An Innovative Fuel Design for HTGRs: Evaluating a 10-Hour High-Temperature Oxidation of the SiC Fuel Matrix During Air Ingress Accident Conditions
Abstract
1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kruminš, J.; Klavinš, M. Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future. Energies 2023, 16, 3612. [Google Scholar] [CrossRef]
- IAEA. Safety related design and economic aspects of HTGRs. In Proceedings of the Technical Committee Meeting, Beijing, China, 24 November 1998. IAEA-TECDOC-1210. [Google Scholar]
- Fukaya, Y.; Goto, M.; Ohashi, H.; Tachibana, Y.; Kunitomi, K.; Chiba, S. Proposal of a plutonium burner system based on HTGR with high proliferation resistance. J. Nucl. Sci. Technol. 2014, 51, 818–831. [Google Scholar] [CrossRef]
- Ohashi, H.; Sato, H.; Yan, X.L.; Sumita, J.; Nomoto, Y.; Tazawa, Y.; Noguchi, H.; Imai, Y.; Tachibana, Y. Conceptual Design of Small-Sized HTGR System-Plant Design and Technical Feasibility; JAEA-Technology 2013-016; Japan Atomic Energy Agency: Ibaraki, Japan, 2013. [Google Scholar]
- Huning, A.J.; Chandrasekaran, S.; Garimella, S. A review on recent advances in HTGR CFD and thermal fluid analysis. Nucl. Eng. Design 2021, 373, 111013. [Google Scholar] [CrossRef]
- Yamashita, K.; Shindo, R. Nuclear design of the high-temperature engineering test reactor (HTTR). Nucl. Sci. Eng. 1996, 122, 212–228. [Google Scholar] [CrossRef]
- Inaba, Y.; Nishihara, T. Development of fuel temperature calculation code for HTGRs. Ann. Nucl. Energy 2017, 101, 383–389. [Google Scholar] [CrossRef]
- Nishimura, Y.; Gubarevich, A.; Yoshida, K.; Okamoto, K. Comparison of SiC and graphite oxidation behavior under conditions of HTGR air ingress accident. Mech. Eng. Lett. 2022, 8, 22–00315. [Google Scholar]
- Okita, S.; Mizuta, N.; Takamatsu, K.; Goto, M.; Yoshida, K.; Nishimura, Y.; Okamoto, K. Research on improvement of HTGR core power-density: (4) feasibility study for a reactor core. In Proceedings of the 30th International Conference on Nuclear Engineering, Kyoto, Japan, 21–26 May 2023. [Google Scholar]
- Nishimura, Y.; Gubarevich, A.; Yoshida, K.; Sharma, A.K.; Okamoto, K. Kinetic modelling of IG-110 oxidation in inert atmosphere with low oxygen concentration for innovative high-temperature gas-cooled reactor applications. Nucl. Sci. Technol 2023, 61, 802–809. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sagawa, W.; Ahmed, Z.; Nishimura, Y.; Okamoto, K. Integrated experimental assessment and validation of oxidation with real-scale SiC fuel compact in HTGR. Int. J. Heat Mass Transf. 2024, 220, 124930. [Google Scholar] [CrossRef]
- Nishimura, Y.; Gubarevich, A.; Yoshida, K.; Sharma, A.K.; Okamoto, K. Modeling passive/active transition in high-temperature dry oxidation of reaction-sintered SiC for innovative fuel matrix in high-temperature gas-cooled reactors. J. Eur. Ceram. Soc. 2024, 44, 3031–3038. [Google Scholar] [CrossRef]
- Snead, L.L.; Nozawa, T.; Katoh, Y.; Byun, T.S.; Kondo, S.; Petti, D.A. Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 2007, 371, 329–377. [Google Scholar] [CrossRef]
- Hishida, M.; Takeda, T. Study on air ingress during an early stage of a primary-pipe rupture accident of a high-temperature gas-cooled reactor. Nucl. Eng. Des. 1991, 126, 175–187. [Google Scholar] [CrossRef]
- Takeda, T. Air ingress phenomena in a depressurization accident of the very-high-temperature reactor. High Temp. React. Technol. 2008, 48548, 633–640. [Google Scholar]
- Oh, C.H.; Kang, H.; Kim, E.S. Air-ingress analysis: Part 2—Computational fluid dynamic models. Nucl. Eng. Des. 2011, 241, 213–225. [Google Scholar] [CrossRef]
- Yanhua, Z.; Fubing, C.; Lei, S. Analysis of diffusion process and influence factors in the air ingress accident of the HTR-PM. Nucl. Eng. Des. 2014, 271, 397–403. [Google Scholar] [CrossRef]
- Xu, W.; Shi, L.; Zheng, Y. Transient analysis of nuclear graphite oxidation for high temperature gas cooled reactor. Nucl. Eng. Des. 2016, 306, 138–144. [Google Scholar] [CrossRef]
- Liu, P.; Chen, Z.; Zheng, Y.; Sun, J.; Chen, F.; Shi, L.; Zhang, Z. Study on air ingress of the 200 MWe pebble-bed modular high temperature gas-cooled reactor. Ann. Nucl. Energy 2016, 98, 120–131. [Google Scholar] [CrossRef]
- Raine, M. Effect of Delays in Afterheat Removal on Consequences of Massive Air Ingress Accidents in High-Temperature Gas Cooled Reactors. J. Nucl. Sci. Technol. 1984, 21, 824–835. [Google Scholar]
- Elfrida, S.; Roziq, H. Study of oxidation effects on HTGR graphite in air ingress accidents condition. AIP Conf. Proc. 2019, 2180, 020013. [Google Scholar]
- Braun, J.; Gueneau, C.; Alpettaz, T.; Sauder, C.; Brackx, E.; Domenger, R.; Gossé, S.; Balbaud-Célérier, F. Chemical compatibility between UO2 fuel and SiC cladding for LWRs. Application to ATF (Accident-Tolerant Fuels). J. Nucl. Mater. 2017, 487, 380–395. [Google Scholar] [CrossRef]
- Kim, D.; Lee, H.G.; Park, J.Y.; Park, Y.Y.; Kim, W.J. Effect of dissolved hydrogen on the corrosion behavior of chemically vapor deposited SiC in a simulated pressurized water reactor environment. Corros. Sci. 2015, 98, 304–309. [Google Scholar] [CrossRef]
- Snead, L.L.; Venneri, F.; Kim, Y.; Terrani, K.A.; Tulenko, J.E.; Forsberg, C.W. Fully ceramic microencapsulated fuels: A transformational technology for present and next generation reactors. ANS Trans. 2011, 104, 6. [Google Scholar]
- Powers, J.J.; Lee, W.J.; Venneri, F.; Snead, L.L.; Jo, C.K.; Hwang, D.H.; Terrani, K.A. Fully Ceramic Microencapsulated (FCM) Replacement Fuel for LWRs; National Technical Information Service: Springfield, VA, USA, 2013; ORNL/TM-2013/173. [Google Scholar]
- Dai, X.; Cao, X.; Yu, S.; Zhu, C. Conceptual core design of an innovative small PWR utilizing fully ceramic microencapsulated fuel. Prog. Nucl. Energy 2009, 75, 63–71. [Google Scholar] [CrossRef]
- Kamalpour, S.; Salehi, A.A.; Khalafi, H.; Mataji-Kojouri, N.; Jahanfarnia, G. The potential impact of Fully Ceramic Microencapsulated (FCM) fuel on thermal hydraulic performance of SMART reactor. Nucl. Eng. Des. 2018, 339, 39–52. [Google Scholar] [CrossRef]
- Terrani, K.A.; Kiggans, J.O.; Katoh, Y.; Shimoda, K.; Montgomery, F.C.; Armstrong, B.L.; Snead, L.L. Fabrication and characterization of fully ceramic microencapsulated fuels. J. Nucl. Mater. 2012, 426, 268–276. [Google Scholar] [CrossRef]
- Kiegiel, K.; Herdzik-Koniecko, I.; Fuks, L.; Zakrzewska-Kołtuniewicz, G. Management of Radioactive Waste from HTGR Reactors including Spent TRISO Fuel—State of the Art. Energies 2022, 15, 1099. [Google Scholar] [CrossRef]
- Guittonneau, F.; Abdelouas, A.; Grambow, B. HTR Fuel Waste Management: TRISO Separation and Acid-Graphite Intercalation Compounds Preparation. J. Nucl. Mater. 2010, 407, 71–77. [Google Scholar] [CrossRef]
- Roy, J.; Chandra, S.; Das, S.; Maitra, S. Oxidation behaviour of silicon carbide-a review. Rev. Adv. Mater. Sci 2014, 38, 29–39. [Google Scholar]
- Chatillon, C.; Teyssandier, F. Thermodynamic assessment of the different steps observed during SiC oxidation. J. Eur. Ceram. Soc. 2022, 42, 1175–1196. [Google Scholar] [CrossRef]
- Tanaka, H. Silicon carbide powder and sintered materials. J. Ceram. Soc. Jpn. 2011, 119, 218–233. [Google Scholar] [CrossRef]
- Omori, M.; Takei, H. Pressureless sintering of SiC. J. Amer. Ceram. Soc. 1982, 65, 92–96. [Google Scholar] [CrossRef]
- Osborne, M.; Hay, J.C.; Snead, L.L. Mechanical- and physical-property changes of neutron-irradiated chemical-vapor-deposited silicon carbide. J. Amer. Ceram. Soc. 1999, 82, 2490–2496. [Google Scholar] [CrossRef]
- Popper, P. (Ed.) The preparation of dense self bonded silicon carbide. In Special Ceramics; Heywood: London, UK, 1960; pp. 209–219. [Google Scholar]
- Terrani, K.A.; Snead, L.L.; Gehin, J.C. Microencapsulated fuel technology for commercial light water and advanced reactor application. J. Nucl. Mater. 2012, 427, 209–224. [Google Scholar] [CrossRef]
- Gould, D.; Franken, D.; Bindra, H.; Kawaji, M. Transition from molecular diffusion to natural circulation mode air-ingress in high temperature helium loop. Ann. Nucl. Energy 2017, 107, 103–109. [Google Scholar] [CrossRef]
- Das, D.; Farjas, J.; Roura, P. Passive-Oxidation Kinetics of SiC Microparticles. J. Am. Ceram. Soc. 2004, 87, 1301–1305. [Google Scholar] [CrossRef]
- Deal, B.E.; Grove, A.S. General Relationship for the Thermal Oxidation of Silicon. J. Appl. Phys. 1965, 36, 3770–3778. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, K.K.; Moon, B.W.; Park, K.B.; Park, S.; Seok, C.S. Prediction of growth behavior of thermally grown oxide considering the microstructure characteristics of the top coating. Ceram. Int. 2021, 47, 14160–14167. [Google Scholar] [CrossRef]
- Ramachandran, K.; Chaffey, B.; Zuccarini, C.; Bear, J.C.; Jayaseelan, D.D. Experimental and mathematical modelling of corrosion behavior of CMAS coated oxide/oxide CMCs. Ceram. Int. 2023, 49, 4213–4221. [Google Scholar] [CrossRef]
- Kageshima, H.; Shiraishi, K.; Uematsu, M. Universal Theory of Si Oxidation Rate and Importance of Interfacial Si Emission. Jpn. J. Appl. Phys. 1999, 38, 971–974. [Google Scholar] [CrossRef]
- Ogawa, S.; Takakuwa, Y. Rate-Limiting Reactions of Growth and Decomposition Kinetics of Very Thin Oxides on Si (001) Surfaces Studied by Reflection High-Energy Electron Diffraction Combined with Auger Electron Spectroscopy. Jpn. J. Appl. Phys. 2006, 45, 7063–7079. [Google Scholar] [CrossRef]
- Uematsu, M.; Kageshima, H.; Shiraishi, K. Simulation of wet oxidation of silicon based on the interfacial silicon emission model and comparison with dry oxidation. J. Appl. Phys. 2001, 89, 1948–1953. [Google Scholar] [CrossRef]
- Du, B.; Li, H.; Zheng, W.; He, X.; Ma, T.; Yin, H. Study of oxidation behavior and tensile properties of candidate superalloys in the air ingress simulation scenario. Nucl. Eng. Technol. 2023, 55, 71–79. [Google Scholar] [CrossRef]
- Massoud, H.Z.; Plummer, J.D.; Irene, E.A. Thermal Oxidation of Silicon in Dry Oxygen: Growth-Rate Enhancement in the Thin Regime: Ⅰ. Experimental Results. J. Electrochem, Soc. 1985, 132, 2685–2693. [Google Scholar] [CrossRef]
- Massoud, H.Z.; Plummer, J.D.; Irene, E.A. Thermal Oxidation of Silicon in Dry Oxygen: Growth-Rate Enhancement in the Thin Regime: Ⅱ. Physical Mechanism. J. Electrochem, Soc. 1985, 132, 2693–2700. [Google Scholar] [CrossRef]
- Hijikata, Y.; Yamaguchi, H.; Yoshida, S. A Kinetic Model of Silicon Carbide Oxidation Based on the Interfacial Silicon and Carbon Emission Phenomenon. Appl. Phys. Express 2009, 2, 021203-1–021203-3. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishimura, Y.; Gubarevich, A.; Yoshida, K.; Okamoto, K. An Innovative Fuel Design for HTGRs: Evaluating a 10-Hour High-Temperature Oxidation of the SiC Fuel Matrix During Air Ingress Accident Conditions. Energies 2024, 17, 5366. https://doi.org/10.3390/en17215366
Nishimura Y, Gubarevich A, Yoshida K, Okamoto K. An Innovative Fuel Design for HTGRs: Evaluating a 10-Hour High-Temperature Oxidation of the SiC Fuel Matrix During Air Ingress Accident Conditions. Energies. 2024; 17(21):5366. https://doi.org/10.3390/en17215366
Chicago/Turabian StyleNishimura, Yosuke, Anna Gubarevich, Katsumi Yoshida, and Koji Okamoto. 2024. "An Innovative Fuel Design for HTGRs: Evaluating a 10-Hour High-Temperature Oxidation of the SiC Fuel Matrix During Air Ingress Accident Conditions" Energies 17, no. 21: 5366. https://doi.org/10.3390/en17215366
APA StyleNishimura, Y., Gubarevich, A., Yoshida, K., & Okamoto, K. (2024). An Innovative Fuel Design for HTGRs: Evaluating a 10-Hour High-Temperature Oxidation of the SiC Fuel Matrix During Air Ingress Accident Conditions. Energies, 17(21), 5366. https://doi.org/10.3390/en17215366