BIM and BEM Interoperability–Evaluation of a Case Study in Modular Wooden Housing
Abstract
:1. Introduction
1.1. Background
1.2. Related Research
1.3. Research Significance
2. Materials and Methods
2.1. Methodology for Photogrammetric Surveys of Buildings with Drones
2.1.1. Reconnaissance and Preparation
Applicable Legislation
Assessment of Site Conditions—Obstacles and Weather Conditions
- −
- The UAS battery and the existing airspace regulations [46];
- −
- The existence of obstacles and the correct GPS signal for proper georeferencing [17];
- −
- Wind speed and direction [47];
- −
- Precipitation, which causes noise in the images due to water droplets and consequently erroneous results [47];
- −
- Adverse weather conditions such as storms and the presence of other manned or unmanned aircraft in the vicinity [48] present relevant safety risks;
- −
- Attacks from nearby birds [49];
- −
- Proximity to electromagnetic fields, especially if it is intended to fly in the vicinity of high voltage cables, because electromagnetic interference may disturb the correct functioning of the equipment [40].
Flight Planning
- −
- Flight height should be higher than the largest building in the area, and it is advisable not to exceed this height by 1.5 times [12];
- −
- Distance to the façade—there are several alternatives, but the suggestion is that the remote pilot will suit this distance according to the building’s surroundings (presence of walls or other buildings, for example);
- −
- −
- −
Project Elements
2.1.2. Image Collection Using Drones
Equipment Calibration
Georeferencing Support Methods
Image Collection
2.1.3. Processing and Analysis of the Collected Images
Photogrammetric Model (Point Cloud and 3D Mesh Model)
Point Cloud Cleaning
2.1.4. Integration and Modelling in BIM Environment
Import to a BIM Authoring Software
BIM Modelling
2.1.5. Energy Simulations on BEM Software
From BIM to BEM—Data Transfer Formats
From BIM to BEM—Energy Simulations and Software
2.2. Case Study
2.2.1. Experimental Monitoring
2.2.2. Numerical Simulation
3. Results and Discussion
3.1. From UAS to BEM
3.1.1. Photogrammetric Survey with a Drone
3.1.2. 3D Reconstruction and BIM Model (UAS-to-BIM)
3.1.3. BEM Model and Energy Simulations (BIM-to-BEM)
3.2. Experimental Results
3.3. Numerical Results
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization Regional Office for Europe. Combined or Multiple Exposure to Health Stressors in Indoor Built Environments; Sarigiannis, D.A., Ed.; World Health Organization: Copenhagen, Denmark, 2014. [Google Scholar]
- Delgado, J.; Matos, A.M.; Guimarães, A.S. Linking Indoor Thermal Comfort with Climate, Energy, Housing, and Living Conditions: Portuguese Case in European Context. Energies 2022, 15, 6028. [Google Scholar] [CrossRef]
- Enescu, D. A Review of Thermal Comfort Models and Indicators for Indoor Environments. Renew. Sustain. Energy Rev. 2017, 79, 1353–1379. [Google Scholar] [CrossRef]
- Ormandy, D.; Ezratty, V. Housing, Health, and the Domestic Environment. In Clay’s Handbook of Environmental Health; Routledge: London, UK, 2022; pp. 490–515. ISBN 9781003035640. [Google Scholar]
- Alfalah, G.; Al-Sakkaf, A.; Mohammed Abdelkader, E.; Zayed, T. An Integrated Fuzzy-Based Sustainability Framework for Post-Secondary Educational Buildings: A User-Perspective Approach. Sustainability 2022, 14, 9955. [Google Scholar] [CrossRef]
- Matos, A.M.; Delgado, J.M.P.Q.; Guimarães, A.S. Energy-Efficiency Passive Strategies for Mediterranean Climate: An Overview. Energies 2022, 15, 2572. [Google Scholar] [CrossRef]
- Matos, A.M.; Delgado, J.M.P.Q.; Guimarães, A.S. Linking Energy Poverty with Thermal Building Regulations and Energy Efficiency Policies in Portugal. Energies 2022, 15, 329. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, C.; Yan, S.; Liu, H.; Pan, Y.; Zhu, F.; Jiang, Y. A Multi-Objective Optimization Method Based on an Adaptive Meta-Model for Classroom Design with Smart Electrochromic Windows. Energy 2022, 243, 122777. [Google Scholar] [CrossRef]
- Elaouzy, Y.; El Fadar, A. Energy, Economic and Environmental Benefits of Integrating Passive Design Strategies into Buildings: A Review. Renew. Sustain. Energy Rev. 2022, 167, 112828. [Google Scholar] [CrossRef]
- Roque, E.; Vicente, R.; Almeida, R.M.S.F. Indoor Thermal Environment Challenges of Light Steel Framing in the Southern European Context. Energies 2021, 14, 7025. [Google Scholar] [CrossRef]
- Gao, H.; Koch, C.; Wu, Y. Building Information Modelling Based Building Energy Modelling: A Review. Appl. Energy 2019, 238, 320–343. [Google Scholar] [CrossRef]
- Hou, Y.; Volk, R.; Chen, M.; Soibelman, L. Fusing Tie Points’ RGB and Thermal Information for Mapping Large Areas Based on Aerial Images: A Study of Fusion Performance under Different Flight Configurations and Experimental Conditions. Autom. Constr. 2021, 124, 103554. [Google Scholar] [CrossRef]
- Cho, Y.K.; Ham, Y.; Golpavar-Fard, M. 3D As-Is Building Energy Modeling and Diagnostics: A Review of the State-of-the-Art. Adv. Eng. Inform. 2015, 29, 184–195. [Google Scholar] [CrossRef]
- Rocha, A.; Pinto, D.; Ramos, N.M.M.; Almeida, R.M.S.F.; Barreira, E.; Simões, M.L.; Poças Martins, J.; Pereira, P.F.; Sanhudo, L. A Case Study to Improve the Winter Thermal Comfort of an Existing Bus Station. J. Build. Eng. 2020, 29, 101123. [Google Scholar] [CrossRef]
- Sanhudo, L.; Ramos, N.M.M.; Poças Martins, J.; Almeida, R.M.S.F.; Barreira, E.; Simões, M.L.; Cardoso, V. Building Information Modeling for Energy Retrofitting—A Review. Renew. Sustain. Energy Rev. 2018, 89, 249–260. [Google Scholar] [CrossRef]
- Karachaliou, E.; Georgiou, E.; Psaltis, D.; Stylianidis, E. UAV for Mapping Historic Buildings: From 3D Modelling to BIM. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W9, 397–402. [Google Scholar] [CrossRef]
- Rakha, T.; Gorodetsky, A. Review of Unmanned Aerial System (UAS) Applications in the Built Environment: Towards Automated Building Inspection Procedures Using Drones. Autom. Constr. 2018, 93, 252–264. [Google Scholar] [CrossRef]
- Albeaino, G.; Gheisari, M. Trends, Benefits, and Barriers of Unmanned Aerial Systems in the Construction Industry: A Survey Study in the United States. J. Inf. Technol. Constr. 2021, 26, 84–111. [Google Scholar] [CrossRef]
- Freeman, M.R.; Kashani, M.M.; Vardanega, P.J. Aerial Robotic Technologies for Civil Engineering: Established and Emerging Practice. J. Unmanned Veh. Syst. 2021, 9, 75–91. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C. Applications of Multirotor Drone Technologies in Construction Management. Int. J. Constr. Manag. 2019, 19, 401–412. [Google Scholar] [CrossRef]
- Dupont, Q.F.M.; Chua, D.K.H.; Tashrif, A.; Abbott, E.L.S. Potential Applications of UAV along the Construction’s Value Chain. Procedia Eng. 2017, 182, 165–173. [Google Scholar] [CrossRef]
- Alizadehsalehi, S.; Yitmen, I.; Celik, T.; Arditi, D. The Effectiveness of an Integrated BIM/UAV Model in Managing Safety on Construction Sites. Int. J. Occup. Saf. Ergon. 2020, 26, 829–844. [Google Scholar] [CrossRef]
- Rachmawati, T.S.N.; Kim, S. Unmanned Aerial Vehicles (UAV) Integration with Digital Technologies toward Construction 4.0: A Systematic Literature Review. Sustainability 2022, 14, 5708. [Google Scholar] [CrossRef]
- Gigliarelli, E.; Calcerano, F.; Cessari, L. Heritage bim, Numerical Simulation and Decision Support Systems: An Integrated Approach for Historical Buildings Retrofit. Energy Procedia 2017, 133, 135–144. [Google Scholar] [CrossRef]
- Gigliarelli, E.; Calcerano, F.; Calvano, M.; Ruperto, F.; Sacco, M.; Cessari, L. Integrated Numerical Analysis and Building Information Modeling for Cultural Heritage. In Proceedings of the Building Simulation Applications: BSA 2017: 3th IBPSA-Italy Conference, Bolzano, Italy, 8–10 February 2017; pp. 105–112. [Google Scholar]
- Gigliarelli, E.; Calcerano, F.; Cessari, L. Implementation Analysis and Design for Energy Efficient Intervention on Heritage Buildings. In Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection. EuroMed 2016. Lecture Notes in Computer Science; Ioannides, M., Fink, E., Moropoulou, A., Hagedorn-Saupe, M., Fresa, A., Liestøl, G., Rajcic, V., Grussenmeyer, P., Eds.; Springer: Cham, Switzerland, 2016; Volume 10058, pp. 91–103. [Google Scholar] [CrossRef]
- Nagy, G.; Ashraf, F. HBIM Platform & Smart Sensing as a Tool for Monitoring and Visualizing Energy Performance of Heritage Buildings. Dev. Built Environ. 2021, 8, 100056. [Google Scholar] [CrossRef]
- Maiolatesi, A.; Prada, A.; Luce, F.; Massari, G.; Baggio, P. Analysis of the Surroundings Impact on the Building Energy Performance by Means of a BIM Analytical Model Coupled with Dynamic Simulation. In Proceedings of the Building Simulation Applications: BSA 2019: 4th IBPSA-Italy Conference, Bolzano, Italy, 19–21 June 2019; pp. 315–322. [Google Scholar]
- Gorzalka, P.; Schmiedt, J.E.; Schorn, C.; Hoffschmidt, B. Automated Generation of an Energy Simulation Model for an Existing Building from UAV Imagery. Buildings 2021, 11, 380. [Google Scholar] [CrossRef]
- Benz, A.; Taraben, J.; Debus, P.; Habte, B.; Oppermann, L.; Hallermann, N.; Voelker, C.; Rodehorst, V.; Morgenthal, G. Framework for a UAS-Based Assessment of Energy Performance of Buildings. Energy Build. 2021, 250, 111266. [Google Scholar] [CrossRef]
- KPMG International. No Turning Back—An Industry Ready to Transcend—2021 Global Construction Survey. 2021. Available online: https://assets.kpmg/content/dam/kpmg/xx/pdf/2021/08/global-construction-survey1.pdf (accessed on 12 December 2022).
- Sanhudo, L.; Poças Martins, J.; Rocha, A.; Soeiro, A.; Correia, T. A Digitalização nas Empresas da Indústria AEC Portuguesa: Inquérito e Análise de Resultados. DECivil 2022, 3, 13–17. [Google Scholar]
- Parracho, D.F.R. Processos Digitais para a Realização de Levantamentos Fotogramétricos e Termográficos com Veículos Aéreos Não Tripulados (VANT). Master’s Thesis, Faculty of Engineering (FEUP), University of Porto, Porto, Portugal, 2021. [Google Scholar]
- Parracho, D.F.R.; Poças Martins, J.; Barreira, E. Metodologia Digital para a Realização de Levantamentos Fotogramétricos e Termográficos de Edifícios Existentes com Drones—Caso de Estudo. In 4° Congresso Português de ‘Building Information Modelling’ vol. 2—ptBIM; Azenha, M., Lino, J.C., Granja, J., Figueiredo, B., Poças Martins, J., Eds.; UMinho Editora: Braga, Portugal, 2022; pp. 395–406. [Google Scholar] [CrossRef]
- Parracho, D.F.R.; Poças Martins, J.; Barreira, E. Proposal of a Methodology for Photogrammetric and Thermographic Surveys of Existing Buildings with Drones. In Proceedings of the 3rd Building and Management International Conference (BIMIC 2021), Madrid, Spain, 24–26 November 2021; pp. 54–57. [Google Scholar]
- Parracho, D.F.R.; Poças Martins, J.; Barreira, E. A Workflow for Photogrammetric and Thermographic Surveys of Buildings with Drones. In New Advances in Building Information Modeling and Engineering Management; González-García, M.N., Rodrigues, F., Baptista, J.S., Eds.; Springer: Cham, Switzerland, 2023; in press. [Google Scholar]
- Martínez-Carricondo, P.; Carvajal-Ramírez, F.; Yero-Paneque, L.; Agüera-Vega, F. Combination of Nadiral and Oblique UAV Photogrammetry and HBIM for the Virtual Reconstruction of Cultural Heritage. Case Study of Cortijo Del Fraile in Níjar, Almería (Spain). Build. Res. Inf. 2020, 48, 140–159. [Google Scholar] [CrossRef]
- Ribeiro, D.; Santos, R.; Shibasaki, A.; Montenegro, P.; Carvalho, H.; Calçada, R. Remote Inspection of RC Structures Using Unmanned Aerial Vehicles and Heuristic Image Processing. Eng. Fail. Anal. 2020, 117, 104813. [Google Scholar] [CrossRef]
- Qu, T.; Zang, W.; Peng, Z.; Liu, J.; Li, W.; Zhu, Y.; Zhang, B.; Wang, Y. Construction Site Monitoring Using UAV Oblique Photogrammetry and BIM Technologies. In Protocols, Flows and Glitches: Proceedings of the 22nd International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), 5–8 April 2017, Suzhou, China; Janssen, P., Loh, P., Raonic, A., Schnabel, M.A., Eds.; The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA): Hong Kong, China, 2017; pp. 655–662. [Google Scholar] [CrossRef]
- Shibasaki, A. Inspeção da Torre do Monte da Virgem com o Auxílio de Veículo Aéreo não Tripulado. Master’s Thesis, School of Engineering (ISEP), Polytechnic Institute of Porto, Porto, Portugal, 2019. [Google Scholar]
- Natephra, W.; Motamedi, A.; Yabuki, N.; Fukuda, T. Integrating 4D Thermal Information with BIM for Building Envelope Thermal Performance Analysis and Thermal Comfort Evaluation in Naturally Ventilated Environments. Build. Environ. 2017, 124, 194–208. [Google Scholar] [CrossRef]
- ANAC Explore. Available online: https://uas.anac.pt/explore (accessed on 7 December 2022).
- The European Commission (EU). Commission Delegated Regulation (EU) 2019/945—Of 12 March 2019—On Unmanned Aircraft Systems and on Third-Country Operators of Unmanned Aircraft Systems. Off. J. Eur. Union 2019, 62, L 152/1–L 152/40. [Google Scholar]
- The European Commission (EU). Commission Implementing Regulation (EU) 2019/947—Of 24 May 2019—On the Rules and Procedures for the Operation of Unmanned Aircraft. Off. J. Eur. Union 2019, 62, L 152/45–L 152/71. [Google Scholar]
- Altitude Angel | Drone and UAV Services UTM Platform. Available online: https://www.altitudeangel.com/ (accessed on 7 December 2022).
- Volkmann, W.; Barnes, G. Virtual Surveying: Mapping and Modeling Cadastral Boundaries Using Unmanned Aerial Systems (UAS). In Proceedings of the XXV FIG International Congress: Engaging the Challenges—Enhancing the Relevance, Kuala Lumpur, Malaysia, 16–21 June 2014. [Google Scholar]
- Entrop, A.G.; Vasenev, A. Infrared Drones in the Construction Industry: Designing a Protocol for Building Thermography Procedures. Energy Procedia 2017, 132, 63–68. [Google Scholar] [CrossRef]
- International Civil Aviation Organization. ICAO Cir 328, Unmanned Aircraft Systems (UAS); International Civil Aviation Organization: Montréal, QC, Canada, 2011; ISBN 978-92-9231-751-5. [Google Scholar]
- Flynt, J. How to Avoid Bird Attacks on Your Drone. Available online: https://3dinsider.com/bird-drone-attacks/ (accessed on 7 December 2022).
- Jarrel, T. Check Yourself—Every Pilot Should be Part of Their Own Preflight. Available online: https://www.aopa.org/news-and-media/all-news/2019/june/07/are-you-fit-to-fly (accessed on 7 December 2022).
- DroneDeploy Drone Mapping Software | Drone Mapping App | UAV Mapping | Surveying Software. Available online: https://www.dronedeploy.com/ (accessed on 7 December 2022).
- Drone Harmony Data Capture Platform for Drones & UAVs. Available online: https://droneharmony.com/ (accessed on 7 December 2022).
- Han, D.; Huh, J. Thermal Data Fusion for Building Insulation. In Proceedings of the 2019 International Conference on System Science and Engineering (ICSSE), Dong Hoi, Vietnam, 20–21 July 2019; pp. 368–371. [Google Scholar] [CrossRef]
- Ioannou, A.; Itard, L.C.M. Energy Performance and Comfort in Residential Buildings: Sensitivity for Building Parameters and Occupancy. Energy Build. 2015, 92, 216–233. [Google Scholar] [CrossRef]
- Lee, J.; Ham, Y. Impact Analysis on the Variations of the Thermo-Physical Property of Building Envelopes and Occupancy in Building Energy Performance Assessment. Procedia Eng. 2016, 145, 556–564. [Google Scholar] [CrossRef]
- Previtali, M.; Barazzetti, L.; Brumana, R.; Roncoroni, F. Thermographic Analysis from UAV Platforms for Energy Efficiency Retrofit Applications. J. Mob. Multimed. 2013, 9, 66–82. [Google Scholar]
- Wingtra Ground Control Points: How Many Do You Need (and When Are Checkpoints Enough)? Available online: https://wingtra.com/ground-control-points-how-many-do-you-need-and-when-are-checkpoints-enough/ (accessed on 15 December 2022).
- Heliguy a Guide to Using Ground Control Points for Surveying. Available online: https://www.heliguy.com/blogs/posts/guide-to-using-ground-control-points (accessed on 3 December 2022).
- DroneDeploy When to Use Ground Control Points—How to Decide If Your Drone Mapping Project Needs GCPs. Available online: https://medium.com/aerial-acuity/when-to-use-ground-control-points-2d404d9f5b15 (accessed on 4 December 2022).
- Kalacska, M.; Lucanus, O.; Arroyo-Mora, J.P.; Laliberté, É.; Elmer, K.; Leblanc, G.; Groves, A. Accuracy of 3D Landscape Reconstruction without Ground Control Points Using Different UAS Platforms. Drones 2020, 4, 13. [Google Scholar] [CrossRef]
- Pix4D SA The Future of Accuracy: Marking GCPs Automatically. Available online: https://www.pix4d.com/blog/automatic-ground-control-points (accessed on 15 December 2022).
- Pix4D SA Ground Control Points: Why Are They Important? Available online: https://www.pix4d.com/blog/why-ground-control-points-important (accessed on 4 December 2022).
- Pix4D SA Do More GCPs Equal More Accurate Drone Maps? Available online: https://www.pix4d.com/blog/GCP-accuracy-drone-maps (accessed on 4 December 2022).
- Jiang, S.; Jiang, C.; Jiang, W. Efficient Structure from Motion for Large-Scale UAV Images: A Review and a Comparison of SfM Tools. ISPRS J. Photogramm. Remote Sens. 2020, 167, 230–251. [Google Scholar] [CrossRef]
- Opincar, E. Assessing the Technology Used by UAVs in Data Acquisition on Construction Sites. Master’s Thesis, University of Washington, Seattle, WA, USA, 2016. [Google Scholar]
- Prata, T.G. Avaliação Energética com Recurso ao BIM para Escolha de Estratégias de Reabilitação—Bairro de Lordelo do Ouro, Porto. Master’s Thesis, Faculty of Engineering (FEUP), University of Porto, Porto, Portugal, 2022. [Google Scholar]
- Sanhudo, L.; Ramos, N.M.M.; Poças Martins, J.; Almeida, R.M.S.F.; Barreira, E.; Simões, M.L.; Cardoso, V. A Framework for In-Situ Geometric Data Acquisition Using Laser Scanning for BIM Modelling. J. Build. Eng. 2020, 28, 101073. [Google Scholar] [CrossRef]
- Library of Congress LAS (LASer) File Format, Version 1.4. Available online: https://www.loc.gov/preservation/digital/formats/fdd/fdd000418.shtml (accessed on 4 December 2022).
- Reality Imaging & Mapping Technologies How to Import Point Cloud In Revit for Asbuilt Modeling. Available online: https://www.realityimt.com/import-point-cloud-in-revit/ (accessed on 4 December 2022).
- Alhaidary, H.; Al-Tamimi, A.K.; Al-Wakil, H. The Combined Use of BIM, IR Thermography and HFS for Energy Modelling of Existing Buildings and Minimising Heat Gain through the Building Envelope: A Case-Study from a UAE Building. Adv. Build. Energy Res. 2019, 15, 709–732. [Google Scholar] [CrossRef]
- Wang, C.; Cho, Y.K. Performance Evaluation of Automatically Generated BIM from Laser Scanner Data for Sustainability Analyses. Procedia Eng. 2015, 118, 918–925. [Google Scholar] [CrossRef] [Green Version]
- Bastos Porsani, G.; Del Valle de Lersundi, K.; Sánchez-Ostiz Gutiérrez, A.; Fernández Bandera, C. Interoperability between Building Information Modelling (BIM) and Building Energy Model (BEM). Appl. Sci. 2021, 11, 2167. [Google Scholar] [CrossRef]
- Kamel, E.; Memari, A.M. Review of BIM’s Application in Energy Simulation: Tools, Issues, and Solutions. Autom. Constr. 2019, 97, 164–180. [Google Scholar] [CrossRef]
- Queiróz, G.; Grigoletti, G.; Santos, J. Interoperability between Autodesk Revit and EnergyPlus for Thermal Simulations of Buildings. PARC Pesqui. Em Arquitetura E Construção 2019, 10, e019005. [Google Scholar] [CrossRef]
- Elnabawi, M.H. Building Information Modeling-Based Building Energy Modeling: Investigation of Interoperability and Simulation Results. Front. Built Environ. 2020, 6, 573971. [Google Scholar] [CrossRef]
- Pezeshki, Z.; Soleimani, A.; Darabi, A. Application of BEM and Using BIM Database for BEM: A Review. J. Build. Eng. 2019, 23, 1–17. [Google Scholar] [CrossRef]
- Elnabawi, M.H.; Hamza, N. Investigating Building Information Model (BIM) to Building Energy Simulation (BES): Interoperability and Simulation Results. IOP Conf. Ser. Earth Environ. Sci. New Cairo Egypt 2019, 397, 12013. [Google Scholar] [CrossRef]
- Pimentel, B.P.; Barbosa, A.T.R.; Souza, M.D. de Análise de Métodos de Integração entre BIM e Simulação Termo Energética de Edificações Militares. Rev. Gestão Sustentabilidade Ambient. 2020, 9, 125–146. [Google Scholar] [CrossRef]
- Sanhudo, L.; Poças Martins, J.; Ramos, N.M.M.; Almeida, R.M.S.F.; Rocha, A.; Pinto, D.; Barreira, E.; Simões, M.L. BIM Framework for the Specification of Information Requirements in Energy-Related Projects. Eng. Constr. Archit. Manag. 2021, 28, 3123–3143. [Google Scholar] [CrossRef]
- EN 16798-1; CEN—European Committee for Standardization. Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics—Module M1. European Committee for Standardization: Brussels, Belgium, 2019.
- ANAC Categoria Aberta (OPEN). Available online: https://www.anac.pt/vPT/Generico/drones/categoria_aberta/Paginas/CategoriaAberta.aspx (accessed on 9 December 2022).
- AAN Aeronaves Não Tripuladas (Drones). Available online: https://www.aan.pt/subPagina-AAN-001.005.005-aeronaves-nao-tripuladas-drones (accessed on 8 December 2022).
- AAN e-Autoridade Aeronáutica Nacional—Guia Rápido para Operadores. 2019, pp. 1–10. Available online: https://www.aan.pt/includes/AAN/conteudos/galeria/ficheiros/drones/guia-r-pido-vs-16dez2019_1929.pdf (accessed on 12 December 2022).
- DJI. Mavic 2 Enterprise Series—User Manual v1.8. 2021. Available online: https://dl.djicdn.com/downloads/Mavic_2_Enterprise/20210413/Mavic_2_Enterprise_Series_User_Manual-EN.pdf (accessed on 6 December 2022).
- Benavides Lopez, J.A.; Martin Civantos, J.M.; Rouco Collazo, J. Architectural Survey and Archeological Analysis of the Píñar Castle as a Starting Point for Its Conservation. Virtual Archaeol. Rev. 2020, 11, 95–115. [Google Scholar] [CrossRef]
- Russo, M.; Carnevali, L.; Russo, V.; Savastano, D.; Taddia, Y. Modeling and Deterioration Mapping of Façades in Historical Urban Context by Close-Range Ultra-Lightweight UAVs Photogrammetry. Int. J. Archit. Herit. 2019, 13, 549–568. [Google Scholar] [CrossRef]
- Agisoft LLC. Agisoft Metashape User Manual: Professional Edition, Version 1.8. 2022. Available online: https://www.agisoft.com/pdf/metashape-pro_1_8_en.pdf (accessed on 6 December 2022).
- EN 16798-2; CEN—European Committee for Standardization. Interpretation of the Requirements in EN 16798-1—Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics. European Committee for Standardization: Brussels, Belgium, 2019.
- Sanhudo, L. Artificial Intelligence for an Enhanced As-Is BIM Energy Analysis—Enabling an Efficient Energy Retrofit through the Automation of the Scan-to-BIM Process. Ph.D. Thesis, Faculty of Engineering (FEUP), University of Porto, Porto, Portugal, 2021. [Google Scholar]
- Sanhudo, L.; Poças Martins, J.; Ramos, N.M.M. Proposta de Algoritmos de Inteligência Artificial para Automatização do Processo Scan-to-BIM. In 4° Congresso Português de ‘Building Information Modelling’ vol. 2—ptBIM; Azenha, M., Lino, J.C., Granja, J., Figueiredo, B., Poças Martins, J., Eds.; UMinho Editora: Braga, Portugal, 2022; pp. 419–429. [Google Scholar] [CrossRef]
Material | Thickness [m] | λ [W/m·K] | ρ [kg/m3] | Cp [J/kg·K] |
---|---|---|---|---|
Walls | ||||
OSB | 0.012 | 0.120 | 600 | 1700 |
Mineral wool | 0.09 | 0.035 | 80 | 1030 |
Plasterboard | 0.013 | 0.350 | 750 | 840 |
Floor | ||||
Concrete | 0.200 | 2.000 | 2400 | 940 |
Mineral wool | 0.090 | 0.035 | 80 | 1030 |
OSB | 0.012 | 0.120 | 600 | 1700 |
Floating wood floor | 0.012 | 0.130 | 400 | 1300 |
Roof | ||||
OSB | 0.012 | 0.120 | 600 | 1700 |
Mineral wool | 0.018 | 0.035 | 80 | 1030 |
Hourly Time | Presence Rate | Heating Setpoint (°C) | Heating Setback (°C) | Cooling Setpoint (°C) | Cooling Setback (°C) | |
---|---|---|---|---|---|---|
Weekdays | 19:00–7:00 | 1.0 | 18 | 14 | 26 | 30 |
8:00–18:00 | 0.6 | |||||
9:00–17:00 | 0.4 | |||||
10:00–16:00 | 0.0 | |||||
Weekends | 19:00–7:00 | 1.0 | 18 | 14 | 26 | 30 |
8:00–9:00 | 0.9 | |||||
10:00–15:00 | 0.5 | |||||
16:00–18:00 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado, J.M.P.Q.; Guimarães, A.S.; Poças Martins, J.; Parracho, D.F.R.; Freitas, S.S.; Lima, A.G.B.; Rodrigues, L. BIM and BEM Interoperability–Evaluation of a Case Study in Modular Wooden Housing. Energies 2023, 16, 1579. https://doi.org/10.3390/en16041579
Delgado JMPQ, Guimarães AS, Poças Martins J, Parracho DFR, Freitas SS, Lima AGB, Rodrigues L. BIM and BEM Interoperability–Evaluation of a Case Study in Modular Wooden Housing. Energies. 2023; 16(4):1579. https://doi.org/10.3390/en16041579
Chicago/Turabian StyleDelgado, João M. P. Q., Ana S. Guimarães, João Poças Martins, Diogo F. R. Parracho, Sara S. Freitas, António G. B. Lima, and Leonardo Rodrigues. 2023. "BIM and BEM Interoperability–Evaluation of a Case Study in Modular Wooden Housing" Energies 16, no. 4: 1579. https://doi.org/10.3390/en16041579
APA StyleDelgado, J. M. P. Q., Guimarães, A. S., Poças Martins, J., Parracho, D. F. R., Freitas, S. S., Lima, A. G. B., & Rodrigues, L. (2023). BIM and BEM Interoperability–Evaluation of a Case Study in Modular Wooden Housing. Energies, 16(4), 1579. https://doi.org/10.3390/en16041579