Bio-Waste from Urban and Rural Areas as a Source of Biogas and Methane—A Case Study from Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Types of Tested Waste
2.2. Frequency and Scope of Testing
2.3. Analysis
2.3.1. Construction of the Test Bench
- A digester (reactor)—1 dm3 glass bottle, sealed with a rubber stopper, with two spigots: one for feeding the biogas to the gas burette, the other for removing air from the chamber;
- A gas burette with a capacity of 2.30 dm3 (tube 45.8 mm in diameter and 1.40 m high), 5 mL elementary division, with three nozzles: two at the bottom of the burette, one to feed biogas from the reactor into the burette, the other to connect the burette to the equalisation tank; and one at the top, to remove biogas from the burette;
- The equalising tank—a polypropylene container with a lower tube containing a saturated solution of sodium chloride (brine);
- A thermostat in which the reactors are placed.
2.3.2. Sample Preparation for Test
2.3.3. Process Control
3. Results
3.1. Water Content and Loss on Ignition
3.2. Biogas and Methane Production
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eurostat. Available online: https://ec.europa.eu/eurostat/web/waste/data/database (accessed on 14 August 2023).
- Jędrczak, A. Composting and fermentation of biowaste—Advantages and disadvantages of processes. Civ. Environ. Eng. Rep. 2018, 28, 71–87. [Google Scholar] [CrossRef]
- Capson-Tojo, G.; Rouez, M.; Crest, M.; Steyer, J.F.; Delgenès, J.F.; Escudié, R. Food waste valorization via anaerobic processes: A review. Rev. Environ. Sci. Bio/Technol. 2016, 15, 499–547. [Google Scholar] [CrossRef]
- Yong, Z.; Dong, Y.; Zhang, X.; Tan, T. Anaerobic co-digestion of food waste and straw for biogas production. Renew. Energy 2015, 78, 527–530. [Google Scholar] [CrossRef]
- Kuruti, K.; Begum, S.; Ahuja, S.; Anupoju, R.G.; Juntupally, S.; Gandu, B.; Ahuja, K.D. Exploitation of rapid acidification phenomena of food waste in reducing the hydraulic retention time (HRT) of high rate anaerobic digester without conceding on biogas yield. Bioresour. Technol. 2017, 226, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Yu, M.; Wu, C.; Wang, Q.; Gao, M.; Huang, Q.; Liu, Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Zamanzadeh, M.; Hagen, L.H.; Svensson, K.; Linjordet, R.; Horn, S.J. Anaerobic digestion of food waste—Effect of recirculation and temperature on performance and microbiology. Water Res. 2016, 96, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; El-Mashad, H.M.; Hartman, K.; Wang, F.; Liu, G.; Choate, C.; Gamble, P. Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 2007, 98, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Yuan, H.; Pang, Y.; Chen, S.; Zhu, B.; Zou, D.; Liu, Y.; Ma, J.; Yu, L.; Li, X. Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): Single-phase vs. two-phase. Bioresour. Technol. 2013, 144, 80–85. [Google Scholar] [CrossRef]
- Odegard, I.Y.R.; Bergsma, G.C.; Naber, N.N. LCA van de Verwerking van Voedselresten van Huishoudens—Vergelijking van Verschillende Routes: Restafvalroute, GFT-Route, Waterketen en Nieuwe Waterketen; CE Delft: Delft, The Netherlands, 2015. [Google Scholar]
- ECN Data Report 2022—Compost and Digestate for a Circular Bioeconomy: Overview of Bio-Waste Collection, Treatment & Markets Across Europe—European Compost. Available online: https://www.compostnetwork.info/wordpress/wp-content/uploads/ECN-rapport-2022.pdf (accessed on 14 April 2023).
- Embenezer, A.V.; Dinesh Kumar, M.; Kavitha, S.; Khac Uan, D.; Rajesh Banu, J. Chapter 14—State of the art of food waste management in various countries. In Food Waste to Valuable Resources; Rajesh Banu, J., Gopalakrishnan, K., Gunasekaran, M., Kavitha, S., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 299–323. [Google Scholar] [CrossRef]
- Ye, M.; Liu, J.; Ma, C.; Li, Y.Y.; Zou, P.; Qian, G.; Xu, Z. Improving the stability and efficiency of anaerobic digestion of food waste using additives: A critical review. J. Clean. Prod. 2018, 192, 316–326. [Google Scholar] [CrossRef]
- David, A.; Govil, T.; Tripathi, A.K.; Mcgeary, J.; Farrar, K.; Sani, R.K. Thermophilic anaerobic digestion: Enhanced and sustainable methane production from co-digestion of food and lignocellulosic wastes. Energies 2018, 11, 2058. [Google Scholar] [CrossRef]
- Brown, D.; Li, Y. Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresour. Technol. 2013, 127, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, S.; Sharma, H.B.; Dubey, B.K. Anaerobic co-digestion of food waste with pretreated yard waste: A comparative study of methane production, kinetic modelling and energy balance. J. Clean. Prod. 2020, 243, 118480. [Google Scholar] [CrossRef]
- Perin, J.K.H.; Borth, P.L.B.; Torrecilhas, A.R.; Cunha, L.S.; Kuroda, E.K.; Fernandes, F. Optimization of methane production parameters during anaerobic co-digestion of food waste and garden waste. J. Clean. Prod. 2020, 272, 123130. [Google Scholar] [CrossRef]
- Oladejo, O.; Dahunsi, S.; Adesulu-Dahunsi, A.; Ojo, O.; Lawal, A.; Idowu, E.; Olanipekun, A.; Ibikunle, R.; Osueke, C.; Ajayi, O.; et al. Energy generation from anaerobic co-digestion of food waste, cow dung and piggery dung. Bioresour. Technol. 2020, 313, 123694. [Google Scholar] [CrossRef]
- Ahmed, B.; Tyagi, V.K.; Khan, A.A.; Kazmi, A. Optimization of process parameters for enhanced biogas yield from anaerobic co-digestion of OFMSW and bio-solids. Biomass Convers. Biorefinery 2020, 12, 607–618. [Google Scholar] [CrossRef]
- Jędrczak, A. Biological Waste Treatment; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2007; p. 456. (In Polish) [Google Scholar]
- Zhao, Y.; Yang, S.; Wang, D. Stable carbon and nitrogen isotopes as a potential tool to differentiate pork from organic and conventional systems. J. Sci. Food Agric. 2016, 96, 3950–3955. [Google Scholar] [CrossRef] [PubMed]
- Bontempo, L.; Perini, M.; Pianezze, S.; Horacek, M.; Roßmann, A.; Kelly, S.D.; Thomas, F.; Heinrich, K.; Schlicht, C.; Schellenberg, A.; et al. Characterization of Beef Coming from Different European Countries through Stable Isotope (H, C, N, and S) Ratio Analysis. Molecules 2023, 28, 2856. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, O.; Quilter, J.M.; Bahar, B.; Moloney, A.P.; Scrimgeour, C.M.; Begley, I.S.; Monahan, F.J. Inferring the origin and dietary history of beef from C, N and S stable isotope ratio analysis. Food Chem. 2005, 91, 545–549. [Google Scholar] [CrossRef]
- Yanagi, Y.; Hirooka, H.; Oishi, K.; Choumei, Y.; Hata, H.; Arai, M.; Kitagawa, M.; Gotoh, T.; Inada, S.; Kumagai, H. Stable carbon and nitrogen isotope analysis as a tool for inferring beef cattle feeding systems in Japan. Food Chem. 2012, 134, 502–506. [Google Scholar] [CrossRef]
- Cruz, V.C.; Araújo, P.C.; Sartori, J.R.; Pezzato, A.C.; Denadai, J.C.; Polycarpo, G.V.; Zanetti, L.H.; Ducatti, C. Poultry offal meal in chicken: Traceability using the technique of carbon (13 C/12 C)- and nitrogen (15 N/14 N)-stable isotopes. Poult. Sci. 2012, 91, 478–486. [Google Scholar] [CrossRef]
- Chang, J.; Tsai, J.J.; Wu, K.H. Composting of vegetable waste. Waste Manag. Res. 2006, 24, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Sall, P.M.; Antoun, H.; Chalifour, F.P.; Beauchamp, C.J. On farm composting of fruit and vegetable waste from grocery stores: A case under cold climatic conditions of eastern Canada. In Proceedings of the UM 2016, Third Symposium on Urban Mining and Circular Ecology, Bergano, Italy, 23–25 May 2016. [Google Scholar]
- Gislum, R.; Griffith, S.M. Tiller Production and Development in Perennial Ryegrass in Relation to Nitrogen Use. J. Plant Nutr. 2005, 27, 2135–2148. [Google Scholar] [CrossRef]
- Godley, A.; Lewin, K.; Frederickson, J.; Smith, R.; Blakey, N. Application of DR4 and BM100 biodegradability tests to treated and untreated organic wastes. In Proceedings of the Eleventh International Waste Management and Landfill Symposium. S. Margherita di Pula, Cagliari, Italy, 1–5 October 2007; p. 225. Available online: http://hdl.handle.net/1826/4121 (accessed on 9 November 2023).
- Chiumenti, A.; Boscaro, D.; da Borso, F.; Sartori, L.; Pezzuolo, A. Biogas from Fresh Spring and Summer Grass: Effect of the Harvesting Period. Energies 2018, 11, 1466. [Google Scholar] [CrossRef]
- Vargas-Soplín, A.J.; Prochnow, A.; Herrmann, C.; Tscheuschner, B.; Kreidenweis, U. The potential for biogas production from autumn tree leaves to supply energy and reduce greenhouse gas emissions—A case study from the city of Berlin. Resour. Conserv. Recycl. 2022, 187, 106598. [Google Scholar] [CrossRef]
- Dupla, M.; Conte, T.; Bouvier, J.C.; Bernel, N.; Steyer, J.P. Dynamic evaluation of a fixed bed anaerobic digestion process in response to organic overloads and toxicant shock loads. Water Sci. Technol. 2004, 49, 61–68. [Google Scholar] [CrossRef] [PubMed]
- KPGO2028, National Waste Management Plan 2028, Draft of 14.06.2022. Available online: https://bip.mos.gov.pl/strategie-plany-programy/krajowy-plan-gospodarki-odpadami (accessed on 10 January 2023).
- Dronia, W.; Połomka, J.; Jędrczak, J. Morphological composition of bio-waste collected selectively in towns and villages during autumn and winter. J. Air Waste Manag. Assoc. 2007, 73, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Accreditation Certificate of Testing Laboratory No AB 772 Is Valid until 02.01.2027; PCA: Warsaw, Poland, 2022.
- EN 15934:2012; Sludge, Treated Biowaste, Soil and Waste—Calculation of Dry Matter Fraction after Determination of Dry Residue or Water Content. European Committee for Standardization: Brussels, Belgium, 2012.
- EN 15935:2021; Soil, Waste, Treated Biowaste and Sludge—Determination of Loss on Ignition. European Committee for Standardization: Brussels, Belgium, 2021.
- Siemiątkowski, G. Emissions of methane from the landfill and the method of its determination. Sci. Work. Inst. Ceram. Build. Mater. 2014, 16, 78–88. [Google Scholar]
- Tibco Statistica v. 13.3; TIBCO Software Inc.: Palo Alto, CA, USA, 2017.
- Borth, P.L.B.; Perin, J.K.H.; Torrecilhas, A.R.; Pan, N.C.; Kuroda, E.K.; Fernandes, F. Biochemical methane potential of food and garden waste co digestion with variation in solid content and inoculum:substrate ratio. J. Mater. Cycles Waste Man. 2021, 23, 1974–1983. [Google Scholar] [CrossRef]
- Ding, Y.; Zhao, J.; Liu, J.W.; Zhou, J.; Cheng, L.; Zhao, J.; Shao, Z.; Iris, C.; Pan, B.; Li, X.; et al. A review of China’s municipal solid waste (MSW) and comparison with international regions: Management and technologies in treatment and resource utilization. J. Clean. Prod. 2021, 293, 126144. [Google Scholar] [CrossRef]
- Khan, A.H.; Alberto López-Maldonado, E.A.; Khan, N.A.; Villarreal-Gómez, L.J.; Munshi, F.M.; Alsabhan, A.H.; Perveen, K. Current solid waste management strategies and energy recovery in developing countries—State of art review. Chemosphere 2022, 291, 133088. [Google Scholar] [CrossRef]
- Tonini, D.; Wandl, A.; Meister, K.; Unceta, P.M.; Taelman, S.E.; Sanjuan-Delmás, D.; Dewulf, J.; Huygens, D. Quantitative sustainability assessment of household food waste management in the Amsterdam Metropolitan Area, Resources. Conserv. Recycl. 2020, 160, 104854. [Google Scholar] [CrossRef] [PubMed]
- Vambol, V.; Kowalczyk-Juśko, A.; Vambol, S.; Khan, N.A.; Mazur, A.; Goroneskul, M.; Kruzhilko, O. Multi criteria analysis of municipal solid waste management and resource recovery in Poland compared to other EU countries. Sci. Rep. 2023, 13, 22053. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. Bio-Waste in Europe—Turning Challenges into Opportunities; European Environment Agency: Copenhagen, Denmark, 2020; p. 51. [CrossRef]
- Myszograj, S. Biogas and Methane Potential of Pre-Thermally Disintegrated Bio-Waste. Energies 2019, 12, 3880. [Google Scholar] [CrossRef]
- Niemiec, M.; Sikora, J.; Szeląg-Sikora, A.; Gródek-Szostak, Z.; Komorowska, M. Assessment of the Possibilities for the Use of Selected Waste in Terms of Biogas Yield and Further Use of Its Digestate in Agriculture. Materials 2022, 15, 988. [Google Scholar] [CrossRef] [PubMed]
- Kasinath, A.; Fudala-Ksiazek, S.; Szopinska, M.; Bylinski, H.; Artichowicz, W.; Remiszewska-Skwarek, A.; Luczkiewicz, A. Biomass in biogas production: Pretreatment and codigestion. Renew. Sustain. Energy Rev. 2021, 150, 111509. [Google Scholar] [CrossRef]
- Sobczak, A.; Chomać-Pierzecka, E.; Kokiel, A.; Różycka, M.; Stasiak, J.; Soboń, D. Economic Conditions of Using Biodegradable Waste for Biogas Production, Using the Example of Poland and Germany. Energies 2022, 15, 5239. [Google Scholar] [CrossRef]
- Bedoić, R.; Čuček, L.; Ćosić, B.; Krajnc, D.; Smoljanić, G.; Kravanja, Z.; Ljubas, D.; Pukšec, T.; Duić, N. Green biomass to biogas—A study on anaerobic digestion of residue grass. J. Clean. Prod. 2019, 213, 700–709. [Google Scholar] [CrossRef]
- Kaszycki, P.; Głodniok, M.; Petryszak, P. Towards a bio-based circular economy in organic waste management and wastewater treatment—The Polish perspective. New Biotechnol. 2021, 61, 80–89. [Google Scholar] [CrossRef]
- Sulewski, P.; Kais, K.; Gołaś, M.; Rawa, G.; Urbańska, K.; Wąs, A. Home Bio-Waste Composting for the Circular Economy. Energies 2021, 14, 6164. [Google Scholar] [CrossRef]
Type of Waste | Water Content, % | Organic Matter Content, % DM | Nitrogen Content, % DM | C/N Ratio | Biogas Production, dm3·kg−1 DOM | Methane Content in Gas, % |
---|---|---|---|---|---|---|
Bio-waste | 52–80 | 34–81 | 0.5–2.7 | 10–25 | 150–600 | 58–65 |
Kitchen waste | 50–60 | 30–70 | 0.6–2.2 | 12–20 | 150–500 | 60–65 |
Pork (meat) | 68 | 28 | 5.0 | 2–3 | 428 | - |
Beef (meat) | 47 | 53 | 1.1 | 3–6 | 572 | - |
Poultry (meat) | 62 | 44 | 6.8 | 5–10 | 266 | - |
Canned meat (minced beef) | 87.3 | 93.8 | - | - | 675 | - |
Fruit waste and scraps | 55 | 61.5 | - | 32 | 400 | - |
Waste and scraps of vegetables | 86.4 | 80.2 | - | 12–13 | 370 | - |
Raw mixed vegetables | 86.6 | 94.5 | - | - | 330 | - |
Garden waste | 30–40 | 90 | 0.3–2.0 | 20–60 | 200–500 | 55–65 |
Green waste | 20–75 | 83–92 | 0.3–3.0 | 20–60 | 200–500 | - |
Grass (cuttings from lawnmowers) | 81.1–88.3 | 86.4–88 | - | 16–40 | 260–588 | |
Spring grass | 68 | 79.2 | 2.4 | 16–40 | 641 | - |
Summer grass | 66.7 | 90.3 | 3.1 | 16–40 | 619 | - |
Leaves | 20–72 | 82–93 | 0.2–1.0 | 20–60 | 100–330 | 58–62.6 |
Twigs and branches of trees (apple tree) | 63.5 | 96.6 | - | - | 96 | - |
Type of Waste | Water Content, % | Organic Matter Content, % DM | ||||
---|---|---|---|---|---|---|
Range of Values | Mean Value | S.D. | Range of Values | Mean Value | S.D. | |
Meat | 54.5–60.7 | 58.8 | 2.3 | 78.7–88.2 | 86.7 | 4.1 |
Fruits and vegetables | 82.1–87.5 | 84.4 | 1.9 | 84.4–85.3 | 84.7 | 0.4 |
Edible others | 62.7–66.6 | 66.1 | 1.6 | 85.1–95.9 | 88.7 | 4.2 |
Grass | 74.7–77.7 | 77.0 | 1.7 | 71.4–80.4 | 75.9 | 3.2 |
Leaves | 56.7–69.9 | 65.9 | 4.2 | 73.7–81.5 | 79.2 | 3.2 |
Branches | 40.9–56.0 | 52.6 | 5.3 | 87.5–89.4 | 88.1 | 0.8 |
Fraction < 10 mm and others | 30.8–51.7 | 41.9 | 7.3 | 38.1–42.9 | 37.8 | 3.8 |
Bio-waste | 68.3–72.7 | 71.3 | 1.6 | 67.5–71.4 | 68.6 | 1.7 |
Type of Waste | Biogas Production | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ndm3∙kg−1 W/W | Ndm3∙kg−1 DM | Ndm3∙kg−1 DOM | |||||||
Range of Values | Mean Value | S.D. | Range of Values | Mean Value | S.D. | Range of Values | Mean Value | S.D. | |
Meat | 232–322 | 270 | 33.3 | 591–707 | 656 | 43 | 752–821 | 756 | 39 |
Fruits and vegetables | 31.4–64.2 | 53.3 | 12.9 | 252–358 | 342 | 58 | 295–424 | 404 | 67 |
Edible others | 183–195 | 185 | 1.9 | 496–553 | 538 | 24 | 517–650 | 607 | 53 |
Grass | 63.6–151 | 106 | 31.2 | 251–674 | 461 | 161 | 352–838 | 608 | 185 |
Leaves | 39.6–106 | 70.9 | 24.8 | 91.5–354 | 208 | 103 | 124–434 | 263 | 120 |
Branches | 52.4–70.5 | 59.4 | 6.9 | 88.7–160 | 125 | 26 | 99.1–183 | 142 | 30 |
Fraction < 10 mm and others | 21.4–46.1 | 34.5 | 8.8 | 30.9–95.3 | 59.4 | 24 | 72.0–250 | 157 | 63 |
Bio-waste | 77.5–128 | 99.3 | 20.3 | 285–404 | 347 | 53 | 422–566 | 505 | 57 |
Type of Waste | Methane Production | Methane Content of Biogas | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ndm3∙kg−1 W/W | Ndm3∙kg−1 DM | Ndm3∙kg−1 DOM | % | |||||||||
Range of Values | Mean Value | S.D. | Range of Values | Mean Value | S.D. | Range of Values | Mean Value | S.D. | Range of Values | Mean Value | S.D. | |
Meat | 168–204 | 187 | 16.2 | 427–449 | 444 | 9 | 471–543 | 498 | 29 | 63.4–72.2 | 69.0 | 4.1 |
Fruits and vegetables | 18.6–43.5 | 35.2 | 9.8 | 149–243 | 212 | 37 | 175–288 | 250 | 44 | 59.4–67.8 | 66.1 | 3.5 |
Edible others | 103–114 | 113 | 7.5 | 276–342 | 334 | 28 | 288–402 | 370 | 48 | 55.6–61.9 | 61.7 | 3.5 |
Grass | 38.6–85.3 | 54.0 | 18.3 | 152–382 | 236 | 88 | 213–474 | 310 | 99 | 56.6–60.6 | 51.0 | 7.5 |
Leaves | 22.0–66.2 | 42.5 | 15.7 | 50.9–220 | 126 | 61 | 69.0–270 | 159 | 72 | 55.6–62.2 | 60.0 | 6.2 |
Branches | 32.0–34.9 | 32.0 | 1.3 | 54.2–79.3 | 66.9 | 11 | 60.6–90.7 | 76.0 | 13 | 49.5–61.1 | 53.9 | 4.3 |
Fraction < 10 mm and others | 12.8–25.4 | 19.6 | 4.5 | 18.5–52.6 | 33.7 | 13 | 43.0–138 | 88.7 | 34 | 55.1–59.7 | 56.8 | 2.0 |
Bio-waste | 57.4–86.0 | 67.3 | 11.1 | 211–271 | 215 | 33 | 312–380 | 314 | 39 | 67.1–74.0 | 62.1 | 5.8 |
Type of Waste | Biogas Production | Methane Production | ||||||
---|---|---|---|---|---|---|---|---|
Ndm3∙kg−1 W/W | Ndm3∙kg−1 DM | Ndm3∙kg−1 DOM | S.D. | Ndm3∙kg−1 W/W | Ndm3∙kg−1 DM | Ndm3∙kg−1 DOM | S.D. | |
Bio-waste—studies | 99.3 | 347 | 505 | 57 | 61.7 | 215 | 314 | 39 |
Bio-waste—calculated values | 64.2 | 285 | 363 | 90 | 38.0 | 166 | 210 | 51 |
Value difference (line 1 − line 2) | 35.1 | 62 | 143 | 77 | 23.7 | 49 | 104 | 24 |
Value quotient (line 1/row 2) | 1.55 | 1.22 | 1.39 | 0.33 | 1.62 | 1.29 | 1.49 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dronia, W.; Kostecki, J.; Połomka, J.; Jędrczak, A. Bio-Waste from Urban and Rural Areas as a Source of Biogas and Methane—A Case Study from Poland. Energies 2024, 17, 317. https://doi.org/10.3390/en17020317
Dronia W, Kostecki J, Połomka J, Jędrczak A. Bio-Waste from Urban and Rural Areas as a Source of Biogas and Methane—A Case Study from Poland. Energies. 2024; 17(2):317. https://doi.org/10.3390/en17020317
Chicago/Turabian StyleDronia, Wojciech, Jakub Kostecki, Jacek Połomka, and Andrzej Jędrczak. 2024. "Bio-Waste from Urban and Rural Areas as a Source of Biogas and Methane—A Case Study from Poland" Energies 17, no. 2: 317. https://doi.org/10.3390/en17020317
APA StyleDronia, W., Kostecki, J., Połomka, J., & Jędrczak, A. (2024). Bio-Waste from Urban and Rural Areas as a Source of Biogas and Methane—A Case Study from Poland. Energies, 17(2), 317. https://doi.org/10.3390/en17020317