.0505 N2: 0.7720 O2: 0.1149 | CO2: 0.0 H2O: 0.0538 N2: 0.8236 O2: 0.1226 |
Zeolite Adsorbent | Adsorption/ Desorption Pressure [bar] | Adsorption Temperature [°C] | CO2 Inlet Concentration [%mass] | CO2 Recovery [%] | Heat Demand [MJ/kgCO2] | Electrical Energy Demand [MJ/kgCO2] | Ref. |
---|---|---|---|---|---|---|---|
5A | 1/1 | 25 | 10 | 74–83 | 4.41–4.60 | - | [37] |
13X | 1.17/0.08 | 50 | 16 | 83.7 | - | 2.65 | [29] |
5A | 1/0.06 | n.d. | 15 | 79–91 | - | 2.64–3.12 | [38] |
5A | 1.5/0.15 | n.d. | 15 | 91.1 | 0.646 * | [39] | |
5A | 2.0/0.1 | n.d. | 15 | 90.1 | 0.561 * | [28] | |
F-9HA | 4.04/1.0 | 25 | 10 | 90 | - | 3.90 | [22] |
5A | 1/0.15 | 80 | 6.3 | 90 | 1.60 | 0.27 | This study |
5A | 4/0.15 | 80 | 6.3 | 90 | 0.24 | 4.35 | This study |
Na-A | 1.5/0.15 | 80 | 6.3 | 90 | 1.66 | 1.29 | This study |
Na-A | 4/0.15 | 80 | 6.3 | 90 | 0.32 | 4.31 | This study |
5A | 1.2/0.03 | 80 | 6.3 | 90 | 0.24 | 0.98 | This study |
5A | 1.2/0.15 | 80 | 6.3 | 90 | 0.75 | 0.68 | This study |
Na-A | 1.2/0.03 | 80 | 6.3 | 90 | 0.37 | 0.98 | This study |
Na-A | 1.2/0.12 | 80 | 6.3 | 90 | 1.45 | 0.71 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sztekler, K.; Mlonka-Mędrala, A.; Boruta, P.; Bujok, T.; Radomska, E.; Mika, Ł. Performance Assessment of CCGT Integrated with PTSA-Based CO2 Capture: Effect of Sorbent Type and Operating Conditions. Energies 2025, 18, 3289. https://doi.org/10.3390/en18133289
Sztekler K, Mlonka-Mędrala A, Boruta P, Bujok T, Radomska E, Mika Ł. Performance Assessment of CCGT Integrated with PTSA-Based CO2 Capture: Effect of Sorbent Type and Operating Conditions. Energies. 2025; 18(13):3289. https://doi.org/10.3390/en18133289
Chicago/Turabian StyleSztekler, Karol, Agata Mlonka-Mędrala, Piotr Boruta, Tomasz Bujok, Ewelina Radomska, and Łukasz Mika. 2025. "Performance Assessment of CCGT Integrated with PTSA-Based CO2 Capture: Effect of Sorbent Type and Operating Conditions" Energies 18, no. 13: 3289. https://doi.org/10.3390/en18133289
APA StyleSztekler, K., Mlonka-Mędrala, A., Boruta, P., Bujok, T., Radomska, E., & Mika, Ł. (2025). Performance Assessment of CCGT Integrated with PTSA-Based CO2 Capture: Effect of Sorbent Type and Operating Conditions. Energies, 18(13), 3289. https://doi.org/10.3390/en18133289