Global Review on Environmental Impacts of Onshore Wind Energy in the Field of Tension between Human Societies and Natural Systems
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. General Characteristics of the Reviewed Studies
3.2. Impacts on the Abiotic Environment (A)
3.2.1. Overview
3.2.2. Micrometeorology
3.2.3. Ecosystem Processes
3.2.4. Soil Physics and Pollution
3.2.5. Research Gaps
3.2.6. Mitigation Strategies
3.3. Impacts on the Biotic Environment Excluding Bird and Bats (B)
3.3.1. Overview
3.3.2. General Biotic Impacts
3.3.3. Forests
3.3.4. Vegetation
3.3.5. Wildlife
3.3.6. Research Gaps
3.3.7. Mitigation Strategies
3.4. Impacts on Birds and Bats (C)
3.4.1. Overview
3.4.2. Activity and Direct Mortality
3.4.3. Habitat Alterations
3.4.4. Behavioral Impacts
3.4.5. Cumulative and Population-Level Impacts
3.4.6. Research Gaps
3.4.7. Mitigation Strategies
3.5. Noise Impacts (D)
3.5.1. Overview
3.5.2. Noise Characteristics and Noise Intensity
3.5.3. Noise Propagation
3.5.4. Social Perception and Human Health
3.5.5. Impacts on Wildlife
3.5.6. Research Gaps
3.5.7. Mitigation Strategies
3.6. Visual Impacts (E)
3.6.1. Overview
3.6.2. Landscape Aesthetics
3.6.3. Visual Effects and Wind Turbine Lighting
3.6.4. Impacts on Wildlife
3.6.5. Research Gaps
3.6.6. Mitigation Strategies
3.7. Other Impacts (F)
3.7.1. Electromagnetic Interference
3.7.2. Land Use Footprint and Changes
3.8. Impact Pathways in the Context of Social Acceptance (G)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, S.K.; Park, S. Impacts of renewable energy on climate vulnerability: A global perspective for energy transition in a climate adaptation framework. Sci. Total Environ. 2023, 859, 160175. [Google Scholar] [CrossRef]
- Osman, A.I.; Chen, L.; Yang, M.; Msigwa, G.; Farghali, M.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Cost, environmental impact, and resilience of renewable energy under a changing climate: A review. Environ. Chem. Lett. 2023, 21, 741–764. [Google Scholar] [CrossRef]
- IRENA. Future of Wind: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects. 2019. Available online: https://www.irena.org/publications/2019/Oct/Future-of-wind (accessed on 9 February 2024).
- Kandy, D.M.; Mörtberg, U.; Wretling, V.; Kuhlefelt, A.; Byström, G.; Polatidis, H.; Barney, A.; Balfors, B. Spatial multicriteria framework for sustainable wind-farm planning–Accounting for conflicts. Renew. Sustain. Energy Rev. 2024, 189, 113856. [Google Scholar] [CrossRef]
- Sayed, E.T.; Wilberforce, T.; Elsaid, K.; Rabaia, M.K.H.; Abdelkareem, M.A.; Chae, K.J.; Olabi, A.G. A critical review on environmental impacts of renewable energy systems and mitigation strategies: Wind, hydro, biomass and geothermal. Sci. Total Environ. 2021, 766, 144505. [Google Scholar] [CrossRef]
- GWEC. Global Wind Report 2023. Available online: https://gwec.net/globalwindreport2023/ (accessed on 9 February 2024).
- McKay, R.A.; Johns, S.E.; Bischof, R.; Matthews, F.; van der Kooij, J.; Yoh, N.; Eldegard, K. Wind energy development can lead to guild-specific habitat loss in boreal forest bats. Wildl. Biol. 2024, 2024, e01168. [Google Scholar] [CrossRef]
- Watson, J.E.; Evans, T.; Venter, O.; Williams, B.; Tulloch, A.; Stewart, C.; Thompson, I.; Ray, J.C.; Murray, K.; Salazar, A.; et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2018, 2, 599–610. [Google Scholar] [CrossRef]
- Agudelo, M.S.; Mabee, T.J.; Palmer, R.; Anderson, R. Post-construction bird and bat fatality monitoring studies at wind energy projects in Latin America: A summary and review. Heliyon 2021, 7, e07251. [Google Scholar] [CrossRef] [PubMed]
- Anshelm, J.; Simon, H. Power production and environmental opinions—Environmentally motivated resistance to wind power in Sweden. Renew. Sustain. Energy Rev. 2016, 57, 1545–1555. [Google Scholar] [CrossRef]
- Armstrong, A.; Burton, R.R.; Lee, S.E.; Mobbs, S.; Ostle, N.; Smith, V.; Waldron, S.; Whitaker, J. Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation. Environ. Res. Lett. 2016, 11, 044024. [Google Scholar] [CrossRef]
- Arnett, E.B.; May, R.F. Mitigating Wind Energy Impacts on Wildlife: Approaches for Multiple Taxa. Hum.-Wildl. Interact. 2016, 10, 28–41. [Google Scholar]
- Baidya Roy, S.; Traiteur, J.J. Impacts of wind farms on surface air temperatures. Proc. Natl. Acad. Sci. USA 2010, 107, 17899–17904. [Google Scholar] [CrossRef] [PubMed]
- Baidya Roy, S.; Pacala, S.W.; Walko, R.L. Can large wind farms affect local meteorology? J. Geophys. Res. 2004, 109, D19101. [Google Scholar] [CrossRef]
- Balotari-Chiebao, F.; Brommer, J.E.; Saurola, P.; Ijäsc, A.; Laaksonen, T. Assessing space use by pre-breeding white-tailed eagles in the context of wind-energy development in Finland. Landsc. Urban Plan. 2018, 177, 251–258. [Google Scholar] [CrossRef]
- Balotari-Chiebao, F.; Valkama, J.; Byholm, P. Assessing the vulnerability of breeding bird populations to onshore wind-energy developments in Finland. Ornis. Fenn. 2021, 98, 59–73. [Google Scholar] [CrossRef]
- Balotari-Chiebao, F.; Santangeli, A.; Piirainen, S.; Byholm, P. Wind energy expansion and birds: Identifying priority areas for impact avoidance at a national level. Biol. Conserv. 2023, 277, 109851. [Google Scholar] [CrossRef]
- Bastos, R.; Pinhanços, A.; Santos, M.; Fernandes, R.F.; Vicente, J.R.; Morinha, F.; Honrado, J.P.; Travassos, P.; Barros, P.; Cabral, J.A. Model-assisted monitoring of biodiversity—Evaluating the regional cumulative impact of wind farms on birds: How can spatially explicit dynamic modelling improve impact assessments and monitoring? J. Appl. Ecol. 2016, 53, 1330–1340. [Google Scholar] [CrossRef]
- Baynard, C.W.; Mjachina, K.; Richardson, R.D.; Schupp, R.W.; Lambert, J.D.; Chibilyev, A.A. Energy Development in Colorado’s Pawnee National Grasslands: Mapping and Measuring the Disturbance Footprint of Renewables and Non-Renewables. Environ. Manag. 2017, 59, 995–1016. [Google Scholar] [CrossRef] [PubMed]
- Bennett, V.J.; Hale, A.A.; Williams, D.A. When the excrement hits the fan: Fecal surveys reveal species-specific bat activity at wind turbines. Mammal. Biol. 2017, 87, 125–129. [Google Scholar] [CrossRef]
- Bernard, E.; Paese, A.; Machado, R.B.; de Souza Aguiar, L.M. Blown in the wind: Bats and wind farms in Brazil. Nat. Conserv. 2014, 12, 106–111. [Google Scholar] [CrossRef]
- Bertagnolio, F.; Herr, M.; Madsen, K.D. A roadmap for required technological advancements to further reduce onshore wind turbine noise impact on the environment. Wiley Interdiscip. Rev. Energy Environ. 2023, 12, e469. [Google Scholar] [CrossRef]
- Betakova, V.; Vojar, J.; Sklenicka, P. Wind turbines location: How many and how far? Appl. Energy 2015, 151, 23–31. [Google Scholar] [CrossRef]
- Bishop, I.D. Evidence synthesis in landscape aesthetics: An honourable endeavour yet insufficient applicable knowledge. Socio-Ecol. Pract. Res. 2019, 1, 93–108. [Google Scholar] [CrossRef]
- Bjärstig, T.; Mancheva, I.; Zachrisson, A.; Neumann, W.; Svensson, J. Is large-scale wind power a problem, solution, or victim? A frame analysis of the debate in Swedish media. Energy Res. Soc. Sci. 2022, 83, 102337. [Google Scholar] [CrossRef]
- Blumendeller, E.; Kimmig, I.; Huber, G.; Rettler, P.; Cheng, P.W. Investigations on low frequency noises of onshore wind turbines. Acoustics 2020, 2, 353–365. [Google Scholar] [CrossRef]
- Bose, A.; Dürr, T.; Klenke, R.A.; Henle, K. Assessing the spatial distribution of avian collision risks at wind turbine structures in Brandenburg, Germany. Conserv. Sci. Pract. 2020, 2, e199. [Google Scholar] [CrossRef]
- Browning, E.; Barlow, K.E.; Burns, F.; Hawkins, C.; Boughey, K. Drivers of European bat population change: A review reveals evidence gaps. Mammal. Rev. 2021, 51, 353–368. [Google Scholar] [CrossRef]
- Buchholz, S.; Kelm, V.; Ghanem, S.J. Mono-specific plantations are valuable bat habits: Implication for wind turbine development. Eur. J. Wildl. Res. 2021, 67, 1. [Google Scholar] [CrossRef]
- Bunzel, K.; Bovet, J.; Thrän, D.; Eichhorn, M. Hidden outlaws in the forest? A legal and spatial analysis of onshore wind energy in Germany. Energy Res. Soc. Sci. 2019, 55, 14–25. [Google Scholar] [CrossRef]
- Cerri, J.; Fozzi, I.; De Rosa, D.; Aresu, M.; Apollonio, M.; Berlinguer, F. Griffon Vulture movements are concentrated around roost and supplementary feeding stations: Implications for wind energy development on Mediterranean islands. Glob. Ecol. Conserv. 2023, 47, e02651. [Google Scholar] [CrossRef]
- Chowdhury, N.E.; Shakib, M.A.; Xu, F.; Salehin, S.; Islam, M.R.; Bhuiyan, A.A. Adverse environmental impacts of wind farm installations and alternative research pathways to their mitigation. Clean Eng. Technol. 2022, 7, 100415. [Google Scholar]
- Coppes, J.; Braunisch, V.; Bollmann, K.; Storch, I.; Mollet, P.; Grünschachner-Berger, V.; Taubmann, J.; Suchant, R.; Nopp-Mayr, U. The impact of wind energy facilities on grouse: A systematic review. J. Ornithol. 2020, 161, 1–15. [Google Scholar] [CrossRef]
- Cryan, P.M.; Gorresen, P.M.; Hein, C.D.; Schirmacher, M.R.; Diehl, R.H.; Huso, M.M.; Hayman, D.T.S.; Fricker, P.D.; Bonaccorso, F.J.; Johnson, D.H.; et al. Behavior of bats at wind turbines. Proc. Natl. Acad. Sci. USA 2014, 11, 15126–15131. [Google Scholar] [CrossRef]
- Dai, K.; Bergot, A.; Liang, C.; Xiang, W.N.; Huang, Z. Environmental issues associated with wind energy: A review. Renew. Energy 2015, 75, 911–921. [Google Scholar] [CrossRef]
- Darabi, S.; Monavari, S.M.; Jozi, S.A.; Rahimi, R.; Vafaeinejad, A. Visual impact assessment of renewable energy developments with the application of multi-criteria decision-making method. Environ. Dev. Sustain. 2023, 25, 4437–4451. [Google Scholar] [CrossRef]
- Dhar, A.; Naeth, M.A.; Jennings, P.D.; El-Din, M.G. Perspectives on environmental impacts and a land reclamation strategy for solar and wind energy systems. Sci. Total Environ. 2020, 718, 134602. [Google Scholar] [CrossRef]
- Dhunny, A.Z.; Allam, Z.; Lobine, D.; Lollchund, M.R. Sustainable renewable energy planning and wind farming optimization from a biodiversity perspective. Energy 2019, 185, 1282–1297. [Google Scholar] [CrossRef]
- Diffendorfer, J.E.; Stanton, J.C.; Beston, J.A.; Thogmartin, W.E.; Loss, S.R.; Katzner, T.E.; Johnson, D.H.; Erickson, R.A.; Merrill, M.D.; Corum, M.D. Demographic and potential biological removal models identify raptor species sensitive to current and future wind energy. Ecosphere 2021, 12, e03531. [Google Scholar] [CrossRef]
- Diógenes, J.R.F.; Claro, J.; Rodrigues, J.C.; Loureiro, M.V. Barriers to onshore wind energy implementation: A systematic review. Energy Res. Soc. Sci. 2020, 60, 101337. [Google Scholar] [CrossRef]
- Dunnett, S.; Holland, R.A.; Taylor, G.; Eigenbrod, F. Predicted wind and solar energy expansion has minimal overlap with multiple conservation priorities across global regions. Proc. Natl. Acad. Sci. USA 2022, 119, e2104764119. [Google Scholar] [CrossRef]
- Enevoldsen, P. Onshore wind energy in Northern European forests: Reviewing the risks. Renew. Sustain. Energy Rev. 2016, 60, 1152–1262. [Google Scholar] [CrossRef]
- Enevoldsen, P.; Sovacool, B.K. Examining the social acceptance of wind energy: Practical guidelines for onshore wind project development in France. Renew. Sustain. Energy Rev. 2016, 53, 178–184. [Google Scholar] [CrossRef]
- Enevoldsen, P.; Valentine, S.V. Do onshore and offshore wind farm development patterns differ? Energy Sustain. Dev. 2016, 35, 41–51. [Google Scholar] [CrossRef]
- Erickson, W.P.; Wolfe, M.M.; Bay, K.J.; Johnson, D.H.; Gehring, J.L. A comprehensive analysis of small-passerine fatalities from collision with turbines at wind energy facilities. PLoS ONE 2014, 9, e107491. [Google Scholar] [CrossRef] [PubMed]
- Everaert, J. Collision risk and micro-avoidance rates of birds with wind turbines in Flanders. Bird Study 2014, 61, 220–230. [Google Scholar] [CrossRef]
- Fang, J.; Peringer, A.; Stupariu, M.S.; Pătru-Stupariu, I.; Buttler, A.; Golay, F.; Porté-Agel, F. Shifts in wind energy potential following land-use driven vegetation dynamics in complex terrain. Sci. Total Environ. 2018, 639, 374–384. [Google Scholar] [CrossRef]
- Farfán, M.A.; Duarte, J.; Muñoz, A.R.; Fa, J.E.; Vargas, J.M. Differential recovery of habitat use by birds after wind farm installation: A multi-year comparison. Environ. Impact Assess. Rev. 2017, 64, 8–15. [Google Scholar] [CrossRef]
- Fast, S.; Mabee, W. Place-making and trust-building: The influence of policy on host community responses to wind farms. Energy Policy 2015, 81, 27–37. [Google Scholar] [CrossRef]
- Fernández-Bellon, D.; Wilson, M.W.; O’Halloran, J. Effects of development of wind energy and associated changes in land use on bird densities in upland areas. Conserv. Biol. 2018, 33, 413–422. [Google Scholar] [CrossRef]
- Ferreira, D.; Freixo, C.; Cabral, J.A.; Santos, M. Is wind energy increasing the impact of socio-ecological change on Mediterranean mountain ecosystems? Insights from a modelling study relating wind power boost options with a declining species. J. Environ. Manag. 2019, 238, 283–295. [Google Scholar] [CrossRef]
- Foo, C.F.; Bennett, V.J.; Hale, A.M.; Korstian, J.M.; Schildt, A.J.; Williams, D.A. Increasing evidence that bats actively forage at wind turbines. PeerJ 2017, 5, e3985. [Google Scholar] [CrossRef]
- Frick, W.F.; Baerwald, E.F.; Pollock, J.F.; Barclay, R.M.R.; Szymanski, J.A.; Weller, T.J.; Russel, A.L.; Loeb, S.C.; Medellin, R.A.; McGuire, L.P. Fatalities at wind turbines may threaten population viability of a migratory bat. Biol. Conversat. 2017, 209, 172–177. [Google Scholar] [CrossRef]
- Friedenberg, N.A.; Frick, W.F. Assessing fatality minimization for hoary bats amid continued wind energy development. Biol. Conservat. 2021, 262, 109309. [Google Scholar] [CrossRef]
- García, J.H.; Cherry, T.L.; Kallbekken, S.; Torvanger, A. Willingness to accept local wind energy development: Does the compensation mechanism matter? Energy Policy 2016, 99, 165–173. [Google Scholar] [CrossRef]
- Gasparatos, A.; Doll, C.N.H.; Esteban, M.; Ahmed, A.; Olang, T.A. Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renew. Sustain. Energy Rev. 2017, 70, 161–184. [Google Scholar] [CrossRef]
- Gasparatos, A.; Ahmed, A.; Voigt, C. Facilitating policy responses for renewable energy and biodiversity. Trends Ecol. Evol. 2021, 36, 377–380. [Google Scholar] [CrossRef]
- Gauld, J.G.; Silva, J.P.; Atkinson, P.W.; Record, P.; Acácio, M.; Arkumarev, V.; Blas, J.; Bouten, W.; Burton, N.; Catry, I.; et al. Hotspots in the grid: Avian sensitivity and vulnerability to collision risk from energy infrastructure interactions in Europe and North Africa. J. Appl. Ecol. 2022, 59, 1496–1512. [Google Scholar] [CrossRef]
- Gaultier, S.P.; Blomberg, A.S.; Ijäs, A.; Vasko, V.; Vesterinen, E.J.; Brommer, J.E.; Lilley, T.M. Bats and wind farms: The role and importance of the Baltic Sea countries in the European context of power transition and biodiversity conservation. Environ. Sci. Technol. 2020, 54, 10385–10398. [Google Scholar] [CrossRef] [PubMed]
- Gibson, L.; Wilman, E.N.; Laurance, W.F. How Green is ‘Green’ Energy? Trends Ecol. Evol. 2017, 32, 922–935. [Google Scholar] [CrossRef]
- González, A.; Connell, P. Developing a renewable energy planning decision-support tool: Stakeholder input guiding strategic decisions. Appl. Energy 2022, 312, 118782. [Google Scholar] [CrossRef]
- Gorman, C.E.; Torsney, A.; Gaughran, A.; McKeon, C.M.; Farrell, C.A.; White, C.; Donohue, I.; Stout, J.C.; Buckley, Y.M. Reconciling climate action with the need for biodiversity protection, restoration and rehabilitation. Sci. Total Environ. 2023, 857, 159316. [Google Scholar] [CrossRef]
- Groth, T.M.; Vogt, C. Residents’ perceptions of wind turbines: An analysis of two townships in Michigan. Energy Policy 2014, 65, 251–260. [Google Scholar] [CrossRef]
- Guan, J. Landscape Visual Impact Evaluation for Onshore Wind Farm: A Case Study. ISPRS Int. J. Geo-Inf. 2022, 11, 594. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, X.; Du, S.; Li, C.; Siu, Y.L.; Rong, Y.; Yang, H. The impact of onshore wind power projects on ecological corridors and landscape connectivity in Shanxi, China. J. Clean Prod. 2020, 254, 120075. [Google Scholar] [CrossRef]
- Hamed, T.A.; Alshare, A. Environmental impact of solar and wind energy—A review. J. Sustain Dev. Energy Water Environ. Syst. 2022, 10, 1–23. [Google Scholar] [CrossRef]
- Heal, K.; Phin, A.; Waldron, S.; Flowers, H.; Bruneau, P.; Coupar, A.; Cundill, A. Wind farm development on peatlands increases fluvial macronutrient loading. Ambio 2020, 49, 442–459. [Google Scholar] [CrossRef] [PubMed]
- Heuck, C.; Hermann, C.; Levers, C.; Leitão, P.J.; Krone, O.; Brandl, R.; Albrecht, J. Wind turbines in high quality habitat cause disproportionate increases in collision mortality of the white-tailed eagle. Biol. Conserv. 2019, 236, 44–51. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Archer, C.L. Saturation wind power potential and its implications for wind energy. Proc. Natl. Acad. Sci. USA 2012, 109, 15679–15684. [Google Scholar] [CrossRef] [PubMed]
- Jameson, J.W.; Willis, C.K.R. Activity of tree bats at anthropogenic tall structures: Implications for mortality of bats at wind turbines. Anim. Behav. 2014, 97, 145–152. [Google Scholar] [CrossRef]
- Janhunen, S.; Hujala, M.; Pätäri, S. Owners of second homes, locals and their attitudes towards future rural wind farm. Energy Policy 2014, 73, 450–460. [Google Scholar] [CrossRef]
- Jones, N.F.; Pejchar, L.; Kiesecker, J.M. The Energy Footprint: How oil, natural gas, and wind energy affect land for biodiversity and the flow of ecosystem services. BioScience 2015, 65, 290–301. [Google Scholar] [CrossRef]
- Kati, V.; Kassara, C.; Vrontisi, Z.; Moustakas, A. The biodiversity-wind energy-land use nexus in a global biodiversity hotspot. Sci. Total Environ. 2021, 768, 144471. [Google Scholar] [CrossRef] [PubMed]
- Katzner, T.E.; Brandes, D.; Miller, T.; Lanzone, M.; Maisonneuve, C.; Tremblay, J.A.; Mulvihill, R.; Merovich, G.T., Jr. Topography drives migratory flight altitude of golden eagles: Implications for on-shore wind energy development. J. Appl. Ecol. 2012, 49, 1178–1186. [Google Scholar] [CrossRef]
- Katzner, T.; Bennett, V.; Miller, T.; Duerr, A.; Braham, M.; Hale, A. Wind Energy Development: Methods for Assessing Risks to Birds and Bats Pre-Construction. Hum.-Wildl. Interact. 2016, 10, 42–52. [Google Scholar]
- Katzner, T.E.; Nelson, D.M.; Diffendorfer, J.E.; Duerr, A.E.; Campbell, C.J.; Leslie, D.; Vander Zanden, H.B.; Yee, J.L.; Sur, M.; Huso, M.M.P.; et al. Wind energy: An ecological challenge. Science 2019, 366, 1206–1207. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, L.; Oldfield, I.F.; Park, K. Responses of bats to clear fell harvesting in Sitka Spruce plantations, and implications for wind turbine installation. For. Ecol. Manag. 2017, 395, 1–8. [Google Scholar] [CrossRef]
- Kokologos, D.; Tsitoura, I.; Kouloumpis, V.; Tsoutsos, T. Visual impact assessment method for wind parks: A case study in Crete. Land Use Policy 2014, 39, 110–120. [Google Scholar] [CrossRef]
- Köppel, J.; Dahmen, M.; Helfrich, J.; Schuster, E.; Bulling, L. Cautious but committed: Moving towards adaptive planning and operation strategies for renewable energy’s wildlife implications. Environ. Manag. 2014, 54, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Kumara, H.N.; Babu, S.; Rao, G.B.; Mahato, S.; Bhattacharya, M.; Rao, N.V.R.; Tamiliniyan, D.; Parengal, H.; Deepak, D.; Balakrishnan, A.; et al. Responses of birds and mammals to long-established wind farms in India. Sci. Rep. 2022, 12, 1339. [Google Scholar] [CrossRef]
- Laranjeiro, T.; May, R.; Verones, F. Impacts of onshore wind energy production on birds and bats: Recommendations for future life cycle impact assessment developments. Int. J. Life Cycle Assess. 2018, 23, 2007–2023. [Google Scholar] [CrossRef]
- Lemaître, J.; Lamarre, V. Effects of wind energy production on a threatened species, the Bicknell’s Thrush Catharus bicknelli, with and without mitigation. Bird Conserv. Int. 2020, 30, 194–209. [Google Scholar] [CrossRef]
- Li, G.; Yan, C.; Wu, H. Onshore wind farms do not affect global wind speeds or patterns. Heliyon 2023, 9, e12879. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.Y. A review on wind turbine noise mechanism and de-noising techniques. Renew. Energy 2017, 108, 311–320. [Google Scholar] [CrossRef]
- Łopucki, R.; Perzanowski, K. Effects of wind turbines on spatial distribution of the European hamster. Ecol. Indic. 2018, 84, 433–436. [Google Scholar] [CrossRef]
- Loss, S.R.; Will, T.; Marra, P.P. Direct mortality of birds from anthropogenic causes. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 99–120. [Google Scholar] [CrossRef]
- Lundquist, J.K.; DuVivier, K.K.; Kaffine, D.; Tomaszewski, J.M. Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development. Nat. Energy 2019, 4, 26–34. [Google Scholar] [CrossRef]
- Luo, L.; Zhuang, Y.; Duan, Q.; Dong, L.; Yu, Y.; Liu, Y.; Chen, K.; Gao, X. Local climatic and environmental effects of an onshore wind farm in North China. Agric. Meteorol. 2021, 308, 108607. [Google Scholar] [CrossRef]
- Ma, B.; Yang, J.; Chen, X.; Zhang, L.; Zeng, W. Revealing the ecological impact of low-speed mountain wind power on vegetation and soil erosion in South China: A case study of a typical wind farm in Yunnan. J. Clean. Prod. 2023, 419, 138020. [Google Scholar] [CrossRef]
- MacGregor, K.A.; Lemaître, J. The management utility of large-scale environmental drivers of bat mortality at wind energy facilities: The effects of facility size, elevation and geographic location. Glob. Ecol. Conserv. 2020, 21, e00871. [Google Scholar] [CrossRef]
- Maehr, A.M.; Watts, G.R.; Hanratty, J.; Talmi, D. Emotional response to images of wind turbines: A psychophysiological study of their visual impact on the landscape. Landsc. Urban Plan 2015, 142, 71–79. [Google Scholar] [CrossRef]
- Manchado, C.; Gomez-Jauregui, V.; Lizcano, P.E.; Iglesias, A.; Galvez, A.; Otero, C. Wind farm repowering guided by visual impact criteria. Renew. Energy 2019, 135, 197–207. [Google Scholar] [CrossRef]
- Martínez-Martínez, Y.; Dewulf, J.; Casas-Ledón, Y. GIS-based site suitability analysis and ecosystem services approach for supporting renewable energy development in south-central Chile. Renew. Energy 2022, 182, 363–376. [Google Scholar] [CrossRef]
- Marvel, K.; Kravitz, B.; Caldeira, K. Geophysical limits to global wind power. Nat. Clim. Chang. 2013, 3, 118–121. [Google Scholar] [CrossRef]
- May, R.F. A unifying framework for the underlying mechanisms of avian avoidance of wind turbines. Biol. Conservat. 2015, 190, 179–187. [Google Scholar] [CrossRef]
- May, R.; Reitan, O.; Bevanger, K.; Lorentsen, S.H.; Nygård, T. Mitigating wind-turbine induced avian mortality: Sensory, aerodynamic and cognitive constraints and options. Renew. Sustain. Energy Rev. 2015, 42, 170–181. [Google Scholar] [CrossRef]
- May, R.; Jackson, C.R.; Middel, H.; Stokke, B.G.; Verones, F. Global life-cycle impacts of onshore wind-power plants on bird richness. Environ. Sustain. Indic. 2020, 8, 100080. [Google Scholar] [CrossRef]
- May, R.; Middel, H.; Stokke, B.G.; Jackson, C.; Verones, F. Life-cycle impacts of wind energy development on bird diversity in Norway. Environ. Impact Assess. Rev. 2021, 90, 106635. [Google Scholar] [CrossRef]
- Meyerhoff, J. Do turbines in the vicinity of respondents’ residences influence choices among programmes for future wind power generation? J. Choice Model. 2013, 7, 58–71. [Google Scholar] [CrossRef]
- Millon, L.; Julien, J.F.; Julliard, R.; Kerbiriou, C. Bat activity in intensively farmed landscapes with wind turbines and offset measures. Ecol. Eng. 2015, 75, 250–257. [Google Scholar] [CrossRef]
- Morkūne, R.; Marciukaitis, M.; Jurkin, V.; Gecevicius, G.; Morkunas, J.; Raudonikis, L.; Markevičius, A.; Narščius, A.; Gasiūnaitė, Z.R. Wind energy development and wildlife conservation in Lithuania: A mapping tool for conflict assessment. PLoS ONE 2020, 15, e0227735. [Google Scholar] [CrossRef]
- Msigwa, G.; Ighalo, J.O.; Yap, P.S. Considerations on environmental, economic, and energy impacts of wind energy generation: Projections towards sustainability initiatives. Sci. Total Environ. 2022, 849, 157755. [Google Scholar] [CrossRef]
- Müller, J.; Brandl, R.; Buchner, J.; Pretzsch, H.; Seifert, S.; Strätz, C.; Veith, M.; Fenton, B. From ground to above canopy—Bat activity in mature forests is driven by vegetation density and height. For. Ecol. Manag. 2013, 306, 179–184. [Google Scholar] [CrossRef]
- Ottinger, G.; Hargrave, T.J.; Hopson, E. Procedural justice in wind facility siting: Recommendations for state-led siting processes. Energy Policy 2014, 65, 662–669. [Google Scholar] [CrossRef]
- Palmer, J.F. The contribution of key observation point evaluation to a scientifically rigorous approach to visual impact assessment. Landsc. Urban Plan. 2019, 183, 100–110. [Google Scholar] [CrossRef]
- Pearse, A.T.; Metzger, K.L.; Brandt, D.A.; Shaffer, J.A.; Bidwell, M.T.; Harrell, W. Migrating Whooping Cranes avoid wind-energy infrastructure when selecting stopover habitat. Ecol. Appl. 2021, 31, e02324. [Google Scholar] [CrossRef]
- Pepermans, Y.; Loots, I. Wind farm struggles in Flanders fields: A sociological perspective. Energy Policy 2013, 59, 321–328. [Google Scholar] [CrossRef]
- Pescador, M.; Gómez Ramírez, J.I.; Peris, S.J. Effectiveness of a mitigation measure for the lesser kestrel (Falco naumanni) in wind farms in Spain. J. Environ. Manag. 2019, 231, 919–925. [Google Scholar] [CrossRef]
- Piasecka, I.; Tomporowski, A.; Flizikowski, J.; Kruszelnicka, W.; Kasner, R.; Mrozinski, A. Life Cycle Analysis of Ecological Impacts of an Offshore and a Land-Based Wind Power Plant. Appl. Sci. 2019, 9, 231. [Google Scholar] [CrossRef]
- Pohl, J.; Hübner, G.; Mohs, A. Acceptance and stress effects of aircraft obstruction markings of wind turbines. Energy Policy 2012, 50, 592–600. [Google Scholar] [CrossRef]
- Ponitka, J.; Boettner, S. Challenges of future energy landscapes in Germany—A nature conservation perspective. Energy Sustain. Soc. 2020, 10, 17. [Google Scholar] [CrossRef]
- Qin, Y.; Li, Y.; Xu, R.; Hou, C.; Armstrong, A.; Bach, E.; Wang, Y.; Fu, B. Impacts of 319 wind farms on surface temperature and vegetation in the United States. Environ. Res. Lett. 2022, 17, 024026. [Google Scholar] [CrossRef]
- Rahman, A.; Farrok, O.; Haque, M.M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279. [Google Scholar] [CrossRef]
- Rehbein, J.A.; Waston, J.E.M.; Lane, J.L.; Sonter, L.J.; Venter, O.; Atkinson, S.C.; Allan, J.R. Renewable energy development threatens many globally important biodiversity areas. Glob. Chang. Biol. 2020, 26, 3040–3051. [Google Scholar] [CrossRef]
- Reusch, C.; Lozar, M.; Kramer-Schadt, S.; Voigt, C.C. Coastal onshore wind turbines lead to habitat loss for bats in Northern Germany. J. Environ. Manag. 2022, 310, 114715. [Google Scholar] [CrossRef]
- Reusswig, F.; Braun, F.; Heger, I.; Ludewig, T.; Eichenauer, E.; Lass, W. Against the wind: Local opposition to the German Energiewende. Util. Policy 2016, 41, 214–227. [Google Scholar] [CrossRef]
- Rnjak, D.; Janeš, M.; Križan, J.; Antonić, O. Reducing bat mortality at wind farms using site-specific mitigation measures: A case study in the Mediterranean region, Croatia. Mammalia 2023, 87, 259–270. [Google Scholar] [CrossRef]
- Robinson Willmott, J.; Forcey, G.M.; Hooton, L.A. Developing an automated risk management tool to minimize bird and bat mortality at wind facilities. Ambio 2015, 44, 557–571. [Google Scholar] [CrossRef]
- Roemer, C.; Disca, T.; Coulon, A.; Bas, Y. Bat flight height monitored from wind masts predicts mortality risk at wind farms. Biol. Conserv 2017, 215, 116–122. [Google Scholar] [CrossRef]
- Roemer, C.; Bas, Y.; Disca, T.; Coulon, A. Influence of landscape and time of year on bat-wind turbines collision risks. Landsc. Ecol. 2019, 34, 2869–2881. [Google Scholar] [CrossRef]
- Rydell, J.; Bogdanowicz, W.; Boonman, A.; Petterson, S.; Suchecka, E.; Pomorski, J.J. Bats may eat diurnal flies that rest on wind turbines. Mamm. Biol. 2016, 81, 331–339. [Google Scholar] [CrossRef]
- Santangeli, A.; Toivonen, T.; Montesino Pouzols, F.; Pogson, M.; Hastings, A.; Smith, P.; Moilanen, A. Global change synergies and trade-offs between renewable energy and biodiversity. Glob. Chang. Biol. Bioenergy 2016, 8, 941–951. [Google Scholar] [CrossRef]
- Santos, C.D.; Ramesh, H.; Ferraz, R.; Franco, A.; Wikelski, M. Factors influencing wind turbine avoidance behaviour of a migrating soaring bird. Sci. Rep. 2022, 12, 6441. [Google Scholar] [CrossRef] [PubMed]
- Schaub, M. Spatial distribution of wind turbines is crucial for the survival of red kite populations. Biol. Conserv. 2012, 155, 111–118. [Google Scholar] [CrossRef]
- Schmuecker, S.J.; Becker, D.A.; Lanzone, M.J.; Fogg, B.; Romano, S.P.; Katzner, T.E.; Miller, T.A. Use of Upland and Riparian Areas by Wintering Bald Eagles and Implications for Wind Energy. J. Wildl. Manag. 2020, 84, 1578–1589. [Google Scholar] [CrossRef]
- Schöll, E.M.; Nopp-Mayr, U. Impact of wind power plants on mammalian and avian wildlife species in shrub- and woodlands. Biol. Conserv. 2021, 256, 109037. [Google Scholar] [CrossRef]
- Schuster, E.; Bulling, L.; Köppel, J. Consolidating the State of Knowledge: A synoptical review of wind energy’s wildlife effects. Environ. Manag. 2015, 56, 300–331. [Google Scholar] [CrossRef] [PubMed]
- Sebastián-González, E.; Pérez-García, J.M.; Carrete, M.; Donázar, J.A.; Sánchez-Zapata, J.A. Using network analysis to identify indicator species and reduce collision fatalities at wind farms. Biol. Conserv 2018, 224, 209–212. [Google Scholar] [CrossRef]
- Serrano, D.; Margalida, A.; Pérez-García, J.M.; Juste, J.; Traba, J.; Valera, F.; Carrete, M.; Aihartza, J.; Real, J.; Mañosa, S.; et al. Renewables in Spain threaten biodiversity. Science 2020, 370, 1282–1283. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.; Cabral, J.A.; Hughes, S.J.; Santos, M. A modelling framework to predict bat activity patterns on wind farms: An outline of possible applications on mountain ridges of North Portugal. Sci. Total Environ. 2017, 581, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Sklenicka, P.; Zouhar, J. Predicting the visual impact of onshore wind farms via landscape indices: A method for objectivizing planning and decision processes. Appl. Energy 2018, 209, 445–454. [Google Scholar] [CrossRef]
- Slawsky, L.M.; Zhou, L.; Baidya Roy, S.; Xia, G.; Vuille, M.; Harris, R.A. Observed thermal impacts of wind farms over northern Illinois. Sensors 2015, 15, 14981–15005. [Google Scholar] [CrossRef]
- Smallwood, K.S.; Bell, D.A. Effects of wind turbine curtailment on bird and bat fatalities. J. Wildl. Manag. 2020, 84, 685–694. [Google Scholar] [CrossRef]
- Sorkhabi, S.Y.D.; Romero, D.A.; Yan, G.K.; Gu, M.D.; Moran, J.; Morgenroth, M.; Amon, C.H. The impact of land use constraints in multi-objective energy-noise wind farm layout optimization. Renew. Energy 2016, 85, 359–370. [Google Scholar] [CrossRef]
- Sovacool, B.K. The avian and wildlife costs of fossil fuels and nuclear power. J. Integr. Environ. Sci. 2012, 9, 255–278. [Google Scholar] [CrossRef]
- Sovacool, B.K. The avian benefits of wind energy: A 2009 update. Renew. Energy 2013, 49, 19–24. [Google Scholar] [CrossRef]
- Stantial, M.L.; Cohen, J.B. Estimating flight height and flight speed of breeding Piping Plovers. J. Field Ornithol. 2015, 86, 369–377. [Google Scholar] [CrossRef]
- Tang, B.; Wu, D.; Zhao, X.; Zhou, T.; Zhao, W.; Wei, H. The observed impacts of wind farms on local vegetation growth in northern China. Remote Sens 2017, 9, 332. [Google Scholar] [CrossRef]
- Taubmann, J.; Kämmerle, J.L.; Andrén, H.; Braunisch, V.; Storch, I.; Fiedler, W.; Suchant, R.; Coppes, J. Wind energy facilities affect resource selection of capercaillie Tetrao urogallus. Wildl. Biol. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Tesfahunegny, W.; Datiko, D.; Wale, M.; Hailay, G.E.; Hunduma, T. Impact of wind energy development on birds and bats: The case of Adama wind farm, Central Ethiopia. J. Basic Appl. Zoöl. 2020, 81, 41. [Google Scholar] [CrossRef]
- Thaxter, C.B.; Buchanan, G.M.; Carr, J.; Butchart, S.H.M.; Newbold, T.; Green, R.E.; Tobias, J.A.; Foden, W.B.; O`Brien, S.; Pearce-Higgins, J.W. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Royal. R. Soc. B. 2017, 284, 20170829. [Google Scholar] [CrossRef]
- Thomas, K.A.; Jarchow, C.J.; Arundel, T.R.; Jamwal, P.; Borens, A.; Drost, C.A. Landscape-scale wildlife species richness metrics to inform wind and solar energy facility siting: An Arizona case study. Energy Policy 2018, 116, 145–152. [Google Scholar] [CrossRef]
- Thompson, M.; Beston, J.A.; Etterson, M.; Diffendorfer, J.A.; Loss, S.R. Factors associated with bat mortality at wind energy facilities in the United States. Biol. Conserv. 2017, 215, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Tikkanen, H.; Rytkönen, S.; Karlin, O.P.; Ollila, T.; Pakanen, V.M.; Tuohimaa, H.; Orell, M. Modelling golden eagle habitat selection and flight activity in their home ranges for safer wind farm planning. Env. Impact Assess. Rev. 2018, 71, 120–131. [Google Scholar] [CrossRef]
- Urziceanu, M.; Anastasiu, P.; Rozylowicz, L.; Sesan, T.E. Local-scale impact of wind energy farms on rare, endemic, and threatened plant species. PeerJ. 2021, 9, e11390. [Google Scholar] [CrossRef] [PubMed]
- Veers, P.; Dykes, K.; Lantz, E.; Barth, S.; Bottasso, C.L.; Carlson, O.; Clifton, A.; Green, J.; Green, P.; Holttinen, H. Grand challenges in the science of wind energy. Science 2019, 366, eaau2027. [Google Scholar] [CrossRef] [PubMed]
- Vignali, S.; Lörcher, F.; Hegglin, D.; Arlettaz, R.; Braunisch, V. A predictive flight-altitude model for avoiding future conflicts between an emblematic raptor and wind energy development in the Swiss Alps. R. Soc. Open Sci. 2022, 9, 211041. [Google Scholar] [CrossRef] [PubMed]
- Villegas-Patraca, R.; Macgregor-Fors, I.; Ortiz-Martínez, T.; Pérez-Sánchez, C.E.; Herrera-Alsina, L.; Muñoz-Robles, C. Bird-community shifts in relation to wind farms: A case study comparing a wind farm, croplands, and secondary forests in Southern Mexico. Condor 2012, 114, 711–719. [Google Scholar] [CrossRef]
- Voigt, C.C.; Popa-Lisseanu, A.G.; Niermann, I.; Kramer-Schadt, S. The catchment area of wind farms for European bats: A plea for international regulations. Biological Conserv. 2012, 153, 80–86. [Google Scholar] [CrossRef]
- Voigt, C.C.; Straka, T.M.; Fritze, M. Producing wind energy at the cost of biodiversity: A stakeholder view on a green-green dilemma. J. Renew. Sustain. Energy 2019, 11, 063303. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S. Impacts of wind energy on environment: A review. Renew. Sustain. Energy Rev. 2015, 49, 437–443. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Smith, P. Ecological impacts of wind farms on birds: Questions, hypotheses, and research needs. Renew. Sustain. Energy Rev. 2015, 44, 599–607. [Google Scholar] [CrossRef]
- Wang, G.; Li, G.; Liu, Z. Wind farms dry surface soil in temporal and spatial variation. Sci. Total Environ. 2023, 857, 159293. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.T.; Kolar, P.S.; Ferrer, M.; Nygård, T.; Johnston, N.; Hunt, W.G.; Smit-Robinson, H.A.; Farmer, C.J.; Huso, M.; Katzner, T.E. Raptor interactions with wind energy: Case studies from around the world. J. Raptor Res. 2018, 52, 1–18. [Google Scholar] [CrossRef]
- Wawrzyczek, J.; Lindsay, R.; Metzger, M.J.; Quétier, F. The ecosystem approach in ecological impact assessment: Lessons learned from windfarm developments on peatlands in Scotland. Environ. Impact Assess. Rev. 2018, 72, 157–165. [Google Scholar] [CrossRef]
- Wellig, S.D.; Nusslé, S.; Miltner, D.; Kohle, O.; Glaizot, O.; Braunisch, V.; Obrist, M.K.; Arlettaz, R. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed. PLoS ONE 2018, 13, e0192493. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.W.; Fernández-Bellon, D.; Irwin, S.; O’Halloran, J. Hen Harrier Circus cyaneus population trends in relation to wind farms. Bird Study 2017, 64, 20–29. [Google Scholar] [CrossRef]
- Wu, X.; Hu, W.; Huang, Q.; Chen, C.; Jacobson, M.Z.; Chen, Z. Optimizing the layout of onshore wind farms to minimize noise. Appl. Energy 2020, 267, 114896. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, H.; Zhong, S.; Song, N.; Liu, N.; Wang, Z.; Li, B.; Wang, T. Risk evaluation of onshore wind farms in relation to wild duck (Anatidae) movements in the Yangtze River Mouth, China. IET Renew. Power Gener. 2021, 16, 470–477. [Google Scholar] [CrossRef]
- Zwart, M.C.; Robson, P.; Rankin, S.; Whittingham, M.J.; McGowan, P.J.K. Using environmental impact assessment and post-construction monitoring data to inform wind energy developments. Ecosphere 2015, 6, 26. [Google Scholar] [CrossRef]
- IRENA. Renewable Capacity Statistics 2023. Available online: https://www.irena.org/Publications/2023/Mar/Renewable-capacity-statistics-2023 (accessed on 20 November 2023).
- Selkimäki, M.; Riippi, J.; Rana, P.; Lamula, L.; Antila, M.; Heinonen, T.; Tokola, T. Forest landscape shield models for assessing audio-visual disturbances of wind turbines. J. Env. Manag. 2024, 352, 120070. [Google Scholar] [CrossRef] [PubMed]
- Sander, L.; Jung, C.; Schindler, D. New concept of renewable energy priority zones for efficient onshore wind and solar expansion. Energy Convers. Manag. 2023, 294, 117575. [Google Scholar] [CrossRef]
Study | Journal | Study Area |
---|---|---|
Agudelo et al., 2021 [9] | Heliyon | Latin America |
Anshelm and Simon, 2016 [10] | Renewable and Sustainable Energy Reviews | Sweden |
Armstrong et al., 2016 [11] | Environmental Research Letters | Black Law wind farm, Scotland |
Arnett and May, 2016 [12] | Human-Wildlife Interactions | Not specified |
Baidya Roy and Traiteur, 2010 [13] | Proceedings of the National Academy of Sciences | San Gorgonio wind farm, CA, USA; Global |
Baidya Roy et al., 2004 [14] | Journal of Geophysical Research | Great Plains, USA/Canada |
Balotari-Chiebao et al., 2018 [15] | Landscape and Urban Planning | Finland |
Balotari-Chiebao et al., 2021 [16] | Ornis Fennica | Finland |
Balotari-Chiebao et al., 2023 [17] | Biological Conservation | Finland |
Bastos et al., 2016 [18] | Journal of Applied Ecology | Northern Portugal |
Baynard et al., 2017 [19] | Environmental Management | Weld County, CO, USA |
Bennett et al., 2017 [20] | Mammalian Biology | Wolf Ridge Wind, northcentral Texas, USA |
Bernard et al., 2014 [21] | Natureza & Conservação | Brazil |
Bertagnolio et al., 2023 [22] | Wiley Interdisciplinary Reviews: Energy and Environment | Not specified |
Betakova et al., 2015 [23] | Applied Energy | Czech Republic |
Bishop, 2019 [24] | Socio-Ecological Practice Research | Not specified |
Bjärstig et al., 2022 [25] | Energy Research & Social Science | Sweden |
Blumendeller et al., 2020 [26] | Acoustics | Germany |
Bose et al., 2020 [27] | Conservation Science and Practice | Brandenburg, Germany |
Browning et al., 2021 [28] | Mammal Review | Europe |
Buchholz et al., 2021 [29] | European Journal of Wildlife Research | Germany |
Bunzel et al., 2019 [30] | Energy Research & Social Science | Germany |
Cerri et al., 2023 [31] | Global Ecology and Conservation | Sardinia, Italy |
Chowdhury et al., 2022 [32] | Cleaner Engineering and Technology | Not specified |
Coppes et al., 2020 [33] | Journal of Ornithology | Not specified |
Cryan et al., 2014 [34] | Proceedings of the National Academy of Sciences | Indiana, USA |
Dai et al., 2015 [35] | Renewable Energy | Not specified |
Darabi et al., 2023 [36] | Environment, Development and Sustainability | Manjil City, Gilan province, Iran |
Dhar et al., 2020 [37] | Science of the Total Environment | Not specified |
Dhunny et al., 2019 [38] | Energy | Mauritius |
Diffendorfer et al., 2021 [39] | Ecosphere | USA |
Diógenes et al., 2020 [40] | Energy Research & Social Science | Global |
Dunnett et al., 2022 [41] | Proceedings of the National Academy of Sciences | Global |
Enevoldsen, 2016 [42] | Renewable and Sustainable Energy Reviews | Northern Europe |
Enevoldsen and Sovacool, 2016 [43] | Renewable and Sustainable Energy Reviews | France |
Enevoldsen and Valentine, 2016 [44] | Energy for Sustainable Development | Global |
Erickson et al., 2014 [45] | PLOS ONE | USA, Canada |
Everaert, 2014 [46] | Bird Study | Flanders, Belgium |
Fang et al., 2018 [47] | Science of the Total Environment | Fundata, southern Romanian Carpathians |
Farfán et al., 2017 [48] | Environmental Impact Assessment Review | Sierra de Aguas wind farm, Malaga province, southern Spain |
Fast and Mabee, 2015 [49] | Energy Policy | Eastern Lake Ontario, province Ontario, Canada |
Fernández-Bellon et al., 2018 [50] | Conservation Biology | Ireland |
Ferreira et al., 2019 [51] | Journal of Environmental Management | Outeiro wind farm, Vila Real, northern Portugal |
Foo et al., 2017 [52] | PeerJ | Wolf Ridge Wind, LLC, southern Great Plains, USA |
Frick et al., 2017 [53] | Biological Conservation | North America |
Friedenberg and Frick, 2021 [54] | Biological Conservation | USA, Canada |
García et al., 2016 [55] | Energy Policy | Sandnes, Norway |
Gasparatos et al., 2017 [56] | Renewable and Sustainable Energy Reviews | Not specified |
Gasparatos et al., 2021 [57] | Trends in Ecology & Evolution | Not specified |
Gauld et al., 2022 [58] | Journal of Applied Ecology | Europe, North Africa |
Gaultier et al., 2020 [59] | Environmental Science & Technology | Baltic Sea Countries, Europe |
Gibson et al., 2017 [60] | Trends in Ecology & Evolution | Not specified |
González and Connell, 2022 [61] | Applied Energy | Ireland |
Gorman et al., 2023 [62] | Science of the Total Environment | Ireland |
Groth and Vogt, 2014 [63] | Energy Policy | Huron County, MI, USA |
Guan, 2022 [64] | ISPRS International Journal of Geo-Information | Friedrich-Wilhelm Raiffeisen wind farm, Northwest Bavaria, Germany |
Guo et al., 2020 [65] | Journal of Cleaner Production | Taiyue Mountain Wind Power Project, northern Qinyuan County, Shanxi province, China |
Hamed and Alshare, 2022 [66] | Journal of Sustainable Development of Energy, Water, and Environment Systems | Not specified |
Heal et al., 2020 [67] | Ambio | Whitelee wind farm, Eaglesham Moor, central Scotland |
Heuck et al., 2019 [68] | Biological Conservation | Northeast Germany |
Jacobson and Archer, 2012 [69] | Proceedings of the National Academy of Sciences | Global |
Jameson and Willis, 2014 [70] | Animal Behaviour | St Léon wind energy facility, south-central Manitoba, Canada |
Janhunen et al., 2014 [71] | Energy Policy | Ruokolahti, southeast Finland |
Jones et al., 2015 [72] | BioScience | Global |
Kati et al., 2021 [73] | Science of the Total Environment | Greece |
Katzner et al., 2012 [74] | Journal of Applied Ecology | North America |
Katzner et al., 2016 [75] | Human-Wildlife Interactions | USA |
Katzner et al., 2019 [76] | Science | Not specified |
Kirkpatrick et al., 2017 [77] | Forest Ecology and Management | Central and southern Scotland, Northern England |
Kokologos et al., 2014 [78] | Land Use Policy | Greece |
Köppel et al., 2014 [79] | Environmental Management | Germany, USA |
Kumara et al., 2022 [80] | Scientific Reports | Chitradurga and Gadag districts, Karnataka, India |
Laranjeiro et al., 2018 [81] | The International Journal of Life Cycle Assessment | Not specified |
Lemaître and Lamarre, 2020 [82] | Bird Conservation International | Quebec, Canada |
Li et al., 2023 [83] | Heliyon | Global |
Liu, 2017 [84] | Renewable Energy | Not specified |
Łopucki and Perzanowski, 2018 [85] | Ecological Indicators | Southeast Poland |
Loss et al., 2015 [86] | Annual Review of Ecology, Evolution, and Systematics | USA, Canada |
Lundquist et al., 2019 [87] | Nature Energy | West Texas, USA |
Luo et al., 2021 [88] | Agricultural and Forest Meteorology | Shangyi County, Hebei province, North China |
Ma et al., 2023 [89] | Journal of Cleaner Production | Chuxiong Yizu Autonomous Prefecture, Yunnan province, China |
MacGregor and Lemaître, 2020 [90] | Global Ecology and Conservation | Quebec, Canada |
Maehr et al., 2015 [91] | Landscape and Urban Planning | Manchester University, United Kingdom |
Manchado et al., 2019 [92] | Renewable Energy | Not specified |
Martínez-Martínez et al., 2022 [93] | Renewable Energy | Biobío and Ñuble Regions, south-central Chile |
Marvel et al., 2013 [94] | Nature Climate Change | Global |
May, 2015 [95] | Biological Conservation | Not specified |
May et al., 2015 [96] | Renewable and Sustainable Energy Reviews | Not specified |
May et al., 2020 [97] | Environmental and Sustainability Indicators | Global |
May et al., 2021 [98] | Environmental Impact Assessment Review | Norway |
Meyerhoff, 2013 [99] | The Journal of Choice Modelling | Westsachsen, Germany |
Millon et al., 2015 [100] | Ecological Engineering | Champagne-Ardenne, northeast France |
Morkūnė et al., 2020 [101] | PLOS ONE | Lithuania |
Msigwa et al., 2022 [102] | Science of the Total Environment | Global |
Müller et al., 2013 [103] | Forest Ecology and Management | Bavarian Forest National Park, Germany |
Ottinger et al., 2014 [104] | Energy Policy | Washington state, USA |
Palmer, 2019 [105] | Landscape and Urban Planning | White Mountain National Forest, USA |
Pearse et al., 2021 [106] | Ecological Applications | Great Plains, USA |
Pepermans and Loots, 2013 [107] | Energy Policy | Flanders, northern Belgium |
Pescador et al., 2019 [108] | Journal of Environmental Management | Province Cuenca, central-eastern Spain |
Piasecka et al., 2019 [109] | Applied Sciences | Poland |
Pohl et al., 2012 [110] | Energy Policy | Germany |
Ponitka and Boettner, 2020 [111] | Energy, Sustainability and Society | Germany |
Qin et al., 2022 [112] | Environmental Research Letters | USA |
Rahman et al., 2022 [113] | Renewable and Sustainable Energy Reviews | Not specified |
Rehbein et al., 2020 [114] | Global Change Biology | Global |
Reusch et al., 2022 [115] | Journal of Environmental Management | County of Aurich, northern Germany |
Reusswig et al., 2016 [116] | Utilities Policy | Engelsbrand, Baden-Württemberg, Germany |
Rnjak et al., 2023 [117] | Mammalia | Southern Croatia |
Robinson Willmott et al., 2015 [118] | Ambio | USA |
Roemer et al., 2017 [119] | Biological Conservation | France, Belgium |
Roemer et al., 2019 [120] | Landscape Ecology | France, Belgium |
Rydell et al., 2016 [121] | Mammalian Biology | Southern Sweden |
Santangeli et al., 2016 [122] | Global Change Biology Bioenergy | Global |
Santos et al., 2022 [123] | Scientific reports | Cadiz and Tarifa, southern Spain |
Schaub, 2012 [124] | Biological Conservation | Switzerland, Europe |
Schmuecker et al., 2020 [125] | The Journal of Wildlife Management | Upper Midwest (Minnesota, Iowa, Missouri, Wisconsin, Illinois), USA |
Schöll and Nopp-Mayr, 2021 [126] | Biological Conservation | Not specified |
Schuster et al., 2015 [127] | Environmental Management | Not specified |
Sebastián-González et al., 2018 [128] | Biological Conservation | Cádiz and Castellón, Spain |
Serrano et al., 2020 [129] | Science | Spain |
Silva et al., 2017 [130] | Science of the Total Environment | North Portugal |
Sklenicka and Zouhar, 2018 [131] | Applied Energy | Germany, Austria, Poland, Czechia |
Slawsky et al., 2015 [132] | Sensors | Northern Illinois, USA |
Smallwood and Bell, 2020 [133] | The Journal of Wildlife Management | Altamont Pass wind resource Area, Contra Costa and Alameda counties, California, USA |
Sorkhabi et al., 2016 [134] | Renewable Energy | Not specified |
Sovacool, 2012 [135] | Journal of Integrative Environmental Sciences | USA |
Sovacool, 2013 [136] | Renewable Energy | USA |
Stantial and Cohen, 2015 [137] | Journal of Field Ornithology | New Jersey and Massachusetts, USA |
Tang et al., 2017 [138] | Remote Sensing | Bashang area, Hebei province, northern China |
Taubmann et al., 2021 [139] | Wildlife Biology | Dalarna and Gävleborg County, Sweden |
Tesfahunegny et al., 2020 [140] | The Journal of Basic and Applied Zoology | Adama wind farms, Central Ethiopia |
Thaxter et al., 2017 [141] | Proceedings of the Royal Society B: Biological Sciences | Global |
Thomas et al., 2018 [142] | Energy Policy | Arizona, USA |
Thompson et al., 2017 [143] | Biological Conservation | USA, Canada |
Tikkanen et al., 2018 [144] | Environmental Impact Assessment Review | Kaustinen, Kuusamo, Kemijärvi, Muonio, Salla, Finland |
Urziceanu et al., 2021 [145] | PeerJ | Dobrogea, southeastern Romania |
Veers et al., 2019 [146] | Science | Not specified |
Vignali et al., 2022 [147] | Royal Society Open Science | Alps, Switzerland |
Villegas-Patraca et al., 2012 [148] | The Condor | Isthmus of Tehuantepec, southern Oaxaca, Mexico |
Voigt et al., 2012 [149] | Biological Conservation | Germany |
Voigt et al., 2019 [150] | Journal of Renewable and Sustainable Energy | Mainly Germany |
Wang and Wang, 2015 [151] | Renewable and Sustainable Energy Reviews | Not specified |
Wang et al., 2015 [152] | Renewable and Sustainable Energy Reviews | Not specified |
Wang et al., 2023 [153] | Science of the Total Environment | Xilinhot, Inner Mongolia, China |
Watson et al., 2018 [154] | The Journal of Raptor Research | Global |
Wawrzyczek et al., 2018 [155] | Environmental Impact Assessment Review | Scotland |
Wellig et al., 2018 [156] | PLOS ONE | Lower Rhône valley, Valais, southwestern Switzerland |
Wilson et al., 2017 [157] | Bird Study | Ireland |
Wu et al., 2020 [158] | Applied Energy | Not specified |
Zhao et al., 2021 [159] | IET Renewable Power Generation | Yangtze River Mouth, East China coast |
Zwart et al., 2015 [160] | Ecosphere | Scotland, United Kingdom |
Impact Category | Proposed Measure | Studies |
---|---|---|
Micrometeorology |
| [13,14,35] |
| ||
Soil physics (erosion) |
| [89] |
| [89,113] | |
Pollution |
| [67] |
Impact Category | Proposed Measure | Studies |
---|---|---|
Biodiversity in general |
| [41,56,57,60,111,114] |
| [56,57] | |
| [62,142] | |
| [111] | |
Vegetation |
| [145] |
Wildlife species |
| [111] |
Mitigation Level | Taxa | Proposed Measure | Studies |
---|---|---|---|
Avoidance | Birds and bats |
| [12,16,17,35,37,59,60,68,106,115,120,127,141,154] |
Birds and bats |
| [15,16,17] | |
Birds and bats |
| [17,59] | |
Birds and bats |
| [33,79,139] | |
Minimization | Birds |
| [32,96] |
Bats |
| [54,59,102,156] | |
Birds |
| [12,35,37,56,66,81,102,113,126] | |
Bats |
| [20,28,59] | |
Birds |
| [96] | |
Birds and bats |
| [59,82,98] | |
Birds and bats |
| [56,58,72] | |
Birds |
| [58,72] | |
Birds |
| [35,58,80,81,96,102,108,118,126,133,159] | |
Bats |
| [12,28,34,37,53,54,59,62,80,117,118,133,149,156] | |
Birds and bats |
| [20,38,59,66,133] | |
Bats |
| [59] | |
Birds and bats |
| [56,59,62,81,124,127] | |
Birds and bats |
| [46,51,58,79,98,102,127,141,154] | |
Compensatory mitigation | Birds and bats |
| [59,79,96,108] |
Birds and bats |
| [12,31,56,59,96,100] | |
Others | Birds and bats |
| [79,136] |
Bats |
| [150] | |
Birds |
| [45] | |
Birds and bats |
| [79] |
Impact Addressee | Proposed Measure | Studies |
---|---|---|
Humans |
| [35] |
| [158] | |
| [35] | |
| [42,93] | |
Humans and wildlife |
| [35,37,66,151] |
| [22,35,37,66,102,146] |
Impact Category | Proposed Measure | Studies |
---|---|---|
Landscape aesthetics |
| [24,78,92] |
| [23] | |
| [64] | |
| [102] | |
| [24,37] | |
| [23,35] | |
| [24,66] | |
| [24] | |
| [24] | |
Visual effects |
| [37,113] |
Lighting |
| [110] |
Wildlife |
| [59] |
Proposed Measure | Studies |
---|---|
| [32] |
| [32,35,37] |
| [35,37] |
| [32] |
| [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sander, L.; Jung, C.; Schindler, D. Global Review on Environmental Impacts of Onshore Wind Energy in the Field of Tension between Human Societies and Natural Systems. Energies 2024, 17, 3098. https://doi.org/10.3390/en17133098
Sander L, Jung C, Schindler D. Global Review on Environmental Impacts of Onshore Wind Energy in the Field of Tension between Human Societies and Natural Systems. Energies. 2024; 17(13):3098. https://doi.org/10.3390/en17133098
Chicago/Turabian StyleSander, Leon, Christopher Jung, and Dirk Schindler. 2024. "Global Review on Environmental Impacts of Onshore Wind Energy in the Field of Tension between Human Societies and Natural Systems" Energies 17, no. 13: 3098. https://doi.org/10.3390/en17133098
APA StyleSander, L., Jung, C., & Schindler, D. (2024). Global Review on Environmental Impacts of Onshore Wind Energy in the Field of Tension between Human Societies and Natural Systems. Energies, 17(13), 3098. https://doi.org/10.3390/en17133098