Optimal Design of Double Stage Internal Loop Air-Lift Bioreactor
Abstract
1. Introduction
2. Materials and Methods
2.1. CFD Model
2.2. Mathematical Models
2.3. Geometries
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lefrancois, M.L.; Mariller, C.G.; Mejane, J.V. Effectionnements Aux Procedes de Cultures Forgiques et de Fermentations Industrielles. Brev. D’invention Fr. 1955, 102. [Google Scholar]
- Blenke, H. Loop Reactors. Adv. Biochem. Eng. 1979, 13, 121–214. [Google Scholar] [CrossRef]
- Chisti, M.; Moo-Young, M. Airlift reactors: Characteristics, applications and design considerations. Chem. Eng. Commun. 1987, 60, 195–242. [Google Scholar] [CrossRef]
- Merchuk, J.C. Airlift Bioreactors: Review of Recent Advances. Can. J. Chem. Eng. 2003, 81, 324–337. [Google Scholar] [CrossRef]
- Zhang, T.; We, C.; Ren, Y.; Feng, C.; Wu, H. Advances in Airlift Reactors: Modified Design and Optimization of Operation Conditions. Rev. Chem. Eng. 2017, 33, 163–182. [Google Scholar] [CrossRef]
- Jasim, M.M.; Mohammed, T.J.; Sabri, L.S. Air-Lift Reactor’s Characterization via Computational Fluid Dynamic (CFD). Eng. Technol. J. 2022, 40, 484–497. [Google Scholar] [CrossRef]
- Siegel, M.H.; Robinson, C.W. Application of Airlift Gas-Liquid-Solid Reactors in Biotechnology. Chem. Eng. Sci. 1992, 47, 3215–3229. [Google Scholar] [CrossRef]
- Fadavi, A.; Chisti, Y. Gas Holdup and Mixing Characteristics of a Novel Forced Circulation Loop Reactor. Chem. Eng. J. 2007, 131, 105–111. [Google Scholar] [CrossRef]
- Merchuk, J.C. Why Use Air-Lift Bioreactors? Trends Biotechnol. 1990, 8, 66–71. [Google Scholar] [CrossRef]
- Smith, B.C.; Skidmore, D.R. Mass Transfer Phenomena in an Airlift Reactor: Effects of Solids Loading and Temperature. Biotechnol. Bioeng. 1990, 35, 483–491. [Google Scholar] [CrossRef]
- Lu, W.-J.; Hwang, S.-J.; Chang, C.-M. Liquid Mixing in Internal Loop Airlift Reactors. Ind. Eng. Chem. Res. 1994, 33, 2180–2186. [Google Scholar] [CrossRef]
- Bang, W.; Nikov2, I.; Delmas1, H.; Bascoul1, A. Gas-Liquid Mass Transfer in a New Three-Phase Stirred Airlift Reactor. J. Chem. Technol. Biotechnol. 1998, 72, 137–142. [Google Scholar] [CrossRef]
- Wei, C.; Xie, B.; Xiao, H.; Wang, D. Volumetric Mass Transfer Coefficient of Oxygen in an Internal Loop Airlift Reactor with a Convergence-Divergence Draft Tube. Eng. Technol. Ind. Chem.-Plant Equip.-Process Eng.-Biotechnol. 2000, 23, 597–603. [Google Scholar] [CrossRef]
- Siegel, M.H.; Merchuk, J.C. Mass Transfer in a Rectangular Air-Lift Reactor: Effects of Geometry and Gas Recirculation. Biotechnol. Bioeng. 1988, 32, 1128–1137. [Google Scholar] [CrossRef]
- Pironti, F.F.; Medina, V.R.; Calvo, R.; Sáez, A.E. Effect of Draft Tube Position on the Hydrodynamics of a Draft Tube Slurry Bubble Column. Chem. Eng. J. Biochem. Eng. J. 1995, 60, 155–160. [Google Scholar] [CrossRef]
- Verlaan, P.; Van Eijs, A.M.M.; Tramper, J.; Riet, K.V.; Luyben, K.C.A.M. Estimation of Axial Dispersion in Individual Sections of an Airlift-Loop Reactor. Chem. Eng. Sci. 1989, 44, 1139–1146. [Google Scholar] [CrossRef]
- Svendsen, H.F.; Jakobsen, H.A.; Torvik, R. Local Flow Structures in Internal Loop and Bubble Column Reactors. Chem. Eng. Sci. 1992, 47, 3297–3304. [Google Scholar] [CrossRef]
- Jakobsen, H.A.; Svendsen, H.F.; Hjarbo, K.W. On the Prediction of Local Flow Structures in Internal Loop and Bubble Column Reactors Using a Two-Fluid Model. Comput. Chem. Eng. 1993, 17, S531–S536. [Google Scholar] [CrossRef]
- Herrmann, J.; Bangga, G. Multi-Objective Optimization of a Thick Blade Root Airfoil to Improve the Energy Production of Large Wind Turbines. J. Renew. Sustain. Energy 2019, 11, 043304. [Google Scholar] [CrossRef]
- Becker, S.; Sokolichin, A.; Eigenberger, G. Gas—Liquid Flow in Bubble Columns and Loop Reactors: Part II. Comparison of Detailed Experiments and Flow Simulations. Chem. Eng. Sci. 1994, 49, 5747–5762. [Google Scholar] [CrossRef]
- Cockx, A.; Liné, A.; Roustan, M.; Do-Quang, Z.; Lazarova, V. Numerical Simulation and Physical Modeling of the Hydrodynamics in an Air-Lift Internal Loop Reactor. Chem. Eng. Sci. 1997, 52, 3787–3793. [Google Scholar] [CrossRef]
- Padial, N.T.; VanderHeyden, W.B.; Rauenzahn, R.M.; Yarbro, S.L. Three-Dimensional Simulation of a Three-Phase Draft-Tube Bubble Column. Chem. Eng. Sci. 2000, 55, 3261–3273. [Google Scholar] [CrossRef]
- Oey, R.S.; Mudde, R.F.; Portela, L.M.; Van Den Akker, H.E.A. Simulation of a Slurry Airlift Using a Two-Fluid Model. Chem. Eng. Sci. 2001, 56, 673–681. [Google Scholar] [CrossRef]
- Mudde, R.F.; Van Den Akker, H.E.A. 2D and 3D Simulations of an Internal Airlift Loop Reactor on the Basis of a Two-Fluid Model. Chem. Eng. Sci. 2001, 56, 6351–6358. [Google Scholar] [CrossRef]
- Petersen, E.E.; Margaritis, A. Hydrodynamic and Mass Transfer Characteristics of Three-Phase Gaslift Bioreactor Systems. Crit. Rev. Biotechnol. 2001, 21, 233–294. [Google Scholar] [CrossRef]
- Ding, F.; Yuan, N.; Liu, Z.; Ma, A.; Qiao, Y. Multi-Stage Loop Reactor. U.S. Patent US20030147791A1, 7 August 2003. [Google Scholar]
- Tunthikul, N.; Wongsuchoto, P.; Pavasant, P. Hydrodynamics and Mass Transfer Behavior in Multiple Draft Tube Airlift Contactors. Korean J. Chem. Eng. 2006, 23, 881–887. [Google Scholar] [CrossRef]
- Margaritis, A.; Sheppard, J.D. Mixing Time and Oxygen Transfer Characteristics of Double Draft Tube Airlift Fermentor. Biotechnol. Bioeng. 1981, 23, 2117–2135. [Google Scholar] [CrossRef]
- Behin, J. Modeling of Modified Airlift Loop Reactor with a Concentric Double-Draft Tube. Chem. Eng. Res. Des. 2010, 88, 919–927. [Google Scholar] [CrossRef]
- Oldani, F. Reaction Device with Air-Lift Type Internal Circulation. U.S. Patent US20170326507A1, 16 November 2016. [Google Scholar]
- Bakker, W.A.M.; van Can, H.J.L.; Tramper, J.; de Gooijer, C.D. Hydrodynamics and Mixing in a Multiple Air-Lift Loop Reactor. Biotechnol. Bioeng. 1993, 42, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Bun, S.; Chawaloesphonsiya, N.; Nakajima, F.; Tobino, T.; Painmanakul, P. Comparative Study of Local Gas-Liquid Hydrodynamics and Mass Transfer between Conventional and Modified Airlift Reactors. J. Environ. Chem. Eng. 2019, 7, 103206. [Google Scholar] [CrossRef]
- Karim, K.; Thoma, G.J.; Al-Dahhan, M.H. Gas-Lift Digester Configuration Effects on Mixing Effectiveness. Water Res. 2007, 41, 3051–3060. [Google Scholar] [CrossRef]
- Coughtrie, A.R.; Borman, D.J.; Sleigh, P.A. Effects of Turbulence Modelling on Prediction of Flow Characteristics in a Bench-Scale Anaerobic Gas-Lift Digester. Bioresour. Technol. 2013, 138, 297–306. [Google Scholar] [CrossRef]
- Aslanbay Guler, B.; Deniz, I.; Demirel, Z.; Imamoglu, E. Computational fluid dynamics Simulation in Scaling-up of Airlift Photobioreactor for Astaxanthin Production. J. Biosci. Bioeng. 2020, 129, 86–92. [Google Scholar] [CrossRef]
- Ruitenberg, R.; Schultz, C.E.; Buisman, C.J.N. Bio-Oxidation of Minerals in Air-Lift Loop Bioreactors. Int. J. Miner. Process. 2001, 62, 271–278. [Google Scholar] [CrossRef]
- Stasinopoulos, S.J.; Seviour, R.J. Exopolysaccharide Production by Acremonium Persicinum in Stirred-Tank and Air-Lift Fermentors. Appl. Microbiol. Biotechnol. 1992, 36, 465–468. [Google Scholar] [CrossRef]
- Günzel, B.; Yonsel, S.; Deckwer, W.D. Fermentative Production of 1,3-Propanediol from Glycerol by Clostridium Butyricum up to a Scale of 2m3. Appl. Microbiol. Biotechnol. 1991, 36, 289–294. [Google Scholar] [CrossRef]
- Kracke-Helm, H.A.; Rinas, U.; Hitzmann, B.; Schügerl, K. Cultivation of Recombinant E. Coli and Production of Fusion Protein in 60-l Bubble Column and Airlift Tower Loop Reactors. Enzym. Microb. Technol. 1991, 13, 554–564. [Google Scholar] [CrossRef]
- Bonnarme, P.; Jeffries, T.W. Selective Production of Extracellular Peroxidases from Phanerochaete Chrysosporium in an Airlift Bioreactor. J. Ferment. Bioeng. 1990, 70, 158–163. [Google Scholar] [CrossRef]
- Hopf, N.W.; Yonsel, S.; Deckwer, W.D. Ambruticin S Production in Air-Lift and Stirred-Tank Bioreactors. Appl. Microbiol. Biotechnol. 1990, 34, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Mendiola, M.A.; Stafford, A.; Cresswell, R.; Arias-Castro, C. Bioreactors for Growth of Plant Roots. Enzym. Microb. Technol. 1991, 13, 697–702. [Google Scholar] [CrossRef]
- Couillard, D.; Mercier, G. Optimum Residence Time (in CSTR and Airlift Reactor) for Bacterial Leaching of Metals from Anaerobic Sewage Sludge. Water Res. 1991, 25, 211–218. [Google Scholar] [CrossRef]
- Siedenberg, D.; Gerlach, S.R.; Weigel, B.; Schugerl, K.; Giuseppin, M.L.F.; Hunik, J. Production of Xylanase by Aspergillus Awamori on Synthetic Medium in Stirred Tank and Airlift Tower Loop Reactors: The Influence of Stirrer Speed and Phosphate Concentration. J. Biotechnol. 1997, 56, 103–114. [Google Scholar] [CrossRef]
- El-Sayed, A.M.M.; Mahmoud, W.M.; Coughlin, R.W. Production of Dextransucrase by Leuconostoc Mesenteroides Immobilized in Calcium-Alginate Beads: I. Batch and Fed-Batch Fermentations. Biotechnol. Bioeng. 1990, 36, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, T.; Eglin, R.; Walker, E.; Bucke, C.; Holt, G.; Bull, A.T.; Lilly, M.D. The Large-Scale Immobilization of Penicillium Chrysogenum: Batch and Continuous Operation in an Air-Lift Reactor. Biotechnol. Bioeng. 1990, 36, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.P.; Al-Dahhan, M.H. Local Characteristics of Hydrodynamics in Draft Tube Airlift Bioreactor. Chem. Eng. Sci. 2008, 63, 3057–3068. [Google Scholar] [CrossRef]
- Luo, H.P.; Al-Dahhan, M.H. Verification and Validation of CFD Simulations for Local Flow Dynamics in a Draft Tube Airlift Bioreactor. Chem. Eng. Sci. 2011, 66, 907–923. [Google Scholar] [CrossRef]
- Zhang, T.; Wei, C.; Feng, C.; Zhu, J. A Novel Airlift Reactor Enhanced by Funnel Internals and Hydrodynamics Prediction by the CFD Method. Bioresour. Technol. 2012, 104, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Pawar, S.B. CFD Analysis of Flow Regimes in Airlift Reactor Using Eulerian-Lagrangian Approach. Can. J. Chem. Eng. 2017, 95, 420–431. [Google Scholar] [CrossRef]
- Gemello, L.; Cappello, V.; Augier, F.; Marchisio, D.; Plais, C. CFD-Based Scale-up of Hydrodynamics and Mixing in Bubble Columns. Chem. Eng. Res. Des. 2018, 136, 846–858. [Google Scholar] [CrossRef]
- McClure, D.D.; Dolton, T.P.; Barton, G.W.; Fletcher, D.F.; Kavanagh, J.M. Hydrodynamics and Mixing in Airlift Contactors: Experimental Work and CFD Modelling. Chem. Eng. Res. Des. 2017, 127, 154–169. [Google Scholar] [CrossRef]
- Li, S.; Qi, T. Hydrodynamics and Flow Regimes of a Multi-Stage Internal Airlift Loop Reactor. Mater. Focus 2014, 3, 205–210. [Google Scholar] [CrossRef]
- Li, D.; Guo, K.; Li, J.; Huang, Y.; Zhou, J.; Liu, H.; Liu, C. Hydrodynamics and Bubble Behaviour in a Three-Phase Two-Stage Internal Loop Airlift Reactor. Chin. J. Chem. Eng. 2018, 26, 1359–1369. [Google Scholar] [CrossRef]
- Tao, J.; Huang, J.; Geng, S.; Gao, F.; He, T.; Huang, Q. Experimental Investigation of Hydrodynamics and Mass Transfer in a Slurry Multistage Internal Airlift Loop Reactor. Chem. Eng. J. 2020, 386, 122769. [Google Scholar] [CrossRef]
- Dabiri, S.; Kumar, P.; Rauch, W. Integrating Biokinetics with Computational fluid dynamics for Energy Performance Analysis in Anaerobic Digestion. Bioresour. Technol. 2023, 373, 128728. [Google Scholar] [CrossRef] [PubMed]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.; Siegrist, H.; Vavilin, V.A. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef]
- Kumar, P.; Dabiri, S.; Rauch, W. 2D SPH Simulation of an Anaerobic Digester. Comput. Part. Mech. 2022, 9, 1073–1083. [Google Scholar] [CrossRef]
- Rezavand, M.; Winkler, D.; Sappl, J.; Seiler, L.; Meister, M.; Rauch, W. A Fully Lagrangian Computational Model for the Integration of Mixing and Biochemical Reactions in Anaerobic Digestion. Comput. Fluids 2019, 181, 224–235. [Google Scholar] [CrossRef]
- Shi, J.; Guo, K.; Wang, Z.; Zheng, L.; Liu, H.; Xiang, W.; Liu, C.; Li, X. Computational fluid dynamics Simulation of Hydrodynamics in a Two-Stage Internal Loop Airlift Reactor with Contraction-Expansion Guide Vane. ACS Omega 2021, 6, 6981–6995. [Google Scholar] [CrossRef]
- Ramonet, F.; Haddadi, B.; Jordan, C.; Harasek, M. Modelling and Design of Optimal Internal Loop Air-Lift Reactor Configurations Through Computational Fluid Dynamics. Chem. Eng. Trans. 2022, 94, 817–822. [Google Scholar] [CrossRef]
- Ničeno, B.; Dhotre, M.T.; Deen, N.G. One-Equation Sub-Grid Scale (SGS) Modelling for Euler–Euler Large Eddy Simulation (EELES) of Dispersed Bubbly Flow. Chem. Eng. Sci. 2008, 63, 3923–3931. [Google Scholar] [CrossRef]
- OpenCFD Ltd. Available online: https://www.openfoam.com/documentation/guides/latest/api/classFoam_1_1LESModels_1_1continuousGasKEqn.html (accessed on 27 January 2023).
- Schiller, L. A Drag Coefficient Correlation. Zeit. Ver. Deutsch 1933, 77, 318–320. [Google Scholar]
- van Baten, J.M.; Ellenberger, J.; Krishna, R. Hydrodynamics of Internal Air-Lift Reactors: Experiments versus CFD Simulations. Chem. Eng. Process. Process Intensif. 2003, 42, 733–742. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.; Liu, C.; Jia, M.; Xi, X. Numerical Analysis of Jet Breakup Based on a Modified Compressible Two-Fluid-LES Model. Fuel 2019, 254, 115608. [Google Scholar] [CrossRef]
- Zhu, S.J.; Ooi, A.; Manasseh, R. Large Eddy Simulation of Gas-Liquid Flow in a Partially Aerated Bubble Column. In Proceedings of the 21st Australasian Fluid Mechanics Conference, Adelaide, Australia, 10–13 December 2018. [Google Scholar]
- Roy, C.J.; Oberkampf, W.L. A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing. Comput. Methods Appl. Mech. Eng. 2011, 200, 2131–2144. [Google Scholar] [CrossRef]
- Richards, S.A. COMPLETED RICHARDSON EXTRAPOLATION IN SPACE AND TIME. Commun. Numer. Meth. Eng. 1997, 13, 573–582. [Google Scholar] [CrossRef]
- Roy, C.J. Review of Code and Solution Verification Procedures for Computational Simulation. J. Comput. Phys. 2005, 205, 131–156. [Google Scholar] [CrossRef]
- Segui, M.; Abel, F.R.; Botez, R.M.; Ceruti, A. High-Fidelity Aerodynamic Modeling of an Aircraft Using OpenFoam—Application on the CRJ700. Aeronaut. J. 2022, 126, 585–606. [Google Scholar] [CrossRef]
- Greenshields, C. OpenFOAM User Guide; OpenFOAM Foundation Ltd.: Bologna, Italy, 2021; Volume 9. [Google Scholar]
- Courant, R.; Friedrichs, K.; Lewy, H. Über Die Partiellen Differenzengleichungen Der Mathematischen Physik. Math. Ann. 1928, 100, 32–74. [Google Scholar] [CrossRef]
- Jia, X.; Wen, J.; Feng, W.; Yuan, Q. Local Hydrodynamics Modeling of a Gas−Liquid−Solid Three-Phase Airlift Loop Reactor. Ind. Eng. Chem. Res. 2007, 46, 5210–5220. [Google Scholar] [CrossRef]
Geometry | Type | DT Diameter (×10−2 m) | Liquid Height (m) | Distance from Inlet to DT (×10−2 m) | Distance from DT to Surface (×10−2 m) | |||
---|---|---|---|---|---|---|---|---|
d1 | d2 | d3 | d4 | |||||
1 | b | 95 | 95 | 95 | 95 | 0.85 | 20.88 | 11.80 |
2 | b | 95 | 95 | 95 | 95 | 1 | 28.88 | 11.80 |
3 | a | 95 | 95 | 95 | 95 | 1 | 7.54 | 26.20 |
4 | a | 95 | 95 | 95 | 95 | 0.85 | 7.74 | 34.40 |
5 | a | 95 | 95 | 95 | 95 | 0.85 | 7.74 | 19.40 |
6 | a | 95 | 95 | 95 | 95 | 0.85 | 7.54 | 11.20 |
7 | b | 95 | 60 | 95 | 60 | 0.85 | 20.88 | 11.80 |
8 | b | 95 | 60 | 60 | 95 | 0.85 | 28.88 | 11.80 |
9 | b | 95 | 60 | 95 | 60 | 0.85 | 28.88 | 11.80 |
10 | b | 95 | 60 | 95 | 95 | 0.85 | 28.88 | 11.80 |
Mesh | Cell Count | Maximum Skewness | Air Velocity Magnitude (m/s) |
---|---|---|---|
1 | 387,367 | 3.28 | 0.366688 |
2 | 603,148 | 2.88 | 0.366936 |
3 | 937,077 | 3.78 | 0.383900 |
4 | 1,534,081 | 4.13 | 0.365633 |
Geometry | Cell Number (×103) | Max. Skewness | Max. Non-Orthogonality |
---|---|---|---|
1 | 646 | 3.27 | 53.51 |
2 | 646 | 2.51 | 64.66 |
3 | 642 | 4.48 | 64.80 |
4 | 306 | 3.74 | 64.86 |
5 | 306 | 3.74 | 64.86 |
6 | 642 | 4.48 | 64.80 |
7 | 623 | 2.80 | 64.83 |
8 | 1012 | 2.84 | 54.85 |
9 | 683 | 3.15 | 46.39 |
10 | 1043 | 3.37 | 58.38 |
Geometry | Computation Time (h) | Pressure (Pa) | Axial Velocity (m/s) | Turbulent Kinetic Energy (m2/s2) | Draft Tube Loop Circulation Time (s) | ||||
---|---|---|---|---|---|---|---|---|---|
Top | Bottom | Top | Bottom | Top | Bottom | First | Second | ||
1 | 81 | 100,388 | 107,722 | 0.030711 | 0.004942 | 1.24 × 10−4 | 1.04 × 10−6 | 27.02 | 110.76 |
2 | 101 | 100,389 | 107,721 | 0.029952 | 0.002753 | 1.27 × 10−4 | 7.99 × 10−7 | 25.07 | 128.04 |
3 | 207 | 100,395 | 107,727 | 0.035534 | 0.002461 | 2.21 × 10−4 | 7.36 × 10−7 | 20.7 | 146.06 |
4 | 119 | 100,401 | 107,732 | 0.020659 | 0.003274 | 7.26 × 10−5 | 9.96 × 10−7 | 21.4 | 112.17 |
5 | 174 | 100402 | 106,268 | 0.017627 | 0.002926 | 1.20 × 10−4 | 1.04 × 10−6 | 23.81 | 104.77 |
6 | 438 | 100,396 | 106,266 | 0.038666 | 0.003935 | 1.57 x10−4 | 1.82 x10−6 | 18.59 | 91.75 |
7 | 112 | 100,388 | 107,723 | 0.023221 | 0.00652 | 5.95 × 10−5 | 9.20 × 10−7 | 24.45 | 73.48 |
8 | 318 | 100,387 | 107,721 | 0.034632 | 0.001516 | 3.04 × 10−4 | 8.27 × 10−7 | 36.97 | 156.27 |
9 | 219 | 100,374 | 107,707 | 0.057495 | 0.00233 | 5.90 × 10−4 | 1.05 × 10−6 | 21.63 | 98.41 |
10 | 284 | 100,388 | 107,721 | 0.033105 | 0.002221 | 6.11 × 10−5 | 8.66 × 10−7 | 23.58 | 110.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramonet, F.; Haddadi, B.; Harasek, M. Optimal Design of Double Stage Internal Loop Air-Lift Bioreactor. Energies 2023, 16, 3267. https://doi.org/10.3390/en16073267
Ramonet F, Haddadi B, Harasek M. Optimal Design of Double Stage Internal Loop Air-Lift Bioreactor. Energies. 2023; 16(7):3267. https://doi.org/10.3390/en16073267
Chicago/Turabian StyleRamonet, Fernando, Bahram Haddadi, and Michael Harasek. 2023. "Optimal Design of Double Stage Internal Loop Air-Lift Bioreactor" Energies 16, no. 7: 3267. https://doi.org/10.3390/en16073267
APA StyleRamonet, F., Haddadi, B., & Harasek, M. (2023). Optimal Design of Double Stage Internal Loop Air-Lift Bioreactor. Energies, 16(7), 3267. https://doi.org/10.3390/en16073267