Energy Storage Potential Needed at the National Grid Scale (Poland) in Order to Stabilize Daily Electricity Production from Fossil Fuels and Nuclear Power
Abstract
:1. Introduction
2. Materials and Methods
- Hourly gross energy generation (GEG), in GWh;
- Hourly energy production from coal sources: coal energy generation (CEG), in GWh;
- Hourly energy production from wind sources: wind energy generation (WEG), in GWh;
- Hourly energy production from photovoltaic sources: photovoltaic energy generation (PVEG), in GWh.
- : daily mean hourly values of hard coal and lignite electricity production and coal energy generation, in GWh;
- : hourly value of coal energy generation—data retrieved from PSE website [38], in GWh;
- : day in the year 2023,
- : hour of the day: 1…24.
- : daily mean hourly values of total electricity production: gross energy generation, in GWh;
- : hourly value of total electricity production (gross energy generation)—data retrieved from PSE website, in GWh.
3. Results
4. Discussion
- Instead of examining the deviations from the daily average value, study the deviations from a given function, such as a regression function.
- Study different levels of installed capacity for weather-dependent sources, such as wind capacity +50%, PV capacity +50%, and conduct sensitivity analyses [44].
- Investigate the flexibility of fossil fuels and nuclear power sources, including both hourly flexibility and deviations from the desired power level.
- Apply a different energy production stabilization strategy on Mondays and Saturdays due to these days having the largest value fluctuations on a day-to-day basis (Figure 2b).
- Compare obtained results with results in other countries and determination, based on the developed methodology, of changes in the needs of energy storage in recent years.
- Determine the influence of energy demand control on energy storage needs [47].
- Government parties, when determining changes to plans in the field of energy, such as the Polish Energy Policy 2040 [51].
- Investors (of energy storage), when determining the demand for energy storage on the scale of the entire energy system.
- Investors (of renewable energy sources), when energy storage needs in relation to the potential daily value of energy source productivity results in the possibility of exporting energy to the grid and a potential range of electricity prices.
- Investors (of a coal power plant or nuclear power plant), when specifying the size of fluctuations in the daily demand for energy from these types of sources together with the existing energy storage facilities. This affects, e.g., the possibility of equal energy production on a daily basis and the price range for the sold (produced) energy.
- Users, for example, households and consumers of electricity; the greater the demand for energy storage, the greater the potential differences in electricity prices for consumers (e.g., on an hourly basis).
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duda, J.; Kusa, R.; Pietruszko, S.; Smol, M.; Suder, M.; Teneta, J.; Wójtowicz, T.; Żdanowicz, T. Development of Roadmap for Photovoltaic Solar Technologies and Market in Poland. Energies 2022, 15, 174. [Google Scholar] [CrossRef]
- Gulkowski, S. Specific Yield Analysis of the Rooftop PV Systems Located in South-Eastern Poland. Energies 2022, 15, 3666. [Google Scholar] [CrossRef]
- Olczak, P.; Żelazna, A.; Stecuła, K.; Matuszewska, D.; Lelek, Ł. Environmental and economic analyses of different size photovoltaic installation in Poland. Energy Sustain. Dev. 2022, 70, 160–169. [Google Scholar] [CrossRef]
- Sawicka-Chudy, P.; Rybak-Wilusz, E.; Sibiński, M.; Pawelek, R.; Cholewa, M.; Kaczor, M. Analysis of possibilities and demand for energy in a public building using a tracking photovoltaic installation. E3S Web Conf. 2018, 49, 96. [Google Scholar] [CrossRef]
- Wróblewski, P.; Niekurzak, M. Assessment of the Possibility of Using Various Types of Renewable Energy Sources Installations in Single-Family Buildings as Part of Saving Final Energy Consumption in Polish Conditions. Energies 2022, 15, 1329. [Google Scholar] [CrossRef]
- Kaczmarzewski, S.; Matuszewska, D.; Sołtysik, M. Analysis of Selected Service Industries in Terms of the Use of Photovoltaics before and during the COVID-19 Pandemic. Energies 2022, 15, 188. [Google Scholar] [CrossRef]
- Dzikuć, M.; Piwowar, A.; Dzikuć, M. The importance and potential of photovoltaics in the context of low-carbon development in Poland. Energy Storage Sav. 2022, 1, 162–165. [Google Scholar] [CrossRef]
- Kulpa, J.; Olczak, P.; Stecuła, K.; Sołtysik, M. The Impact of RES Development in Poland on the Change of the Energy Generation Profile and Reduction of CO2 Emissions. Appl. Sci. 2022, 12, 11064. [Google Scholar] [CrossRef]
- Zdonek, I.; Tokarski, S.; Mularczyk, A.; Turek, M. Evaluation of the Program Subsidizing Prosumer Photovoltaic Sources in Poland. Energies 2022, 15, 846. [Google Scholar] [CrossRef]
- Szablicki, M.; Rzepka, P.; Soltysik, M.; Czapaj, R. The idea of non-restricted use of LV networks by electricity consumers, producers, and prosumers. E3S Web Conf. 2019, 84, 2014. [Google Scholar] [CrossRef]
- Jasiński, J.; Kozakiewicz, M.; Sołtysik, M. Determinants of Energy Cooperatives’ Development in Rural Areas—Evidence from Poland. Energies 2021, 14, 319. [Google Scholar] [CrossRef]
- Stecuła, K.; Tutak, M. Causes and effects of low-stack emission in selected regions of Poland. In Proceedings of the International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, Sofia, Bulgaria, 30 June–9 July 2018; Volume 18, pp. 357–364. [Google Scholar]
- Palka, D.; Stecuła, K. Concept of technology assessment in coal mining. IOP Conf. Ser. Earth Environ. Sci. 2019, 261, 012038. [Google Scholar] [CrossRef]
- Zołądek, M.; Filipowicz, M.; Sornek, K.; Figaj, R.D. Energy performance of the photovoltaic system in urban area—Case study. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Krakow, Poland, 14–17 November 2019; p. 012123. [Google Scholar]
- Stecuła, K.; Olczak, P.; Kamiński, P.; Matuszewska, D.; Duong Duc, H. Towards Sustainable Transport: Techno-Economic Analysis of Investing in Hydrogen Buses in Public Transport in the Selected City of Poland. Energies 2022, 15, 9456. [Google Scholar] [CrossRef]
- Benalcazar, P.; Komorowska, A. Prospects of green hydrogen in Poland: A techno-economic analysis using a Monte Carlo approach. Int. J. Hydrogen Energy 2021, 47, 5779–5796. [Google Scholar] [CrossRef]
- Komorowska, A.; Benalcazar, P.; Kamiński, J. Evaluating the competitiveness and uncertainty of offshore wind-to-hydrogen production: A case study of Poland. Int. J. Hydrogen Energy 2023, 48, 14577–14590. [Google Scholar] [CrossRef]
- Kopacz, M.; Kwaśniewski, K.; Grzesiak, P.; Kapłan, R.; Kryzia, D. Economic assessments of hydrogen production by coal gasification. Przem. Chem. 2016, 95, 241–249. [Google Scholar] [CrossRef]
- Knutel, B.; Pierzyńska, A.; Dȩbowski, M.; Bukowski, P.; Dyjakon, A. Assessment of energy storage from photovoltaic installations in poland using batteries or hydrogen. Energies 2020, 13, 4023. [Google Scholar] [CrossRef]
- Kulpa, J.; Kamiński, P.; Stecuła, K.; Prostański, D.; Matusiak, P.; Kowol, D.; Kopacz, M.; Olczak, P. Technical and Economic Aspects of Electric Energy Storage in a Mine Shaft—Budryk Case Study. Energies 2021, 14, 7337. [Google Scholar] [CrossRef]
- Dyczko, A.; Kamiński, P.; Stecuła, K.; Prostański, D.; Kopacz, M.; Kowol, D. Thermal and mechanical energy storage as a chance for energy transformation in Poland. Polityka Energ. Energy Policy J. 2021, 24, 43–60. [Google Scholar] [CrossRef]
- PSE Praca KSE—Generacja Źródeł Wiatrowych i Fotowoltaicznych. Doba Handlowa: 25 July 2022. Available online: https://www.pse.pl/dane-systemowe/funkcjonowanie-kse/raporty-dobowe-z-pracy-kse/generacja-zrodel-wiatrowych (accessed on 25 June 2023).
- PSE Dane Systemowe. Available online: https://www.pse.pl/dane-systemowe (accessed on 18 July 2023).
- Piwowar, A.; Dzikuć, M.; Dzikuć, M. The potential of wind energy development in Poland in the context of legal and economic changes. Acta Polytech. Hungarica 2023, in press.
- Komorowska, A.; Gawlik, L. Management of surplus electricity production from unstable renewable energy sources using Power to Gas technology. Polityka Energ. Energy Policy J. 2018, 21, 43–64. [Google Scholar] [CrossRef]
- Ceran, B.; Jurasz, J.; Mielcarek, A.; Campana, P.E. PV systems integrated with commercial buildings for local and national peak load shaving in Poland. J. Clean. Prod. 2021, 322, 129076. [Google Scholar] [CrossRef]
- Hou, Q.; Zhang, N.; Du, E.; Miao, M.; Peng, F.; Kang, C. Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China. Appl. Energy 2019, 242, 205–215. [Google Scholar] [CrossRef]
- Olczak, P.; Jaśko, P.; Kryzia, D.; Matuszewska, D.; Fyk, M.I.; Dyczko, A. Analyses of duck curve phenomena potential in polish PV prosumer households’ installations. Energy Rep. 2021, 7, 4609–4622. [Google Scholar] [CrossRef]
- Sołtysik, M.; Mucha-Kuś, K.; Kamiński, J. The New Model of Energy Cluster Management and Functioning. Energies 2022, 15, 6748. [Google Scholar] [CrossRef]
- Borodina, O.; Bratus, H.; Udovychenko, V.; Kaczmarzewski, S.; Kostrychenko, V.; Koval, V. Renovation management of the national economy in ensuring energy decentralization. Polityka Energ. Energy Policy J. 2022, 25, 67–84. [Google Scholar] [CrossRef]
- Kaszyński, P.; Komorowska, A.; Zamasz, K.; Kinelski, G.; Kamiński, J. Capacity Market and (the Lack of) New Investments: Evidence from Poland. Energies 2021, 14, 7843. [Google Scholar] [CrossRef]
- Koval, V.; Sribna, Y.; Kaczmarzewski, S.; Shapovalova, A.; Stupnytskyi, V. Regulatory policy of renewable energy sources in the European national economies. Polityka Energ. Energy Policy J. 2021, 24, 61–78. [Google Scholar] [CrossRef]
- Mreńca, E. Energetyka Jądrowa a Ochrona Klimatu Wybrane Zagadnienia; Gawłowski, S., Ed.; Wydawnictwo Senackie: Warsaw, Poland, 2023. [Google Scholar]
- Simões, M.G.; Farret, F.A.; Khajeh, H.; Shahparasti, M.; Laaksonen, H. Future Renewable Energy Communities Based Flexible Power Systems. Appl. Sci. 2022, 12, 121. [Google Scholar] [CrossRef]
- Basit, A.; Ahmad, T.; Yar Ali, A.; Ullah, K.; Mufti, G.; Hansen, A.D. Flexible Modern Power System: Real-Time Power Balancing through Load and Wind Power. Energies 2019, 12, 1710. [Google Scholar] [CrossRef]
- Brauers, H.; Oei, P.Y. The political economy of coal in Poland: Drivers and barriers for a shift away from fossil fuels. Energy Policy 2020, 144, 111621. [Google Scholar] [CrossRef]
- Sobczyk, W.; Sobczyk, E.J. Varying the Energy Mix in the EU-28 and in Poland as a Step towards Sustainable Development. Energies 2021, 14, 1502. [Google Scholar] [CrossRef]
- PSE. Praca KSE-Generacja mocy Jednostek Wytwórczych. Available online: https://www.pse.pl/pl_PL/dane-systemowe/funkcjonowanie-kse/raporty-dobowe-z-pracy-kse/generacja-mocy-jednostek-wytworczych (accessed on 25 June 2023).
- Kryzia, D.; Kopacz, M.; Kryzia, K. The Valuation of the Operational Flexibility of the Energy Investment Project Based on a Gas-Fired Power Plant. Energies 2020, 13, 1567. [Google Scholar] [CrossRef]
- Komorowska, A.; Benalcazar, P.; Kaszyński, P.; Kamiński, J. Economic consequences of a capacity market implementation: The case of Poland. Energy Policy 2020, 144, 111683. [Google Scholar] [CrossRef]
- Komorowska, A.; Kamiński, J. A review of the 2018 Polish capacity market auctions. Energy Policy J. 2019, 22, 75–88. [Google Scholar] [CrossRef]
- Olczak, P.; Surma, T. Energy Productivity Potential of Offshore Wind in Poland and Cooperation with Onshore Wind Farm. Appl. Sci. 2023, 13, 4258. [Google Scholar] [CrossRef]
- Dobrzycki, A.; Roman, J. Correlation between the Production of Electricity by Offshore Wind Farms and the Demand for Electricity in Polish Conditions. Energies 2022, 15, 3669. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Yan, N.; Ma, R. Cooperative Dispatch of Distributed Energy Storage in Distribution Network with PV Generation Systems. IEEE Trans. Appl. Supercond. 2021, 31, 0604304. [Google Scholar] [CrossRef]
- Giannelos, S.; Djapic, P.; Pudjianto, D.; Strbac, G. Quantification of the Energy Storage Contribution to Security of Supply through the F-Factor Methodology. Energies 2020, 13, 826. [Google Scholar] [CrossRef]
- Giannelos, S.; Jain, A.; Borozan, S.; Falugi, P.; Moreira, A.; Bhakar, R.; Mathur, J.; Strbac, G. Long-Term Expansion Planning of the Transmission Network in India under Multi-Dimensional Uncertainty. Energies 2021, 14, 7813. [Google Scholar] [CrossRef]
- Kermani, M.; Shirdare, E.; Parise, G.; Bongiorno, M.; Martirano, L. A Comprehensive Technoeconomic Solution for Demand Control in Ports: Energy Storage Systems Integration. IEEE Trans. Ind. Appl. 2022, 58, 1592–1601. [Google Scholar] [CrossRef]
- Bozsik, N.; Szeberényi, A.; Bozsik, N. Examination of the Hungarian Electricity Industry Structure with Special Regard to Renewables. Energies 2023, 16, 3826. [Google Scholar] [CrossRef]
- Rokicki, T.; Jadczak, R.; Kucharski, A.; Bórawski, P.; Bełdycka-Bórawska, A.; Szeberényi, A.; Perkowska, A. Changes in Energy Consumption and Energy Intensity in EU Countries as a Result of the COVID-19 Pandemic by Sector and Area Economy. Energies 2022, 15, 6243. [Google Scholar] [CrossRef]
- Rokicki, T.; Koszela, G.; Ochnio, L.; Perkowska, A.; Bórawski, P.; Bełdycka-Bórawska, A.; Gradziuk, B.; Gradziuk, P.; Agnieszka, S.; Szeberényi, A.; et al. Changes in the production of energy from renewable sources in the countries of Central and Eastern Europe. Front. Energy Res. 2022, 10, 993547. [Google Scholar] [CrossRef]
- Environment, M. of C. and Polityka energetyczna Polski do 2040 r. Available online: https://www.gov.pl/web/klimat/minister-kurtyka-polityka-energetyczna-polski-do-2040-r-udziela-odpowiedzi-na-najwazniejsze-wyzwania-stojace-przed-polska-energetyka-w-najblizszych-dziesiecioleciach (accessed on 21 January 2021).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olczak, P.; Matuszewska, D. Energy Storage Potential Needed at the National Grid Scale (Poland) in Order to Stabilize Daily Electricity Production from Fossil Fuels and Nuclear Power. Energies 2023, 16, 6054. https://doi.org/10.3390/en16166054
Olczak P, Matuszewska D. Energy Storage Potential Needed at the National Grid Scale (Poland) in Order to Stabilize Daily Electricity Production from Fossil Fuels and Nuclear Power. Energies. 2023; 16(16):6054. https://doi.org/10.3390/en16166054
Chicago/Turabian StyleOlczak, Piotr, and Dominika Matuszewska. 2023. "Energy Storage Potential Needed at the National Grid Scale (Poland) in Order to Stabilize Daily Electricity Production from Fossil Fuels and Nuclear Power" Energies 16, no. 16: 6054. https://doi.org/10.3390/en16166054
APA StyleOlczak, P., & Matuszewska, D. (2023). Energy Storage Potential Needed at the National Grid Scale (Poland) in Order to Stabilize Daily Electricity Production from Fossil Fuels and Nuclear Power. Energies, 16(16), 6054. https://doi.org/10.3390/en16166054