Comparison of Effects of Partial Discharge Echo in Various High-Voltage Insulation Systems
Abstract
:1. Introduction
2. Mechanism of Partial Discharge Echo
3. Test Objects Used for PD Echo Experiments
4. Experimental Setup
5. Experimental Results and Discussion
5.1. Experiments on a Void Embedded in Polyethylene (PE)
5.2. Experiments on a Void Embedded in Insulating Paper (PK)
5.3. Experiments on a Void Embedded in Nomex
5.4. Experiments on a Test Section of XLPE Power Cable
5.5. Experiments on Helical Coil Motor-Winding Insulated Specimens
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajashekara, K. Power Conversion Technologies for Automotive and Aircraft Systems. IEEE Electrif. Mag. 2014, 6, 50–60. [Google Scholar] [CrossRef]
- Cheng, P.; Kong, H.; Ma, J.; Jia, L. Overview of Resilient Traction Power Supply Systems in Railways with Interconnected Microgrid. CSEE J. Power Energy Syst. 2021, 7, 1122–1132. [Google Scholar]
- Xu, L.; Guerrero, J.M.; Lashab, A.; Wei, B.; Bazmohammadi, N.; Vasquez, J.C.; Abusorrah, A. A Review of DC Shipboard Microgrids—Part II: Control Architectures, Stability Analysis, and Protection Schemes. IEEE Trans. Power Electron. 2022, 37, 4105–4120. [Google Scholar] [CrossRef]
- Sarlioglu, B.; Morris, C.T. More Electric Aircraft: Review, Challenges, and Opportunities for Commercial Transport Aircraft. IEEE Trans. Transp. Electrif. 2015, 1, 54–64. [Google Scholar] [CrossRef]
- Chang, G.; Wu, Y.; Shao, S.; Huang, Z.; Long, T. DC Bus Systems for Electrical Ships. Electrif. Mag. 2020, 9, 28–39. [Google Scholar] [CrossRef]
- Haxhiu, A.; Abdelhakim, A.; Kanerva, S.; Bogen, J. Electric Power Integration Schemes of the Hybrid Fuel Cells and Batteries-Fed Marine Vessels—An Overview. IEEE Trans. Transp. Electrif. 2021, 8, 1885–1905. [Google Scholar] [CrossRef]
- Moghadam, D.E.; Herold, C.; Zbinden, R. Effects of Resins on Partial Discharge Activity and Lifetime of Insulation Systems Used in eDrive Motors and Automotive Industries. In Proceedings of the 2020 IEEE Electrical Insulation Conference (EIC), Knoxville, TN, USA, 22 June–3 July 2020. [Google Scholar]
- Borghei, M.; Ghassemi, M. Classification of Partial Discharge in Electric Aircraft based on Short-Term Behavior of Insulation Systems. In Proceedings of the AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), Virtual Event, 9–11 August 2021. [Google Scholar]
- Biswas, B.; Du, B.X.; Florkowski, M.; Hammarström, T.; Judd, M.D.; Kołtunowicz, W.; Kordi, B.; Kuniewski, M.; Ma, G.; Pan, C.; et al. Trends in Diagnostics and Monitoring of High-Voltage Insulation. IEEE Electr. Insul. Mag. 2024, 40, 6–26. [Google Scholar] [CrossRef]
- Niemeyer, L. A generalized approach to partial discharge modeling. IEEE Trans. Dielectr. Electr. Insul. 1995, 2, 510–528. [Google Scholar] [CrossRef]
- Stone, G.C.; Culbert, I.; Boulter, E.A.; Dhirani, H. Electrical Insulation for Rotating Machines; Wiley-IEEE Press: Hoboken, NJ, USA, 2014. [Google Scholar]
- Hammarström, T. Multilevel PWM: A tool to explore insulation PD characteristics. IEEE Trans. Instrum. Meas. 2019, 68, 4075–4084. [Google Scholar] [CrossRef]
- CIGRE JWG A2/D1.51; Improvements to PD Measurements for Factory and Site Acceptance Tests of Power Transformers. CIGRE Technical Brochure 861; CIGRE: Paris, France, 2022.
- Kołtunowicz, W.; Behrmann, G.; Bolze, M.; Caprara, A.; Coapes, G.; Cook, F.; Hama, H.; Huecker, T.; Johnstone, C.; Neuhold, S.; et al. CIGRE WG D1.66, Requirements for Ultra-High Frequency Partial Discharge Monitoring Systems for Gas Insulated Switchgear; CIGRE General Session; CIGRE: Paris, France, 2022; p. 10883. [Google Scholar]
- Li, S.; Li, J. Condition monitoring and diagnosis of power equipment: Review and prospective. High Volt. 2017, 2, 82–91. [Google Scholar] [CrossRef]
- Florkowski, M. Partial Discharges in High-Voltage Insulating Systems—Mechanisms, Processing, and Analytics; AGH Press: Kraków, Poland, 2020; ISBN 978-83-66364-75-2. [Google Scholar]
- Kaziz, S.; Said, M.H.; Imburgia, A.; Maamer, B.; Flandre, D.; Romano, P.; Tounsi, F. Radiometric Partial Discharge Detection: A Review. Energies 2023, 16, 1978. [Google Scholar] [CrossRef]
- Florkowski, M. Classification of Partial Discharge Images Using Deep Convolutional Neural Networks. Energies 2020, 13, 5496. [Google Scholar] [CrossRef]
- Kumar, H.; Shafiq, M.; Kauhaniemi, K.; Elmusrati, M. A Review on the Classification of Partial Discharges in Medium-Voltage Cables: Detection, Feature Extraction, Artificial Intelligence-Based Classification, and Optimization Techniques. Energies 2024, 17, 1142. [Google Scholar] [CrossRef]
- Lu, S.; Chai, H.; Sahoo, A.; Phung, B.T. Condition Monitoring Based on Partial Discharge Diagnostics Using Machine Learning Methods: A Comprehensive State-of-the-Art Review. IEEE Trans. Diel. Electr. Insul. 2020, 27, 1861–1888. [Google Scholar] [CrossRef]
- Sukma, T.R.; Khayam, U.; Suwarno; Sugawara, R.; Yoshikawa, H.; Kozako, M.; Hikita, M.; Eda, O.; Otsuka, M.; Kaneko, H.; et al. Classification of Partial Discharge Sources using Waveform Parameters and Phase-Resolved Partial Discharge Pattern as Input for the Artificial Neural Network. In Proceedings of the Condition Monitoring and Diagnosis (CMD), Perth, WA, Australia, 23–26 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Illias, H.; Yuan, T.S.; Bakar, A.H.A.; Mokhlis, H.; Chen, G.; Lewin, P.L. Partial discharge patterns in high voltage insulation. In Proceedings of the IEEE International Conference on Power and Energy (PECon), Kota Kinabalu, Malaysia, 2–5 December 2012; pp. 750–755. [Google Scholar] [CrossRef]
- Wu, M.; Cao, H.; Cao, J.; Nguyen, H.L.; Gomes, J.B.; Krishnaswamy, S.P. An overview of state-of-the-art partial discharge analysis techniques for condition monitoring. IEEE Electr. Insul. Mag. 2015, 31, 22–35. [Google Scholar] [CrossRef]
- Hussain, G.A.; Hassan, W.; Mahmood, F.; Shafiq, M.; Rehman, H.; Kay, J.A. Review on Partial Discharge Diagnostic Techniques for High Voltage Equipment in Power Systems. IEEE Access 2023, 11, 51382–51394. [Google Scholar] [CrossRef]
- Florkowski, M. Influence of harmonics on partial discharge measurements and interpretation of phase-resolved patterns. Elsevier Meas. 2022, 196, 111198. [Google Scholar] [CrossRef]
- Florkowski, M. Effect of Interplay between Parallel and Perpendicular Magnetic and Electric Fields on Partial Discharges. Energies 2023, 16, 4847. [Google Scholar] [CrossRef]
- Diban, B.; Mazzanti, G.; Marzinotto, M.; Battaglia, A. Life Estimation of HVDC Cables Subjected to Fast and Slow Polarity Reversals. Energies 2024, 17, 3182. [Google Scholar] [CrossRef]
- Mazzanti, G.; Diban, B. Parametric Analysis of HVDC Extruded Cable Reliability for Different Cable Designs. In Proceedings of the IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), East Rutherford, NJ, USA, 18–30 October 2020; pp. 475–478. [Google Scholar] [CrossRef]
- Florkowski, M.; Kuniewski, M.; Mikrut, P. Effects of mechanical transversal bending of power cable on partial discharges and dielectric-loss evolution. IEEE Trans. Dielectr. Electr. Insul. 2024. [Google Scholar] [CrossRef]
- Nielsen, T.V.M.; Jakobsen, S.; Savaghebi, M. Dynamic Rating of Three-Core XLPE Submarine Cables Considering the Impact of Renewable Power Generation. In Proceedings of the 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Sonderborg, Denmark, 23–25 April 2019; pp. 1–6. [Google Scholar]
- Hestad, Ø.; Runde, M.; Enoksen, H.; Magnusson, N. Modeling of Internal Pressure Dynamics in Mass-Impregnated Nondraining HVDC Cables. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 1135–1142. [Google Scholar] [CrossRef]
- Rizzo, G.; Romano, P.; Imburgia, A.; Ala, G. Partial Discharges in HVDC Cables—The Effect of the Temperature Gradient During Load Transients. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 767–1774. [Google Scholar] [CrossRef]
- Rosle, N.; Muhamad, N.A.; Rohani, M.N.K.H.; Jamil, M.K.M. Partial Discharges Classification Methods in XLPE Cable: A Review. IEEE Access 2021, 9, 133258–133273. [Google Scholar] [CrossRef]
- Zhang, X.; Pang, B.; Liu, Y.; Liu, S.; Xu, P.; Li, Y.; Liu, Y.; Qi, L.; Xie, Q. Review on Detection and Analysis of Partial Discharge along Power Cables. Energies 2021, 14, 7692. [Google Scholar] [CrossRef]
- Mazzanti, G. The Practical Use of the DMM Model for Life Estimation of HVDC Cables subjected to Qualification Load Cycles. IEEE Trans. Dielectr. Electr. Insul. 2024, 31, 1899–1908. [Google Scholar] [CrossRef]
- Mikrut, P.; Zydroń, P. Numerical Modeling of PD Pulses Formation in a Gaseous Void Located in XLPE Insulation of a Loaded HVDC Cable. Energies 2023, 16, 6374. [Google Scholar] [CrossRef]
- Lee, K.; Fereydoonian, M.; Nia, M.S.S.; Lee, W. A Comprehensive Review of Partial Discharge Modeling and Measurement in WBG-based AC Machine Drives. In Proceedings of the 2023 IEEE Transportation Electrification Conference & Expo (ITEC), Detroit, MI, USA, 21–23 June 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Diab, M.; Zhou, W.; Emersic, C.; Yuan, X.; Cotton, I. Impact of PWM Voltage Waveforms on Magnet Wire Insulation Partial Discharge in SiC-Based Motor Drives. IEEE Access 2021, 9, 156599–156612. [Google Scholar] [CrossRef]
- Wang, P.; Li, P.; Akram, S.; Meng, P.; Zhu, G.; Montanari, G.C. Considering the Parameters of Pulse Width Modulation Voltage to Improve the Signal-to-Noise Ratio of Partial Discharge Tests for Inverter-Fed Motors. IEEE Trans. Ind. Electron. 2022, 69, 4545–4554. [Google Scholar] [CrossRef]
- Vala, S.S.; Mirza, A.B.; Emon, A.I.; Luo, F. A Review of Partial Discharge in Stator Winding of Rotating Machines Fed by Voltage Source PWM Motor Drives. IEEE Trans. Ind. Appl. 2024, 60, 3790–3807. [Google Scholar] [CrossRef]
- Zang, Y.; Niasar, M.G.; Ganeshpure, D.A.; Qian, Y.; Sheng, G.; Jiang, X.; Vaessen, P. Partial Discharge Behavior of Typical Defects in Power Equipment Under Multilevel Staircase Voltage. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 1563–1573. [Google Scholar] [CrossRef]
- Rohner, G.; Gfrörer, T.; Niklaus, P.S.; Huber, J.; Bortis, D.; Schweizer, M.; Kolar, J.W. Hardware-Based Comparative Analysis of Multilevel Inverter Topologies for Integrated Motor Drives Considering Overload Operation. IEEE Open J. Power Electron. 2023, 4, 934–944. [Google Scholar] [CrossRef]
- Florkowski, M.; Błaszczyk, P.; Klimczak, P. Partial discharges in twisted-pair magnet wires subject to multilevel PWM pulses. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2203–2210. [Google Scholar] [CrossRef]
- Lebey, T.; Rumi, A.; Cavallini, A. Challenges for Electrical Insulation Systems in High Voltage Aviation Applications. IEEE Electr. Insul. Mag. 2022, 38, 5–11. [Google Scholar] [CrossRef]
- Rumi, A.; Marinelli, J.G.; Barater, D.; Cavallini, A.; Seri, P. The Challenges of Reliable Dielectrics in Modern Aerospace Applications: The Hazard of Corona Resistant Materials. IEEE Trans. Transp. Electrif. 2022, 8, 4646–4653. [Google Scholar] [CrossRef]
- Fabiani, D.; Montanari, G.C.; Cavallini, A.; Mazzanti, G. Relation between space charge accumulation and partial discharge activity in enameled wires under PWM-like voltage waveforms. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 393–405. [Google Scholar] [CrossRef]
- Ji, Y.; Giangrande, P.; Zhao, W.; Wang, H.; Madonna, V.; Zhang, H.; Galea, M. Moving Toward Partial Discharge-Free Design of Electrical Machines for More Electric Aircraft Applications. IEEE Trans. Transp. Electrif. 2023, 9, 4668–4679. [Google Scholar] [CrossRef]
- IEC 60270; High-Voltage Test Techniques—Partial Discharge Measurements. IEC: Geneva, Switzerland, 2000.
- IEC TS 62478; High Voltage Test Techniques—Measurement of Partial Discharges by Electromagnetic and Acoustic Methods. IEC: Geneva, Switzerland, 2016.
- IEC 60034-27-1:2017; Rotating Electrical Machines—Part 27-1: Off-Line Partial Discharge Measurements on the Winding Insulation. IEC: Geneva, Switzerland, 2017.
- Florkowski, M.; Florkowska, B.; Zydron, P. Partial discharge echo obtained by chopped sequence. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1294–1302. [Google Scholar] [CrossRef]
- Gutfleisch, F.; Niemeyer, L. Measurement and Simulation of PD in Epoxy Voids. IEEE Trans. Dielectr. Electr. Insul. 1995, 2, 729–743. [Google Scholar] [CrossRef]
- Pan, C.; Wu, K.; Chen, G.; Gao, Y.; Florkowski, M.; Lv, Z.; Tang, J. Understanding Partial Discharge Behavior from the Memory Effect Induced by Residual Charges: A Review. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1951–1965. [Google Scholar] [CrossRef]
- McAllister, I.W. Decay of charge deposited on the wall of gaseous void. IEEE Trans. Electr. Insul. 1992, 27, 1202–1207. [Google Scholar] [CrossRef]
- Wu, K.; Okamoto, T.; Suzuoki, Y. Effects of discharge area and surface conductivity on partial discharge behavior in voids under square voltages. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 461–470. [Google Scholar] [CrossRef]
- Florkowski, M.; Kuniewski, M. Correspondence Between Charge Accumulated in Voids by Partial Discharges and Mapping of Surface Charge with PEA Detection. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 2199–2208. [Google Scholar] [CrossRef]
- Endo, K.; Miyake, H.; Tanaka, Y. Partial Discharge Detection by Space Charge Distribution Measurement. In Proceedings of the 30th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), Okinawa, Japan, 25–30 June 2023; pp. 96–99. [Google Scholar] [CrossRef]
- Florkowski, M. Measurement of partial discharge echo and extraction of decay parameters. Measurement 2024, 238, 115338. [Google Scholar] [CrossRef]
Specimen | Rsurf [Ω] | PDIV [kV] | PDEchoIV [kV] | τe [ms] | te_dur [ms] | Qe_max/Qmax [-] |
---|---|---|---|---|---|---|
Polyethylene (PE) | >1014 | 10.4 | 12.2 | 10.42 | >>20 | 0.47 |
Insulating paper (PK) | 1.3·1013 | 10.6 | 15.1 | 3.03 | 12 | 0.63 |
Nomex | 4.1·1012 | 11.2 | 14.4 | 0.67 | 14 | 0.33 |
XLPE power cable | - | 12.6 | 17.2 | 1.60 | 160 | 0.28 |
Helical coil | - | 0.390 | 0.570 | 5.12 | >20 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florkowski, M. Comparison of Effects of Partial Discharge Echo in Various High-Voltage Insulation Systems. Energies 2024, 17, 5114. https://doi.org/10.3390/en17205114
Florkowski M. Comparison of Effects of Partial Discharge Echo in Various High-Voltage Insulation Systems. Energies. 2024; 17(20):5114. https://doi.org/10.3390/en17205114
Chicago/Turabian StyleFlorkowski, Marek. 2024. "Comparison of Effects of Partial Discharge Echo in Various High-Voltage Insulation Systems" Energies 17, no. 20: 5114. https://doi.org/10.3390/en17205114
APA StyleFlorkowski, M. (2024). Comparison of Effects of Partial Discharge Echo in Various High-Voltage Insulation Systems. Energies, 17(20), 5114. https://doi.org/10.3390/en17205114