Energy Efficiency in the Building Sector in Burkina Faso: Literature Review, SWOT Analysis, and Recommendations
Abstract
:1. Introduction
2. Climate, Energy, and Architectural Trends in Buildings in Burkina Faso
2.1. Climate Context
2.2. Energy Context
2.3. Architectural Trends in Burkina Faso
3. Methodology
3.1. Data Collection
3.2. SWOT Analysis Approach
4. Results and Discussion
4.1. Current State of Energy Efficiency and Low-Energy Building Regulations in Burkina Faso
- The compromise approach proposes the calculation of the equivalent thermal transmittance and the equivalent opening-to-wall ratio of the building. However, in the case of electrical equipment, the calculation methods must be based on the calculation proposed in the previous approach. Table 8 provides an overview of the coefficients used in Burkina Faso.
- The performance-based approach consists of carrying out software-based energy simulations of the building and comparing the values obtained with a reference or model building while complying with the requirements laid down in the directive.
Climate Zone | U-Eq Max (W/m2 K) | WWR-Eq Max |
---|---|---|
1B | 1.72 | 13.7 |
2B | 1.72 | 13.7 |
- The law on the general regulation of the energy sector [56];
- The decree laying down energy efficiency standards and requirements for appliances and equipment and the procedures for implementing their energy efficiency [57];
- The decree setting energy consumption thresholds, the frequency of energy audits, the procedures for carrying out energy audits, and the approval of auditors [58];
- The law of 18 May 2006, on the town planning and construction code in Burkina Faso [55].
4.2. Technological and Architectural Proposals for Energy Efficiency in Buildings in Burkina Faso
4.2.1. Materials for Building Construction
4.2.2. Insulation Materials
- In an office building in Ouagadougou, simulations carried out with four types of insulation (straw, glass wool, hemp wool, and reeds) showed that hemp wool offered the best thermal performance, resulting in a 25.8% reduction in energy consumption for air conditioning [77].
- Another study, focused on using a straw–lime mixture in construction, showed a significant reduction in indoor temperatures and a noticeable improvement in thermal comfort for occupants [78].
4.2.3. Electrical Appliances
4.3. Social and Economic Implications of Energy Efficiency in Buildings
4.4. SWOT Analysis of the Energy Efficiency Sector in Burkina Faso
4.4.1. Strengths
4.4.2. Weaknesses
4.4.3. Opportunities
4.4.4. Threats
4.5. Recommendations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ANEREE | National Agency for Renewable Energy and Energy Efficiency (Burkina Faso) |
ECOWAS | Economic Community of West African States |
MEMC | Ministry of Energy, Mines and Quarries (Burkina Faso) |
nZEB | Nearly Zero-Energy Building |
NZEB | Net-Zero-Energy Building |
PANEE | Burkina Faso’s national energy efficiency action plan |
PANER | Burkina Faso’s national renewable energy action plan |
SONABEL | Burkina Faso National Electricity Company |
SWOT | Strengths, Weaknesses, Opportunities, and Threats |
UEMOA | West African Economic and Monetary Union |
SIE_UEMOA | Energy Information System of West African Economic and Monetary Union |
Nomenclature
Category | Symbol | |
Energy units | kWh | Kilowatt-hour: a unit of energy |
Energy units | GWh | Gigawatt-hour: one billion watt-hours |
Energy units | TWh | Terawatt-hour: one trillion watt-hours |
Power units | MWₚ | Megawatt-peak: peak power capacity |
Currency | XOF | CFA franc: the official currency of Burkina Faso |
Wall and opening parameters | WWR-eq max | Maximum equivalent ratio between total surface area of openings (doors + windows) and façade surface area |
Wall and opening parameters | WWR max | Maximum ratio between total surface area of openings and façade surface area |
Thermal flux and conductance | U | Steady-state heat flux rate (W/m2·K) |
Thermal flux and conductance | U_glazing | Thermal transmittance coefficient of glazing (W/m2·K) |
Thermal flux and conductance | U-eq max | Maximum steady-state equivalent heat flux |
Lighting parameters | η | Luminous efficacy (lumens per watt) |
Electrical and cooling quantities | P | Electrical power (W) |
Electrical and cooling quantities | Qc | Air conditioner cooling capacity |
Energy efficiency indices | COP | Coefficient of performance: ratio of cooling capacity to electrical power input |
Energy efficiency indices | EEI | Energy efficiency index: ratio of an appliance’s daily consumption (kWh/day) to its baseline consumption (kWh/day) |
Appendix A
Reference | Building Type | Study Area | Building Technologies | Electrical Appliances | Thermal Comfort | Energy Sources | Regulatory Standards | Social and Economic Issues |
---|---|---|---|---|---|---|---|---|
Zoure and Genovese (2022) [24] | Offices | Ouagadougou | ✓ | ✓ | ||||
Hema et al. [19] | Offices | Ouagadougou | ✓ | ✓ | ||||
Zoure et al. (2023) [77] | Offices | Ouagadougou | ✓ | ✓ | ||||
Zoure et al. (2023) [73] | Offices | Ouagadougou | ✓ | ✓ | ||||
Camara et al. (2020) [96] | Residential | Ouagadougou | ✓ | ✓ | ||||
Oumarou et al. (2020) [97] | Residential | Ouagadougou | ✓ | ✓ | ||||
Compaore et al. (2017) [66] | Residential | Ouagadougou | ✓ | ✓ | ✓ | |||
Neya et al. (2022) [67] | Residential | Ouagadougou | ✓ | ✓ | ||||
Oumarou et al. (2021) [98] | Residential | Ouagadougou | ✓ | ✓ | ||||
Tete et al. (2023) [13] | Residential | Ouagadougou | ✓ | ✓ | ||||
Tete et al. (2024) [82] | Residential | Ouagadougou | ✓ | ✓ | ✓ | |||
Salvalai et al. (2020) [99] | Residential | Ouagadougou | ✓ | ✓ | ||||
Ouedraogo et al. (2021) [74] | Ouagadougou | ✓ |
References
- Omrany, H.; Ghaffarianhoseini, A.; Raahemifar, K.; Tookey, J. Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 62, 1252–1269. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Stephenson, R.; Ashuri, B. Valuation of energy efficient certificates in buildings. Energy Build 2018, 158, 1226–1240. [Google Scholar] [CrossRef]
- IEA. Energy Efficiency 2022. 2022. Available online: https://www.iea.org/reports/energy-efficiency-2022 (accessed on 27 November 2023).
- Ouedraogo, N.S. Africa energy future: Alternative scenarios and their implications for sustainable development strategies. Energy Policy 2017, 106, 457–471. [Google Scholar] [CrossRef]
- UN-Habitat. UNEP-SBCI Symposium 25–26 November 2013 Paris Global Action towards Resource Efficiency and Climate Mitigation in the Building Sector Paris Global Action towards Resource Efficiency and Climate Mitigation in the Building Sector Promoting Energy Efficiency; UN-Habitat: Paris, France, 2013. [Google Scholar]
- OECD/IEA. Energy Efficiency 2018: Analysis and Outlooks to 2040; OECD/IEA: Paris, France, 2018; Available online: https://www.iea.org/reports/energy-efficiency-2018 (accessed on 6 December 2024).
- Opoku, R.; Edwin, I.A.; Agyarko, K.A. Energy efficiency and cost saving opportunities in public and commercial buildings in developing countries—The case of air-conditioners in Ghana. J. Clean. Prod. 2019, 230, 937–944. [Google Scholar] [CrossRef]
- Khojaste-Sarakhsi, M.; Ghodsypour, S.H.; Ghomi, S.M.T.F.; Dashtaki-Hesari, H. Energy efficiency of Iran buildings: A SWOT-ANP approach. Int. J. Energy Sect. Manag. 2019, 13, 726–746. [Google Scholar] [CrossRef]
- INSD. Tableau de Bord Démographique; INSD: Ouagadougou, Burkina Faso, 2022. [Google Scholar]
- Direction Générale des Etudes et des Statistiques Sectorielles. Annuaire Statistique 2023 du Ministere de l’Energie, des Mines et des Carrières; Direction Générale des Etudes et des Statistiques Sectorielles: Ouagadougou, Burkina Faso, 2024. [Google Scholar]
- Mohammed, B.U.; Wiysahnyuy, Y.S.; Ashraf, N.; Mempouo, B.; Mengata, G.M. Pathways for efficient transition into net zero energy buildings (nZEB) in Sub-Sahara Africa. Case study: Cameroon, Senegal, and Côte d’Ivoire. Energy Build 2023, 296, 11. [Google Scholar] [CrossRef]
- SIE-UEMOA. Burkina Faso Energy Consumption Data Collected by the UEMOA Energy Information System from 2010 to 2022. Available online: https://sie.uemoa.int/rapport/rapports/3 (accessed on 18 September 2024).
- Tete, K.H.S.; Soro, Y.M.; Sidibé, S.S.; Jones, R.V. Urban domestic electricity consumption in relation to households’ lifestyles and energy behaviours in Burkina Faso: Findings from a large-scale, city-wide household survey. Energy Build 2023, 285, 18. [Google Scholar] [CrossRef]
- ECREEE. Energy Efficiency Policy of the Ecowas; ECREEE: Praia, Cape Verde, 2013. [Google Scholar]
- MME. Plan d’Actions National d’Efficacité Energétique (PANEE); MME: Ouagadougou, Burkina Faso, 2015. [Google Scholar]
- MME. Plan d’Actions National des Energies Renouvelables (PANER); MME: Ouagadougou, Burkina Faso, 2015. [Google Scholar]
- Tete, K.H.; Soro, Y.; Sidibé, S.; Jones, R.V. Assessing energy security within the electricity sector in the West African economic and monetary union: Inter-country performances and trends analysis with policy implications. Energy Policy 2022, 173, 113336. [Google Scholar] [CrossRef]
- Ouedraogo, B.I.; Levermore, G.J.; Parkinson, J.B. Future energy demand for public buildings in the context of climate change for Burkina Faso. Build. Environ. 2012, 49, 270–282. [Google Scholar] [CrossRef]
- Hema, C.; Ouédraogo, A.L.S.-N.; Bationo, G.B.; Kabore, M.; Nshimiyimana, P.; Messan, A. A field study on thermal acceptability and energy consumption of mixed-mode offices building located in the hot-dry climate of Burkina Faso. Sci. Technol. Built Environ. 2024, 30, 184–193. [Google Scholar] [CrossRef]
- Naba, C.; Ishidaira, H.; Magome, J.; Souma, K. Exploring the Potential of Soil and Water Conservation Measures for Climate Resilience in Burkina Faso. Sustainability 2024, 16, 7995. [Google Scholar] [CrossRef]
- Landry, M.; Ouedraogo, Y.; Gagnon, Y.; Ouedraogo, A. On the wind resource mapping of Burkina Faso. Int. J. Green Energy 2016, 14, 150–156. [Google Scholar] [CrossRef]
- IRENA. Renewables Readiness Assessment: Burkina Faso; IRENA: Abu Dhabi, United Arab Emirates, 2023; Available online: https://www.irena.org/ (accessed on 16 December 2024).
- Mourshed, M. Relationship between annual mean temperature and degree-days. Energy Build 2012, 54, 418–425. [Google Scholar] [CrossRef]
- Zoure, A.N.; Genovese, P.V. Development of Bioclimatic Passive Designs for Office Building in Burkina Faso. Sustainability 2022, 14, 4332. [Google Scholar] [CrossRef]
- Weather Atlas and Weather Forecasting & Climate. Average Maximum and Minimum Temperatures in Ouagadougou. Available online: https://www.weather-atlas.com/ (accessed on 7 May 2025).
- Institut de la Francophonie pour le Développement Durable (IFDD). Rapport 2019: Chiffres Clés sur L’énergie au Burkina Faso et dans L’espace UEMOA; Institut de la Francophonie pour le Développement Durable (IFDD): Québec, QC, Canada, 2019. [Google Scholar]
- Arevalo, J. Improving woodfuel governance in Burkina Faso: The experts’ assessment. Renew. Sustain. Energy Rev. 2016, 57, 1398–1408. [Google Scholar] [CrossRef]
- SE4ALL. Evaluation Rapide et Analyse d’Ècart: Burkina Faso. 2014. Available online: https://www.seforall.org/sites/default/files/Burkina_Faso_RAGA_FR_Released.pdf (accessed on 29 September 2022).
- IEA. Energy System of Burkina Faso. Available online: https://www.iea.org/countries/burkina-faso (accessed on 7 May 2025).
- MEMC. Annuaire Statistique de 2022; MEMC: Ouagadougou, Burkina Faso, 2023; Available online: http://cns.bf/spip.php?id_rubrique=105&page=publdetails (accessed on 30 September 2024).
- UNDP. Burkina Faso: Atténuation des Risques des Investissements dans les Energies Renouvelables. 2023. Available online: https://africaminigrids.org/wp-content/uploads/2023/12/DREI-Burkina-Faso-Resultats-complets-Mars-2023_1.pdf (accessed on 15 February 2025).
- SONABEL Burkina Faso. Rapport D’activités 2022; SONABEL Burkina Faso: Ouagadougou, Burkina Faso, 2022; Available online: https://www.sonabel.bf/ (accessed on 7 May 2025).
- Badza, K.; Soro, Y.M.; Sawadogo, M. Life cycle assessment of a 33.7 MW solar photovoltaic power plant in the context of a developing country. Sustain. Environ. Res. 2023, 33, 38. [Google Scholar] [CrossRef]
- DGAIE. Annuaire Statistique des Affaires Immobilieres et de L’équipement de l’Etat 2021; DGAIE: Ouagadougou, Burkina Faso, 2022; Available online: http://cns.bf/spip.php?page=recherche&recherche=dgaie (accessed on 7 May 2025).
- ABER (Burkinabe Rural Electrification Agency). Overview of Mini Power Plants and Solar Photovoltaic Power Plant Systems Installed in Rural Areas of Burkina Faso. Available online: https://www.aber.bf (accessed on 16 January 2025).
- Gyamfi, S.; Diawuo, F.A.; Kumi, E.N.; Sika, F.; Modjinou, M. The energy efficiency situation in Ghana. Renew. Sustain. Energy Rev. 2018, 82, 1415–1423. [Google Scholar] [CrossRef]
- Abid, H.; Thakur, J.; Khatiwada, D.; Bauner, D. Energy storage integration with solar PV for increased electricity access: A case study of Burkina Faso. Energy 2021, 230, 120656. [Google Scholar] [CrossRef]
- Rincón, L.; Carrobé, A.; Martorell, I.; Medrano, M. Improving thermal comfort of earthen dwellings in sub-Saharan Africa with passive design. J. Build. Eng. 2019, 24, 100732. [Google Scholar] [CrossRef]
- INSD. Cinquième Recensement Général de la Population et de l’Habitation du Burkina Faso: Synthèse des Résultats Définitifs; INSD: Ouagadougou, Burkina Faso, 2022. [Google Scholar]
- Moussa, H.S.; Nshimiyimana, P.; Hema, C.; Zoungrana, O.; Messan, A.; Courard, L. Comparative Study of Thermal Comfort Induced from Masonry Made of Stabilized Compressed Earth Block vs. Conventional Cementitious Material. J. Miner. Mater. Charact. Eng. 2019, 7, 385–403. [Google Scholar] [CrossRef]
- Offerle, B.; Jonsson, P.; Eliasson, I.; Grimmond, C.S.B. Urban Modification of the Surface Energy Balance in the West African Sahel: Ouagadougou, Burkina Faso. J. Clim. 2005, 18, 3983–3995. [Google Scholar] [CrossRef]
- Gedda, M. Traduction française des lignes directrices PRISMA pour l’écriture et la lecture des revues systématiques et des méta-analyses. Kinésithérapie Rev. 2015, 15, 39–44. [Google Scholar] [CrossRef]
- Hafez, F.S.; Sa’Di, B.; Safa-Gamal, M.; Taufiq-Yap, Y.; Alrifaey, M.; Seyedmahmoudian, M.; Stojcevski, A.; Horan, B.; Mekhilef, S. Energy Efficiency in Sustainable Buildings: A Systematic Review with Taxonomy, Challenges, Motivations, Methodological Aspects, Recommendations, and Pathways for Future Research. Energy Strat. Rev. 2022, 45, 101013. [Google Scholar] [CrossRef]
- Beel, J.; Gipp, B.; Eilde, E. Academic Search Engine Optimization (ASEO): Optimizing Scholarly Literature for Google Scholar & Co. J. Sch. Publ. 2010, 41, 176–190. [Google Scholar] [CrossRef]
- Benzaghta, M.A.; Elwalda, A.; Mousa, M.; Erkan, I.; Rahman, M. SWOT analysis applications: An integrative literature review. J. Glob. Bus. Insights 2021, 6, 55–73. [Google Scholar] [CrossRef]
- Fertel, C.; Bahn, O.; Vaillancourt, K.; Waaub, J.-P. Canadian energy and climate policies: A SWOT analysis in search of federal/provincial coherence. Energy Policy 2013, 63, 1139–1150. [Google Scholar] [CrossRef]
- Markovska, N.; Taseska, V.; Pop-Jordanov, J. SWOT analyses of the national energy sector for sustainable energy development. Energy 2009, 34, 752–756. [Google Scholar] [CrossRef]
- Silva, B.V.F.; Holm-Nielsen, J.B.; Sadrizadeh, S.; Teles, M.P.R.; Kiani-Moghaddam, M.; Arabkoohsar, A. Sustainable, green, or smart? Pathways for energy-efficient healthcare buildings. Sustain. Cities Soc. 2023, 100, 105013. [Google Scholar] [CrossRef]
- Attia, S.; Kosiński, P.; Wójcik, R.; Węglarz, A.; Koc, D.; Laurent, O. Energy efficiency in the polish residential building stock: A literature review. J. Build. Eng. 2022, 45, 103461. [Google Scholar] [CrossRef]
- Dawodu, A.; Cheshmehzangi, A. Passive Cooling Energy Systems SWOT Analyses for Energy-use Reductions at Three Spatial Levels. Energy Procedia 2017, 105, 3411–3418. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, S.; Wu, Z.; Alsaedi, A.; Hayat, T. SWOT Analysis for the Promotion of Energy Efficiency in Rural Buildings: A Case Study of China. Energies 2018, 11, 851. [Google Scholar] [CrossRef]
- UEMOA. Directive n° 04/2020/cm/uemoa portant étiquetage énergétique des lampes électriques et des appareils électroménagers neufs dans les états membres de l’UEMOA. 2020. Available online: https://rise.esmap.org/data/files/library/niger/Renewable%20Energy/Niger_Electrical%20Appliances%20Standards_Directive%20NA%CC%82%C2%B004_2020_CM_UEMOA_2020.pdf (accessed on 25 August 2022).
- UEMOA. Directive n° 05/20207cm/uemoa fixant des mesures d’efficacité énergétique dans la construction de bâtiments dans les états membres de l’UEMOA. 2020. Available online: https://rise.esmap.org/data/files/library/niger/Energy%20Efficiency/Niger_%20Energy%20Efficiency%20in%20Buildings%20Construction_Directive%20NA%CC%82%C2%B005_2020_CM_UEMOA_2020.pdf (accessed on 25 August 2022).
- NF EN ISO 10077-1; Thermal Performance of Windows, Doors and Shutters—Calculation of Thermal Transmittance—Part 1: General. AFNOR: Paris, France, 2017.
- Ministère de l’Urbanisme et de l’Habitat. Loi n° 017-2006/AN du 18 mai 2006 portant Code de l’urbanisme et de la construction au Burkina Faso. 2006. Available online: https://www.mhu.gov.bf (accessed on 8 April 2024).
- MEMC. Loi N°014-2017/AN Portant Règlementation Générale du Secteur de L’Energie; Ministère de l’Energie du Burkina Faso: Ouagadougou, Burkina Faso, 2017. [Google Scholar]
- MEMC. Décret N°2017-1014/PRES/PM/ME/MCIA/MINEFID Portant Fixation des Normes et Exigences D’efficacité Energétique S’appliquant Aux Appareils et Equipements Ainsi Que Leurs Modalités de Mise en Œuvre; Ministère de l’Energie des Mines et des Carrières: Ouagadougou, Burkina Faso, 2017. [Google Scholar]
- MEMC. Décret N°2017-2015/PRES/PM/ME/MINEFID/MCIA Portant Fixation des Seuils de Consommation Energétique, la Périodicité de L’audit Energétique, les Modalités D’exercice de L’audit Energétique et D’agrément des Auditeurs; Ministère de l’Energie du Burkina Faso: Ouagadougou, Burkina Faso, 2017. [Google Scholar]
- MEMC. ARRETE N°2018-7094/ME/SG/DGEE Portant Conditions et Modalités de Délivrance, de Suspension et de Retrait de L’agrément Technique D’exercice de L’audit Energetique; Ministère de l’Energie du Burkina Faso: Ouagadougou, Burkina Faso, 2018. [Google Scholar]
- MEMC. Arrêté N°2018-18/070/ME/MCIA Portant Adoption D’un Cahier des Charges Applicable Aux Audits Energétique au Burkina Faso; Ministère de l’Energie des Mines et des Carrières: Ouagadougou, Burkina Faso, 2018. [Google Scholar]
- MEMC. Arrêté N°2018-095/ME/SG/DGEE Portant Détermination des Niveaux D’extension ou de Modifications Exigeant un Nouvel Audit Energétique; Ministère de l’Energie des Mines et des Carrières: Ouagadougou, Burkina Faso, 2018; pp. 1–3. [Google Scholar]
- ANEREE. Energy Efficiency Legislation in Burkina Faso. Available online: https://www.energie-mines.gov.bf/le-ministere/les-structures/details?tx_news_pi1%5Baction%5D=detail&tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Bnews%5D=30&cHash=3929756efa8666e0db73ac42eb6ae0a5 (accessed on 7 May 2025).
- ISO. Systèmes de Management de L’énergie. Available online: https://afim.asso.fr/media/1351/afnor_081111.pdf (accessed on 7 May 2025).
- Adeyemo, A.A.; Amusan, O.T. Modelling and multi-objective optimization of hybrid energy storage solution for photovoltaic powered off-grid net zero energy building. J. Energy Storage 2022, 55, 105273. [Google Scholar] [CrossRef]
- Hema, C.; Messan, A.; Lawane, A.; Soro, D.; Nshimiyimana, P.; van Moeseke, G. Improving the thermal comfort in hot region through the design of walls made of compressed earth blocks: An experimental investigation. J. Build. Eng. 2021, 38, 102148. [Google Scholar] [CrossRef]
- Compaore, A.; Ouedraogo, B.; Guengane, H.; Malbila, E.; Bathiebo, D.J. Role of Local Building Materials on the Energy Behaviour of Habitats in Ouagadougou. Int. J. Appl. Sci. 2017, 8, 63–72. [Google Scholar] [CrossRef]
- Neya, I.; Yamegueu, D.; Messan, A.; Coulibaly, Y.; Ouedraogo, A.L.S.-N.; Ayite, Y.M.X.D. Effect of cement and geopolymer stabilization on the thermal comfort: Case study of an earthen building in Burkina Faso. Int. J. Build. Pathol. Adapt. 2025, 43, 283–301. [Google Scholar] [CrossRef]
- Lawane, A.; Vinai, R.; Pantet, A.; Thomassin, J.-H.; Messan, A. hygrothermal features of laterite dimension stones for sub-saharan residential building construction. J. Mater. Civ. Eng. 2014, 26, 05014002. [Google Scholar] [CrossRef]
- Nshimiyimana, P.; Sore, S.O.; Zi, M.; Messan, A. Influence of rubber aggregates from the recycled tires on the physico-mechanical and durability properties of compressed earth blocks. World J. Adv. Res. Rev. 2024, 24, 2303–2309. [Google Scholar] [CrossRef]
- Hema, M.C. Optimisation des Propriétés Thermiques des Parois dans les Habitations en Briques de Terre Comprimée au Burkina Faso. Ph.D. Thesis, Institut International d’Ingénierie de l’Eau et de l’Environnement et Université Catholique de Louvain, Louvain-la-Neuve, Brussels, 2020. [Google Scholar]
- Nshimiyimana, P.; Moussa, H.S.; Messan, A.; Courard, L. Effect of production and curing conditions on the performance of stabilized compressed earth blocks: Kaolinite vs. quartz-rich earthen material. MRS Adv. 2020, 5, 1277–1283. [Google Scholar] [CrossRef]
- Ouedraogo, A.L.S.; Hema, C.; N’guiro, S.M.; Nshimiyimana, P.; Messan, A. Optimisation of Thermal Comfort of Building in a Hot and Dry Tropical Climate: A Comparative Approach between Compressed Earth/Concrete Block Envelopes. J. Miner. Mater. Charact. Eng. 2024, 12, 1–16. [Google Scholar] [CrossRef]
- Zoure, A.N.; Genovese, P.V. Implementing natural ventilation and daylighting strategies for thermal comfort and energy efficiency in office buildings in Burkina Faso. Energy Rep. 2023, 9, 3319–3342. [Google Scholar] [CrossRef]
- Ouedraogo, A.L.S.N.; Messan, A.; Yamegueu, D.; Coulibaly, Y. A model for thermal comfort assessment of naturally ventilated housing in the hot and dry tropical climate. Int. J. Build. Pathol. Adapt. 2021, 40, 183–201. [Google Scholar] [CrossRef]
- Genovese, P.V.; Zoure, A.N. Architecture trends and challenges in sub-Saharan Africa’s construction industry: A theoretical guideline of a bioclimatic architecture evolution based on the multi-scale approach and circular economy. Renew. Sustain. Energy Rev. 2023, 184, 113593. [Google Scholar] [CrossRef]
- Montrose, G. Maîtrise de l’Energie dans les Bâtiments en Climat Tropical Humide: Étude des Matériaux Biosourcés d’Origine Végétale pour l’Efficacité Énergétique et le Confort Thermique. Ph.D. Thesis, Université des Antilles, Pointe-à-Pitre, France, 2021. [Google Scholar]
- Zoure, A.N.; Genovese, P.V. Comparative Study of the Impact of Bio-Sourced and Recycled Insulation Materials on Energy Efficiency in Office Buildings in Burkina Faso. Sustainability 2023, 15, 1466. [Google Scholar] [CrossRef]
- Neya, I. Bâtiment et Bioclimatisme en Afrique Subsaharienne: Outil d’Aide à la Conception; Institut International de l’Eau et de l’Environnement: Ouagadougou, Burkina Faso, 2020. [Google Scholar]
- Nikyema, G.A.; Blouin, V.Y. Barriers to the adoption of green building materials and technologies in developing countries: The case of Burkina Faso. IOP Conf. Ser. Earth Environ. Sci. 2020, 410, 11. [Google Scholar] [CrossRef]
- Diawuo, F.A.; Pina, A.; Baptista, P.C.; Silva, C.A. Energy efficiency deployment: A pathway to sustainable electrification in Ghana. J. Clean. Prod. 2018, 186, 544–557. [Google Scholar] [CrossRef]
- Agyarko, K.A.; Opoku, R.; Van Buskirk, R. Removing barriers and promoting demand-side energy efficiency in households in Sub-Saharan Africa: A case study in Ghana. Energy Policy 2020, 137, 111149. [Google Scholar] [CrossRef]
- Tete, K.H.S.; Soro, Y.M.; Nadjingar, D.A.; Jones, R.V. Ownership, Patterns of Use and Electricity Consumption of Domestic Appliances in Urban Households of the West African Monetary and Economic Union: A Case Study of Ouagadougou in Burkina Faso. Energies 2024, 17, 3656. [Google Scholar] [CrossRef]
- Masoso, O.T.; Grobler, L.J. The dark side of occupants’ behaviour on building energy use. Energy Build. 2010, 42, 173–177. [Google Scholar] [CrossRef]
- Zoungrana, O.; Bologo, M.; Messan, A.; Nshimiyimana, P.; Pirotte, G. The Paradox around the Social Representations of Compressed Earth Block Building Material in Burkina Faso: The Material for the Poor or the Luxury Material? Open J. Soc. Sci. 2021, 09, 50–65. [Google Scholar] [CrossRef]
- Matysek-Imielińska, M. Francis Kéré: A Spokesperson of African Architecture? Modernism and Decolonization. Przegląd Socjol. Jakościowej 2024, 20, 122–141. [Google Scholar] [CrossRef]
- Frossard, M. Optimisation Robuste Multicritère Pour L’écoconception de Bâtiments Zéro-Energie. Ph.D. Thesis, Université Paris Sciences et lettres, Paris, France, 2020. [Google Scholar]
- Adegun, O.B.; Adedeji, Y.M.D. Review of economic and environmental benefits of earthen materials for housing in Africa. Front. Arch. Res. 2017, 6, 519–528. [Google Scholar] [CrossRef]
- Sustainable Energy for All (SE4All). Rapport de Base du Burkina Faso dans le Cadre du Processus et la Stratégie du Développement; Sustainable Energy for All: Ouagadougou, Burkina Faso, 2014. [Google Scholar]
- ECREEE/CEDEAO. Rapport Regional; ECREEE/CEDEAO: Praia, Cape Verde, 2022. [Google Scholar]
- MEMC. Annuaire Statistique 2022; MEMC: Ouagadougou, Burkina Faso, 2023. [Google Scholar]
- Iwaro, J.; Mwasha, A. A review of building energy regulation and policy for energy conservation in developing countries. Energy Policy 2010, 38, 7744–7755. [Google Scholar] [CrossRef]
- Chandel, S.S.; Sharma, A.; Marwaha, B.M. Review of energy efficiency initiatives and regulations for residential buildings in India. Renew. Sustain. Energy Rev. 2016, 54, 1443–1458. [Google Scholar] [CrossRef]
- Federal Ministry of Power Works and Housing. National Building Energy Efficiency Code; Federal Ministry of Power Works and Housing: Abuja, Nigeria, 2017. [Google Scholar]
- Ministère de la Transition écologique. Guide RE2020: Réglementation Énergétique et Environnementale Française; Ministère de la Transition écologique: Paris, France, 2020. [Google Scholar]
- Williams, J.; Mitchell, R.; Raicic, V.; Vellei, M.; Mustard, G.; Wismayer, A.; Yin, X.; Davey, S.; Shakil, M.; Yang, Y.; et al. Less is more: A review of low energy standards and the urgent need for an international universal zero energy standard. J. Build. Eng. 2016, 6, 65–74. [Google Scholar] [CrossRef]
- Camara, Y.; Chesneau, X.; Camara, S.; Kanté, C. Modeling and thermal simulation of a bioclimatic habitat integrating phase- change material for a typical climate of Ouagadougou in Burkina Faso. Int. J. Innov. Sci. Eng. Technol. 2020, 7, 198–210. [Google Scholar]
- Fati, A.O.; Latif, B.A.; Souleymane, O.; Thierry, S.M.; Lewamy, M.; Joseph, B.D. The Impact of Local Materials on the Improvement of the Thermal Comfort in Building. Curr. J. Appl. Sci. Technol. 2020, 39, 22–35. [Google Scholar] [CrossRef]
- Oumarou, F.A.; Ouedraogo, A.; Ky, S.M.T.; Bhandari, R.; Konfe, A.; Konate, R.; Adamou, R.; Bathiebo, D.J.; Kam, S. Effect of the Orientation on the Comfort of a Building Made with Compressed Earth Block. Smart Grid Renew. Energy 2021, 12, 99–112. [Google Scholar] [CrossRef]
- Salvalai, G.; Sesana, M.M.; Brutti, D.; Imperadori, M. Design and performance analysis of a lightweight flexible nZEB. Sustainability 2020, 12, 5986. [Google Scholar] [CrossRef]
Monthly Means | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Global horizontal radiation (average daily total) Wh/m2 | 5916 | 6555 | 6932 | 6413 | 6039 | 5547 | 4893 | 4859 | 5121 | 5302 | 5812 | 5679 |
Direct normal radiation (average daily total) Wh/m2 | 6497 | 6811 | 6517 | 4768 | 4416 | 3558 | 2361 | 2168 | 2717 | 3812 | 6055 | 6479 |
Diffuse radiation (average daily total) Wh/m2 | 829 | 1983 | 2220 | 2810 | 2658 | 2746 | 3037 | 3136 | 2991 | 2459 | 1867 | 1683 |
Relative humidity (average monthly) % | 20 | 26 | 23 | 27 | 49 | 63 | 74 | 80 | 77 | 57 | 35 | 25 |
Wind speed (average monthly) m/s | 3 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 |
High temperature (average monthly) °C | 32.2 | 36.3 | 38.4 | 39.1 | 37.3 | 34.3 | 31.8 | 30.9 | 32 | 35.4 | 35.9 | 33.6 |
Low temperature (average monthly) °C | 16.1 | 19.1 | 23 | 25.7 | 25.5 | 23.9 | 22.4 | 21.9 | 21.9 | 22.5 | 19.2 | 16.7 |
Monthly Means | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature (average monthly) °C | 24.2 | 2.7 | 30.7 | 32.4 | 31.4 | 29.1 | 27.1 | 26.4 | 27 | 29 | 27.6 | 25.2 |
CDD (average monthly) °C | 4.7 | 103.6 | 207.7 | 252 | 229.4 | 153 | 96.1 | 74.4 | 88.5 | 153.5 | 106.5 | 35.7 |
Source | 2018 | 2019 | 2020 | 2021 | 2022 | Total in 2022 | |
---|---|---|---|---|---|---|---|
SONABEL generation (GWh) | Fossil-fired thermal | 875.2 | 588.1 | 402.5 | 686.4 | 565.6 | 705.4 |
Hydroelectric | 91.4 | 105.3 | 112.4 | 127.5 | 82.4 | ||
Solar photovoltaic | 54.1 | 58.8 | 62.4 | 63.6 | 57.4 | ||
Private generation (GWh) | Biogas | 0.1 | 149.6 | 125.7 | 134.3 | 291.2 | 308 |
Electricity cooperatives | 32 | 30.4 | 5 | 3.3 | 10.1 | ||
Solar photovoltaic | _ | _ | _ | _ | 6.8 | ||
Imports (GWh) | Côte d’Ivoire | 560.9 | 505.5 | 488.9 | 411.6 | 280.1 | 1492 |
Ghana | 276.3 | 576.4 | 990.5 | 961 | 1204.2 | ||
Togo | 5.2 | 5.4 | 6.4 | 7.4 | 7.8 |
Inclusion | Exclusion |
---|---|
1. Studies related to Burkina Faso | 1. Studies not related to Burkina Faso |
2. Studies related to the issue of electrical equipment used in the building | 2. Studies not related to buildings |
3. Studies related to low-energy buildings and construction technologies | 3. Studies not related to energy efficiency in the building |
4. Studies related to the energy management system in the building | 4. Studies published outside the period 2014–2024 |
5. Articles related to regulatory and policy aspects of energy efficiency | |
6. Studies related to renewable energy production systems in buildings |
Electrical Equipment | 5 Stars | 4 Stars | 3 Stars | 2 Stars | 1 Star | 0 Stars | |
---|---|---|---|---|---|---|---|
Lamps | Incandescent Lamp (P < 100 W) | - | - | - | - | 57.5 < η | η < 57.5 |
Halogen lamp (P = 80 W) | - | - | η > 85 | 61 < η ≤ 85 | 24 < η ≤ 61 | η ≤ 24 | |
Compact fluorescent lamp (P ≥ 25 W) | - | - | η > 118 | 84 < η ≤ 118 | 60 < η ≤ 84 | η ≤ 60 | |
Fluorescent lamp (P = 70 W) | - | - | η > 135 | 90 < η ≤ 135 | - | - | |
Air conditioner | Window air conditioners (Qc ≤ 12,000 W) | - | - | COP > 3.30 | 3.1 < COP ≤ 3.30 | 2.9 < COP ≤ 3.10 | COP ≤ 2.9 |
Split air conditioners (Qc ≤ 4500 W) | - | - | COP > 3.60 | 3.4 < COP ≤ 3.60 | 3.2 < COP ≤ 3.40 | COP ≤ 3.2 | |
Split air conditioners (4500 W < Qc ≤ 7100 W) | - | - | COP > 3.50 | 3.3 < COP ≤ 3.50 | 3.1< COP ≤ 3.30 | COP ≤ 3.1 | |
Refrigerator | Types 1, 2, 3, 4 | EEI ≤ 50% | 50% < EEI ≤ 60% | 60% < EEI ≤ 70% | 70% < EEI ≤ 80% | 80% < EEI | - |
Types 5 and 6 | EEI ≤ 40% | 40% < EEI ≤ 50% | 50% < EEI ≤ 60% | 60% < EEI ≤ 70% | 70% < EEI | - |
Maximum U-Value (W/m2 K) | FS Max | WWR Max (%) | |||||
---|---|---|---|---|---|---|---|
Glass Walls (Windows, Doors, or Patio Doors) | |||||||
Climate Zone | Roof | Exterior Walls | Single Glazing | Double Glazing | Medium | South East West | |
1B | 0.8 | 1.1 | 6.2 | - | 0.82 | 18 | 22 |
2B | 0.8 | 1.1 | 6.2 | - | 18 | 22 |
Glazing Type | Air Space Thickness (mm) | Type of Joinery | Vertical Wall | Horizontal Wall |
---|---|---|---|---|
Single glazing | - | Wood | 5 | 6.2 |
- | Metal | 5.8 | 6.8 | |
Double glazing with air gap | 5–7 | Wood | 3.3 | 3.5 |
Metal | 4 | 4.3 | ||
8–9 | Wood | 3.1 | 3.3 | |
Metal | 3.9 | 4.2 | ||
10–11 | Wood | 3 | 3.2 | |
Metal | 3.8 | 4.1 | ||
12–13 | Wood | 2.9 | 3.1 | |
Metal | 3.7 | 4 | ||
Double window | More than 30 | Wood | 2.6 | 2.7 |
More than 30 | Metal | 3 | 3.2 |
Parameters | Concerned | Institution in Charge of the Application | Building Concerned |
---|---|---|---|
1. Orientation | No | - | - |
2. Building materials | No | - | - |
3. Opening (thermal properties) | No | - | - |
4. Building thermal performance index | No | - | - |
5. HVAC | Yes | - | All buildings |
6. Lamps | Yes | - | All buildings |
7. Household appliances | Yes | - | Household |
8. Exemption for solar equipment and materials | Yes | Customs | All buildings |
9. Promotion of solar installations | Yes | ANEREE | All buildings |
10. Energy audit every 5 years | Yes | ANEREE | 100,000 kWh or more than 100,000 L |
Strengths
| Weaknesses
|
Opportunities
| Threats
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouoba Nebie, B.A.; Lawane, A.; Hema, C.; Siroux, M. Energy Efficiency in the Building Sector in Burkina Faso: Literature Review, SWOT Analysis, and Recommendations. Energies 2025, 18, 2689. https://doi.org/10.3390/en18112689
Ouoba Nebie BA, Lawane A, Hema C, Siroux M. Energy Efficiency in the Building Sector in Burkina Faso: Literature Review, SWOT Analysis, and Recommendations. Energies. 2025; 18(11):2689. https://doi.org/10.3390/en18112689
Chicago/Turabian StyleOuoba Nebie, Bazam Amonet, Abdou Lawane, Césaire Hema, and Monica Siroux. 2025. "Energy Efficiency in the Building Sector in Burkina Faso: Literature Review, SWOT Analysis, and Recommendations" Energies 18, no. 11: 2689. https://doi.org/10.3390/en18112689
APA StyleOuoba Nebie, B. A., Lawane, A., Hema, C., & Siroux, M. (2025). Energy Efficiency in the Building Sector in Burkina Faso: Literature Review, SWOT Analysis, and Recommendations. Energies, 18(11), 2689. https://doi.org/10.3390/en18112689