A Method for Assessing the Technical Condition of Traction Batteries Using the Metalog Family of Probability Distributions
Abstract
:1. Introduction
2. Research
2.1. Research Objects
2.2. Research Bench
2.3. Methodology
3. Discussion
3.1. Case 1
3.2. Case 2
3.3. Case 3
3.4. Case 4
4. Conclusions
- (1)
- A functional package in which the aging processes proceed properly. It is characterized by the capacity of individual battery cells ranging from 100 to 50% of the nominal capacity. The PDF waveform is close to a normal distribution with a very small standard deviation between the capacities of individual cells.
- (2)
- The package is faulty and needs to be repaired. It is characterized by the capacity of individual battery cells ranging from 0 to 100% of the nominal capacity. PDF waveform with one extreme with a very large standard deviation between the capacities of individual cells. The location of the extreme PDF indicates the purpose of repair. All cells with a capacity less than the extreme value should be replaced with cells with a capacity equal to or greater than the extreme value. All cells with a capacity greater than 50% of the nominal capacity can be reused to compose a package of a given capacity.
- (3)
- The package is beyond repair and should be disposed of. It is characterized by the capacity of individual battery cells ranging from 0 to 50% of the nominal capacity. PDF waveform with one or two extreme values with a very large standard deviation between the capacities of individual cells.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BEV | Battery Electric Vehicles |
BMS | Battery Management System |
CNG | Compressed Natural Gas |
FCV | Fuel Cell Vehicle |
HEV | Hybrid Electric Vehicle |
HVO | Hydrogenated Vegetable Oil |
LNG | Liquide Natural Gas |
LPG | Liquide Petroleum Gas |
LTO | Lithium Titanium Oxide |
NG | Natural Gas |
NiMH | Nickel-Metal Hydride |
NMC | Nickel Manganese Cobalt |
PHEV | Plug-in Hybrid Electric Vehicle |
RES | Renewable Energy Source |
SoC | State of Charge |
TMS | Thermal Management System |
References
- Bayani, R.; Soofi, A.F.; Waseem, M.; Manshadi, S.D. Impact of Transportation Electrification on the Electricity Grid—A Review. Vehicles 2022, 4, 1042–1079. [Google Scholar] [CrossRef]
- Barta, D.; Mruzek, M.; Kendra, M.; Kordos, P.; Krzywonos, L. Using of non-conventional fuels in hybrid vehicle drives. Adv. Sci. Technol. Res. J. 2016, 10, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Čulík, K.; Hrudkay, K.; Morgoš, J. Operating Characteristics of Electric Buses and Their Analysis. In Proceedings of the Transport Means—Proceedings of the International Conference, Kaunas, Lithuania, 6–8 October 2021; pp. 251–256. [Google Scholar]
- Čulík, K.; Hrudkay, K.; Štefancová, V. Possibilities of Legislative and Economic Support for Electromobility in Slovakia. In Lecture Notes in Intelligent Transportation and Infrastructure; Springer: Berlin/Heidelberg, Germany, 2023; Part F1379; pp. 125–134. [Google Scholar]
- Gnap, J.; Dockalik, M.; Dydkowski, G. Examination of the development of new bus registrations with alternative powertrains in Europe. LOGI—Sci. J. Transp. Logist. 2021, 12, 147–158. [Google Scholar] [CrossRef]
- Hurtova, I.; Sejkorova, M.; Verner, J.; Sarkan, B. Comparison of electricity and fossil fuel consumption in trolleybuses and buses. Eng. Rural Dev. 2018, 17, 2079–2084. [Google Scholar] [CrossRef]
- Kharchenko, V.; Kostenko, I.; Liubarskyi, B.; Shaida, V.; Kuravskyi, M.; Petrenko, O. Simulating the traction electric drive operation of a trolleybus equipped with mixed excitation motors and DC-DC converter. East.-Eur. J. Enterp. Technol. 2020, 3, 46–54. [Google Scholar] [CrossRef]
- Nicoletti, L.; Köhler, P.; König, A.; Heinrich, M.; Lienkamp, M. Parametric modelling of weight and volume effects in battery electric vehicles, with focus on the gearbox. Proc. Des. Soc. 2021, 1, 2389–2398. [Google Scholar] [CrossRef]
- Ribeiro, P.J.G.; Mendes, J.F.G. Public transport decarbonisation via urban bus fleet replacement in Portugal. Energies 2022, 15, 4286. [Google Scholar] [CrossRef]
- Settey, T.; Gnap, J.; Synák, F.; Skrúcaný, T.; Dočkalik, M. Research into the impacts of driving cycles and load weight on the operation of a light commercial electric vehicle. Sustainability 2021, 13, 13872. [Google Scholar] [CrossRef]
- Stakens, J.; Mutule, A.; Lazdins, R. Agriculture Electrification, Emerging Technologies, Trends and Barriers: A Comprehensive Literature Review. Latv. J. Phys. Tech. Sci. 2023, 60, 18–32. [Google Scholar] [CrossRef]
- Stoma, M.; Dudziak, A. Future Challenges of the Electric Vehicle Market Perceived by Individual Drivers from Eastern Poland. Energies 2023, 16, 7212. [Google Scholar] [CrossRef]
- Stopka, O.; Stopková, M.; Pečman, J. Application of Multi-Criteria Decision Making Methods for Evaluation of Selected Passenger Electric Cars: A Case Study. Commun. Sci. Lett. Univ. Zilina 2022, 24, A133–A141. [Google Scholar] [CrossRef]
- Würtz, S.; Bogenberger, K.; Göhner, U.; Rupp, A. Towards efficient battery electric bus operations: A novel energy forecasting framework. World Electr. Veh. J. 2024, 15, 27. [Google Scholar] [CrossRef]
- Beik, Y.; Dziewiątkowski, M.; Szpica, D. Exhaust emissions of an engine fuelled by petrol and liquefied petroleum gas with control algorithm adjustment. SAE Int. J. Engines 2020, 13, 739–759. [Google Scholar] [CrossRef]
- Szpica, D. Fuel dosage irregularity of LPG pulse vapor injectors at different stages of wear. Mechanika 2016, 22, 44–50. [Google Scholar] [CrossRef]
- Dittrich, A.; Beroun, S.; Zvolsky, T. Diesel gas dual engine with liquid LPG injection into intake manifold. In Proceedings of the Engineering for Rural Development, Jelgava, Latvia, 23–25 May 2018; pp. 1978–1983. [Google Scholar]
- Pulawski, G.; Szpica, D. The modelling of operation of the compression ignition engine powered with diesel fuel with LPG admixture. Mechanika 2015, 21, 500–505. [Google Scholar]
- Ding, S.-L.; Song, E.-Z.; Yang, L.-P.; Litak, G.; Wang, Y.-Y.; Yao, C.; Ma, X.-Z. Analysis of Chaos in the Combustion Process of Premixed Natural Gas Engine. Appl. Therm. Eng. 2017, 121, 768–778. [Google Scholar] [CrossRef]
- Gnap, J.; Dockalik, M. Impact of the operation of LNG trucks on the environment. Open Eng. 2021, 11, 937–947. [Google Scholar] [CrossRef]
- Jurkovic, M.; Kalina, T.; Skrúcaný, T.; Gorzelanczyk, P.; L’upták, V. Environmental Impacts of Introducing LNG as Alternative Fuel for Urban Buses—Case Study in Slovakia. Promet-Traffic Transp. 2020, 32, 837–847. [Google Scholar] [CrossRef]
- Szpica, D.; Dziewiatkowski, M. Catalyst Conversion Rates Measurement on Engine Fueled with Compressed Natural Gas (CNG) Using Different Operating Temperatures. Mechanika 2021, 27, 492–497. [Google Scholar] [CrossRef]
- Domański, M.; Paszkowski, J.; Sergey, O.; Zarajczyk, J.; Siłuch, D. Analysis of Energy Properties of Granulated Plastic Fuels and Selected Biofuels. Agric. Eng. 2020, 24, 1–9. [Google Scholar] [CrossRef]
- Vignesh, R.; Ashok, B.; Senthil Kumar, M.; Szpica, D.; Harikrishnan, A.; Josh, H. Adaptive neuro fuzzy inference system-based energy management controller for optimal battery charge sustaining in biofuel powered non-plugin hybrid electric vehicle. Sustain. Energy Technol. Assess. 2023, 59, 103379. [Google Scholar] [CrossRef]
- Dhande, D.Y.; Navale, S.J. Experimental investigations on the performance and emissions of compression ignition engine fueled with lower blends of neem-based biodiesel. Arch. Autom. Engineer. Archiw. Mot. 2024, 103, 57–76. [Google Scholar]
- Duda, K.; Wierzbicki, S.; Mikulski, M.; Konieczny, Ł.; Łazarz, B.; Letuń-Łatka, M. Emissions from a medium-duty crdi engine fuelled with diesel-biodiesel blends. Transp. Probl. 2021, 16, 39–49. [Google Scholar] [CrossRef]
- Imran, M.S.; Saleh, F.A. The Influence of Using Biodiesel Prepared from Cresson Oil on Emissions and Performance of CI Engines. J. Ecol. Eng. 2024, 25, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Matijošius, J.; Orynycz, O.; Kovbasenko, S.; Simonenko, V.; Shuba, Y.; Moroz, V.; Gutarevych, S.; Wasiak, A.; Tucki, K. Testing the indicators of diesel vehicles operating on diesel oil and diesel biofuel. Energies 2022, 15, 9263. [Google Scholar] [CrossRef]
- Pawlak, G.; Skrzek, T. Combustion of raw Camelina Sativa oil in CI engine equipped with common rail system. Sci. Rep. 2023, 13, 19731. [Google Scholar] [CrossRef] [PubMed]
- Szpica, D.; Czaban, J. Investigating of the combustion process in a diesel engine fueled with conventional and alternative fuels. In Proceedings of the 23rd International Scientific Conference, Transport Means—Proceedings of the International Conference 2019, Palanga, Lithuania, 2–4 October 2019; pp. 176–181. [Google Scholar]
- Dittrich, A.; Prochazka, R.; Popelka, J.; Phu, D.N. Effect of HVO CNG dual-fuel operation mode on emissions and performance of CI engine. In Proceedings of the Engineering for Rural Development, Jelgava, Latvia, 24–26 May 2023; Volume 22, pp. 58–63. [Google Scholar]
- Žvirblis, T.; Hunicz, J.; Matijošius, J.; Rimkus, A.; Kilikevičius, A.; Gęca, M. Improving diesel engine reliability using an optimal prognostic model to predict diesel engine emissions and performance using pure diesel and Hydrogenated Vegetable Oil. Eksploat. I Niezawodn.—Maint. Reliab. 2023, 25, 174358. [Google Scholar] [CrossRef]
- Gechev, T. Progress in fuel cell usage as an auxiliary power unit in heavy-duty vehicles. In Proceedings of the 29th Technical and Scientific Conference on Transport, Ecology—Sustainable Development, EKO Varna 2023, Hybrid, AIP Conference Proceedings, Varna, Bulgaria, 18–20 May 2023; Volume 3104, p. 020006. [Google Scholar]
- Sederyn, T.; Skawińska, M. Computational analysis of PEM fuel cell under different operating conditions. Appl. Comput. Sci. 2023, 19, 26–38. [Google Scholar] [CrossRef]
- Balitskii, A.I.; Abramek, K.F.; Osipowicz, T.K.; Eliasz, J.J.; Balitska, V.O.; Kochmański, P.; Prajwowski, K.; Mozga, Ł.S. Hydrogen-Containing “Green” Fuels Influence on the Thermal Protection and Formation of Wear Processes Components in Compression-Ignition Engines Modern Injection System. Energies 2023, 16, 3374. [Google Scholar] [CrossRef]
- Di Micco, S.; Romano, F.; Jannelli, E.; Perna, A.; Minutillo, M. Techno-economic analysis of a multi-energy system for the co-production of green hydrogen, renewable electricity and heat. Int. J. Hydrogen Energy 2023, 48, 31457–31467. [Google Scholar] [CrossRef]
- Gilewski, M.; Czarnigowski, J.; Hunicz, J.; Dubeński, K.; Szafran, M.; Fronc, M. Model of a prototype vehicle powered by a hybrid hydrogen system. J. Phys. Conf. Ser. 2021, 2130, 012002. [Google Scholar] [CrossRef]
- Synák, F.; Synák, J.; Skrúcaný, T. Assessing the addition of hydrogen and oxygen into the engine’s intake air on selected vehicle features. Int. J. Hydrogen Energy 2021, 46, 31854–31878. [Google Scholar] [CrossRef]
- Nadolski, R.; Ludwinek, K.; Staszak, J.; Jaśkiewicz, M. Utilization of BLDC motor in electrical vehicles. Przegląd Elektrotechniczny 2012, 88, 180–186. [Google Scholar]
- Available online: https://ev-database.org/ (accessed on 15 June 2024).
- Aghmadi, A.; Mohammed, O.A. Energy Storage Systems: Technologies and High-Power Applications. Batteries 2024, 10, 141. [Google Scholar] [CrossRef]
- Cui, Y.; Shen, X.; Zhang, H.; Yin, Y.; Yu, Z.; Shi, D.; Fang, Y.; Xu, R. Intrinsic Safety Risk Control and Early Warning Methods for Lithium-Ion Power Batteries. Batteries 2024, 10, 62. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Z.; Sun, Y.; Gao, Y.; Yan, P. Aging Behavior of Lithium Titanate Battery under High-Rate Discharging Cycle. Energies 2021, 14, 5482. [Google Scholar] [CrossRef]
- Karnehm, D.; Bliemetsrieder, W.; Pohlmann, S.; Neve, A. Controlling Algorithm of Reconfigurable Battery for State of Charge Balancing Using Amortized Q-Learning. Batteries 2024, 10, 131. [Google Scholar] [CrossRef]
- Dinh, M.-C.; Le, T.-T.; Park, M. A Low-Cost and High-Efficiency Active Cell-Balancing Circuit for the Reuse of EV Batteries. Batteries 2024, 10, 61. [Google Scholar] [CrossRef]
- Etxandi-Santolaya, M.; Mora-Pous, A.; Canals Casals, L.; Corchero, C.; Eichman, J. Quantifying the Impact of Battery Degradation in Electric Vehicle Driving through Key Performance Indicators. Batteries 2024, 10, 103. [Google Scholar] [CrossRef]
- Maisuradze, M.; Li, M.; Carlomagno, I.; Gaboardi, M.; Aquilanti, G.; Plaisier, J.R.; Giorgetti, M. Aging Mechanism of Mn-Based Prussian Blue Cathode Material by Synchrotron 2D X-ray Fluorescence. Batteries 2024, 10, 123. [Google Scholar] [CrossRef]
- Sun, C.; Qin, W.; Yun, Z. A State-of-Health Estimation Method for Lithium Batteries Based on Fennec Fox Optimization Algorithm–Mixed Extreme Learning Machine. Batteries 2024, 10, 87. [Google Scholar] [CrossRef]
- Hassini, M.; Redondo-Iglesias, E.; Venet, P. Battery Passports for Second-Life Batteries: An Experimental Assessment of Suitability for Mobile Applications. Batteries 2024, 10, 153. [Google Scholar] [CrossRef]
- Young, K.-h.; Yasuoka, S. Capacity Degradation Mechanisms in Nickel/Metal Hydride Batteries. Batteries 2016, 2, 3. [Google Scholar] [CrossRef]
- Martínez-Sánchez, R.; Molina-García, A.; Ramallo-González, A.P. Regeneration of Hybrid and Electric Vehicle Batteries: State-of-the-Art Review, Current Challenges, and Future Perspectives. Batteries 2024, 10, 101. [Google Scholar] [CrossRef]
- Yang, T.; Li, J.; Xin, Q.; Zhang, H.; Zeng, J.; Agbossou, K.; Du, C.; Xiao, J. Thermal Performance Analysis of a Prismatic Lithium-Ion Battery Module under Overheating Conditions. Batteries 2024, 10, 86. [Google Scholar] [CrossRef]
- Zhang, Z.; Ji, C.; Liu, Y.; Wang, Y.; Wang, B.; Liu, D. Effect of Aging Path on Degradation Characteristics of Lithium-Ion Batteries in Low-Temperature Environments. Batteries 2024, 10, 107. [Google Scholar] [CrossRef]
- Saxon, A.; Yang, C.; Santhanagopalan, S.; Keyser, M.; Colclasure, A. Li-Ion Battery Thermal Characterization for Thermal Management Design. Batteries 2024, 10, 136. [Google Scholar] [CrossRef]
- Xu, C.; Ma, C.; Souri, M.; Moztarzadeh, H.; Nasr Esfahani, M.; Jabbari, M.; Hosseinzadeh, E. Numerical Investigation of Thermal Management of a Large Format Pouch Battery Using Combination of CPCM and Liquid Cooling. Batteries 2024, 10, 113. [Google Scholar] [CrossRef]
- Sorensen, A.; Utgikar, V.; Belt, J. A Study of Thermal Runaway Mechanisms in Lithium-Ion Batteries and Predictive Numerical Modeling Techniques. Batteries 2024, 10, 116. [Google Scholar] [CrossRef]
- Teixeira, R.S.D.; Calili, R.F.; Almeida, M.F.; Louzada, D.R. Recurrent Neural Networks for Estimating the State of Health of Lithium-Ion Batteries. Batteries 2024, 10, 111. [Google Scholar] [CrossRef]
- Zhang, X.; Gong, A.; He, W.; Cao, Y.; He, H. A Lithium Battery Health Evaluation Method Based on Considering Disturbance Belief Rule Base. Batteries 2024, 10, 129. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, C.; Meng, X.; Zhang, L.; Li, X.; Zhang, W. A Novel Feature Engineering-Based SOH Estimation Method for Lithium-Ion Battery with Downgraded Laboratory Data. Batteries 2024, 10, 139. [Google Scholar] [CrossRef]
- Olona, A.; Castejón, L. Influence of the Arrangement of the Cells/Modules of a Traction Battery on the Spread of Fire in Case of Thermal Runaway. Batteries 2024, 10, 55. [Google Scholar] [CrossRef]
- Gerold, E.; Lerchbammer, R.; Antrekowitsch, H. Recovery of Cobalt, Nickel, and Lithium from Spent Lithium-Ion Batteries with Gluconic Acid Leaching Process: Kinetics Study. Batteries 2024, 10, 120. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, F.; Chen, F.; Chen, Z.; Zeng, H.; Zhang, T.; Shen, C. Recycling of Valuable Metals from the Priority Lithium Extraction Residue Obtained through Hydrogen Reduction of Spent Lithium Batteries. Batteries 2024, 10, 28. [Google Scholar] [CrossRef]
- Mondal, A.; Fu, Y.; Gao, W.; Mi, C.C. Pretreatment of Lithium Ion Batteries for Safe Recycling with High-Temperature Discharging Approach. Batteries 2024, 10, 37. [Google Scholar] [CrossRef]
- Zanoletti, A.; Carena, E.; Ferrara, C.; Bontempi, E. A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues. Batteries 2024, 10, 38. [Google Scholar] [CrossRef]
- Mottaghi, M.; Pearce, J.M. A Review of 3D Printing Batteries. Batteries 2024, 10, 110. [Google Scholar] [CrossRef]
- Schütte, M.; Degen, F.; Walter, H. Reducing Energy Consumption and Greenhouse Gas Emissions of Industrial Drying Processes in Lithium-Ion Battery Cell Production: A Qualitative Technology Benchmark. Batteries 2024, 10, 64. [Google Scholar] [CrossRef]
- Mohanty, D.; Hung, I.-M.; Hsieh, C.-T.; Pan, J.-P.; Liu, W.-R. Critical Review on High-Safety Lithium-Ion Batteries Modified by Self-Terminated Oligomers with Hyperbranched Architectures. Batteries 2024, 10, 65. [Google Scholar] [CrossRef]
- Jaffal, H.; Guanetti, L.; Rancilio, G.; Spiller, M.; Bovera, F.; Merlo, M. Battery Energy Storage System Performance in Providing Various Electricity Market Services. Batteries 2024, 10, 69. [Google Scholar] [CrossRef]
- Maddipatla, S.; Kong, L.; Pecht, M. Safety Analysis of Lithium-Ion Cylindrical Batteries Using Design and Process Failure Mode and Effect Analysis. Batteries 2024, 10, 76. [Google Scholar] [CrossRef]
- Rahman, M.; Baki, A. Electrical and thermal modeling of battery cell grouping for analyzing battery pack efficiency and temperature. Energy Harvest. Syst. 2024, 11, 20230039. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, W.; Kang, L.; Zhang, Y.; Zhou, Y.; Jiang, S. Highly safe lithium vanadium oxide anode for fast-charging dendrite-free lithium-ion batteries. Nanotechnol. Rev. 2024, 13, 20230179. [Google Scholar] [CrossRef]
- Tendera, L.; Pegel, H.; Gonzalez, C.; Wycisk, D.; Fill, A.; Birke, K.P. Influence of temperature, state of charge and state of health on the thermal parameters of lithium-ion cells: Exploring thermal behavior and enabling fast-charging. Future Batter. 2024, 1, 100001. [Google Scholar] [CrossRef]
- González-Morales, J.; Mosa, J.; Ishiyama, S.; Rosero-Navarro, N.C.; Miura, A.; Tadanaga, K.; Aparicio, M. Carbon-Free Cathode Materials Based on Titanium Compounds for Zn-Oxygen Aqueous Batteries. Batteries 2024, 10, 94. [Google Scholar] [CrossRef]
- Bukya, M.; Meenakshi Reddy, R.; Doddipatla, A.; Kumar, R.; Mathur, A.; Gupta, M.; Garimella, A. Electro-thermal performance evaluation of a prismatic battery pack for an electric vehicle. High Temp. Mater. Process. 2024, 43, 20220311. [Google Scholar] [CrossRef]
- Nastasi, L.; Fiore, S. Environmental Assessment of Lithium-Ion Battery Lifecycle and of Their Use in Commercial Vehicles. Batteries 2024, 10, 90. [Google Scholar] [CrossRef]
- Nkembi, A.A.; Simonazzi, M.; Santoro, D.; Cova, P.; Delmonte, N. Comprehensive Review of Energy Storage Systems Characteristics and Models for Automotive Applications. Batteries 2024, 10, 88. [Google Scholar] [CrossRef]
- Al Muala, Z.A.; Bany Issa, M.A.; Bello Bugallo, P.M. Integrating Life Cycle Principles in Home Energy Management Systems: Optimal Load PV–Battery–Electric Vehicle Scheduling. Batteries 2024, 10, 138. [Google Scholar] [CrossRef]
- Salek, F.; Resalati, S.; Babaie, M.; Henshall, P.; Morrey, D.; Yao, L. A Review of the Technical Challenges and Solutions in Maximising the Potential Use of Second Life Batteries from Electric Vehicles. Batteries 2024, 10, 79. [Google Scholar] [CrossRef]
- Rufino Júnior, C.A.; Riva Sanseverino, E.; Gallo, P.; Koch, D.; Diel, S.; Walter, G.; Trilla, L.; Ferreira, V.J.; Pérez, G.B.; Kotak, Y.; et al. Towards to Battery Digital Passport: Reviewing Regulations and Standards for Second-Life Batteries. Batteries 2024, 10, 115. [Google Scholar] [CrossRef]
- Sarniak, M.T. Influence of Selected Weather Conditions on the Photovoltaic System Efficiency in Central Poland—Case Study. Adv. Sci. Technol. Res. J. 2024, 18, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, W.; Venet, P.; Bultel, Y.; Sari, A.; Riviere, E. Aging in First and Second Life of G/LFP 18650 Cells: Diagnosis and Evolution of the State of Health of the Cell and the Negative Electrode under Cycling. Batteries 2024, 10, 137. [Google Scholar] [CrossRef]
- Małek, A.; Marciniak, A.; Bartnik, G. The selection of an electric vehicle for the existing photovoltaic system—Case study in Polish climatic conditions. Arch. Autom. Engineer. Archiw. Mot. 2024, 103, 38–56. [Google Scholar] [CrossRef]
- Novoa, L.; Brouwer, J. Dynamics of an integrated solar photovoltaic and battery storage nanogrid for electric vehicle charging. J. Power Sources 2018, 399, 166–178. [Google Scholar] [CrossRef]
- Hassan, Q.; Abbas, M.; Tabar, V.; Tohidi, S.; Sameen, A.; Salman, H. Techno-economic assessment of battery storage with photovoltaics for maximum self-consumption. Energy Harvest. Syst. 2024, 11, 20220050. [Google Scholar] [CrossRef]
- Lewicki, W.; Niekurzak, M.; Sendek-Matysiak, E. Electromobility Stage in the Energy Transition Policy—Economic Dimension Analysis of Charging Costs of Electric Vehicles. Energies 2024, 17, 1934. [Google Scholar] [CrossRef]
- Keelin, T.W. The Metalog Distributions. Decis. Anal. 2016, 13, 243–277. [Google Scholar] [CrossRef]
- Keelin, T.W.; Howard, R.A. The Metalog Distributions: Virtually Unlimited Shape Flexibility, Combining Expert Opinion in Closed Form, and Bayesian Updating in Closed Form; Stanford University: Stanford, CA, USA, 2021. [Google Scholar]
- Available online: https://www.bayesfusion.com/2022/06/27/genie-4-0/ (accessed on 21 April 2024).
- Available online: https://blogs.sas.com/content/iml/2023/02/22/metalog-distribution.html (accessed on 19 December 2023).
Cell | Capacity (A/h) | Percent from Maximum Capacity | Working Time | Reason for Stopping |
---|---|---|---|---|
1 | 5.445 | 83.77% | 01:05:22 | Discharge minimum voltage |
2 | 5.316 | 81.79% | 01:03:49 | Discharge minimum voltage |
3 | 5.087 | 78.25% | 01:01:03 | Discharge minimum voltage |
4 | 5.245 | 80.7% | 01:02:59 | Discharge minimum voltage |
5 | 5.015 | 77.16% | 01:00:13 | Discharge minimum voltage |
6 | 5.13 | 78.93% | 01:01:36 | Discharge minimum voltage |
7 | 5.158 | 79.35% | 01:01:55 | Discharge minimum voltage |
8 | 5.18 | 79.69% | 01:02:11 | Discharge minimum voltage |
9 | 4.962 | 76.34% | 00:59:34 | Discharge minimum voltage |
10 | 5.084 | 78.22% | 01:01:02 | Discharge minimum voltage |
11 | 5.164 | 79.45% | 01:02:00 | Discharge minimum voltage |
12 | 5.204 | 80.06% | 01:02:28 | Discharge minimum voltage |
13 | 5.071 | 78.01% | 01:00:52 | Discharge minimum voltage |
14 | 5.146 | 79.16% | 01:01:46 | Discharge minimum voltage |
15 | 5.146 | 79.18% | 01:01:46 | Discharge minimum voltage |
16 | 5.039 | 77.52% | 01:00:30 | Discharge minimum voltage |
17 | 5.01 | 77.08% | 01:00:08 | Discharge minimum voltage |
18 | 5.063 | 77.9% | 01:00:46 | Discharge minimum voltage |
19 | 5.234 | 80.52% | 01:02:49 | Discharge minimum voltage |
20 | 5.206 | 80.09% | 01:02:29 | Discharge minimum voltage |
21 | 4.995 | 76.85% | 00:59:59 | Discharge minimum voltage |
22 | 5.236 | 80.55% | 01:02:51 | Discharge minimum voltage |
23 | 5.309 | 81.67% | 01:03:44 | Discharge minimum voltage |
24 | 5.489 | 84.44% | 01:05:55 | Discharge minimum voltage |
25 | 5.24 | 80.61% | 01:02:54 | Discharge minimum voltage |
26 | 5.42 | 83.39% | 01:05:03 | Discharge minimum voltage |
27 | 5.508 | 84.74% | 01:06:07 | Discharge minimum voltage |
28 | 5.633 | 86.67% | 01:07:39 | Discharge minimum voltage |
Count | 28 |
---|---|
Minimum | 4.962 |
Maximum | 5.633 |
Mean | 5.20482 |
StdDev | 0.169515 |
Probability | |
---|---|
0.05 | 4.994999885559 |
0.25 | 5.084000110626 |
0.5 | 5.179999828339 |
0.75 | 5.309000015259 |
0.95 | 5.507999897003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caban, J.; Małek, A.; Kroczyński, D. A Method for Assessing the Technical Condition of Traction Batteries Using the Metalog Family of Probability Distributions. Energies 2024, 17, 3096. https://doi.org/10.3390/en17133096
Caban J, Małek A, Kroczyński D. A Method for Assessing the Technical Condition of Traction Batteries Using the Metalog Family of Probability Distributions. Energies. 2024; 17(13):3096. https://doi.org/10.3390/en17133096
Chicago/Turabian StyleCaban, Jacek, Arkadiusz Małek, and Dariusz Kroczyński. 2024. "A Method for Assessing the Technical Condition of Traction Batteries Using the Metalog Family of Probability Distributions" Energies 17, no. 13: 3096. https://doi.org/10.3390/en17133096
APA StyleCaban, J., Małek, A., & Kroczyński, D. (2024). A Method for Assessing the Technical Condition of Traction Batteries Using the Metalog Family of Probability Distributions. Energies, 17(13), 3096. https://doi.org/10.3390/en17133096