The Energy Potential of the Lower Vistula River in the Context of the Adaptation of Polish Inland Waterways to the Standards of Routes of International Importance
Abstract
:1. Introduction
2. Site and Method Description
2.1. Prerequisites and Proposed Development
2.2. Hydropower Potential of the Vistula River Cascade
Location (Name) | Pool | Head | Qave | Qinst | Capacity | Energy Production | Issued Year |
---|---|---|---|---|---|---|---|
(m) | (m) | (m3/s) | (m3/s) | (MW) | GWh/year | ||
Kozienice II | 111.30 | 6.62 | 507.15 | 608.58 | 31.63 | 151.92 | 2060 |
Ostrów II | 104.30 | 4.09 | 514.78 | 617.70 | 19.80 | 90.24 | 2058 |
Gusin | 98.00 | 5.00 | 563.19 | 675.80 | 26.50 | 127.20 | 2055 |
Karczew | 91.80 | 5.22 | 564.34 | 677.20 | 27.70 | 132.96 | 2053 |
Warsaw South | 86.00 | 5.71 | 575.95 | 691.20 | 31.00 | 148.80 | 2050 |
Warsaw North II | 77.00 | 5.61 | 606.00 | 727.20 | 32.00 | 156.00 | 2048 |
Wyszogród II | 70.50 | 6.49 | 888.00 | 1065.60 | 54.24 | 260.16 | 2045 |
Płock II | 63.00 | 4.81 | 932.00 | 1118.40 | 42.22 | 202.56 | 2049 |
Włocławek * | 57.14 | 8.80 | 921.00 | 2190.00 | 160.20 | 700.00 | 1970 |
Siarzewo | 46.00 | 7.82/4.86 | 939.00 | 1800.00 | 80.00 | 384.00 | 2029 |
Solec Kujawski | 37.50 | 7.50 | 1014.00 | 2300.00 | 79.00 | 379.20 | 2040 |
Chełmno | 29.00 | 8.00 | 1052.00 | 2350.00 | 68.00 | 326.40 | 2038 |
Grudziądz | 22.00 | 4.00 | 1070.00 | 1800.00 | 56.50 | 271.20 | 2035 |
Gniew | 15.00 | 5.70 | 1075.00 | 1700.00 | 76.00 | 364.80 | 2033 |
3. Economic Analysis of the Project
- Revenues from the use of inland waterways and their sections—passenger transport and freight transport;
- Revenues from the sale of electricity.
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Míguez, J.L.; Porteiro, J.; Lopez-Gonzalez, L.M.; Vicuna, J.E.; Murillo, S.; Moran, J.C.; Granada, E. Review of the Energy Rating of Dwellings in the European Union as a Mechanism for Sustainable Energy. Renew. Sustain. Energy Rev. 2006, 10, 24–45. [Google Scholar] [CrossRef]
- Melo, I.; Torres, J.P.N.; Fernandes, C.A.F.; Lameirinhas, R.A.M. Sustainability Economic Study of the Islands of the Azores Archipelago Using Photovoltaic Panels, Wind Energy and Storage System. Renew. Wind. Water Sol. 2020, 7, 1–21. [Google Scholar] [CrossRef]
- Frey, G.W.; Linke, D.M. Hydropower as a Renewable and Sustainable Energy Resource Meeting Global Energy Challenges in a Reasonable Way. Energy Policy 2002, 30, 1261–1265. [Google Scholar] [CrossRef]
- Steller, J.; Lewandowski, S.; Malicka, E.; Kremere, E.; Popa, B.; Punys, P. Hydropower in the East European Region: Challenges and Opportunities. Hydropower Dams 2018, 25, 39–50. [Google Scholar]
- EUROSTAT Data Browser. Available online: http://ec.europa.eu/eurostat/data/database (accessed on 10 February 2022).
- European Parliament. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources; European Parliament and the Council: Strasbourg, France, 2018; p. 128.
- Woś, K. Kierunki Aktywizacji Działalności Żeglugi Śródlądowej w Rejonie Ujścia Odry w Warunkach Integracji Polski z Unią Europejską; Sadyba: Warsaw, Poland, 2005. [Google Scholar]
- European Agreement on Main Inland Waterways of International Importance (AGN); United Nations: Geneva, Switzerland, 1996; p. 122.
- United Nations Economic Commission for Europe. Inventory of Main Standards and Parameters of the Waterway Network; United Nations Economic Commission for Europe: New York, NY, USA; Geneva, Switzerland, 2017; p. 116. [Google Scholar]
- ECMT. Resolution No. 92/2 on New Classification of Inland Waterways; European Conference of Ministers of Transport: Athens, Greece, 1992.
- Szydlowski, M.; Gąsiorowski, D.; Szymkiewicz, R.; Zima, P.; Hakiel, J. Hydropower Potential of the Lower Vistula. Acta Energetica 2015, 1, 18–25. [Google Scholar] [CrossRef]
- Cyberski, J.; Grześ, M.; Gutry-Korycka, M.; Nachlik, E.; Kundzewicz, Z.W. History of Floods on the River Vistula. Hydrol. Sci. J. 2006, 51, 799–817. [Google Scholar] [CrossRef]
- Granatowicz, J. The next Dam on the Vistula River below Włocławek. Acta Energetica 2013, 3, 99–111. [Google Scholar] [CrossRef]
- Kosiński, J.; Zdulski, W. Hydropower Potential of the Vistula. Acta Energetica 2013, 2, 38–47. [Google Scholar] [CrossRef]
- Piskozub, A. Wisla: Monografia rzeki (The Vistula River. A Monography of the River); Wydawn. Komunikacji i Łạczności: Warsaw, Poland, 1982. [Google Scholar]
- Szymkiewicz, R. Lower Vistula—River of Unused Opportunities; Gdańsk University of Technology: Gdansk, Poland, 2017; ISBN 978-83-7348-707-9. [Google Scholar]
- Stepnowski, C.Z. Kaskada dolnej Wisły (Cascade of the Lower Vistula River). Gospod. Wodna 1958, 8, 124–128. [Google Scholar]
- Majewski, W. Gospodarka Wodna w Polsce w Latach‚ 50–80 (Water Resources Managemant in Poland from the 1950s to the 1970s); Chancellery of the Senate of the Republic of Poland: Warsaw, Poland, 2011. [Google Scholar]
- Majewski, W. The Hydraulic Project Włocławek: Design, Studies, Construction and Operation. Acta Energetica 2015, 1, 33–45. [Google Scholar] [CrossRef]
- Skowyrski, W.; Ankiersztejn, I. Budowa Stopnia Wodnego w Nieszawie—Ciechocinku; Koncepcja Programowo—Przestrzenna (Construction of the Dam in Nieszawa—Ciechocinek; Program and Spatial Concept); HYDROPROJEKT: Warsaw, Poland, 2004. [Google Scholar]
- Ministry of Maritime Economy and Inland Navigation. Ekspertyza w Zakresie Rozwoju Śródlądowych Dróg Wodnych w Polsce na Lata 2016-2020 z Perspektywą do Roku 2030 (Expertise in the Field of the Development of Inland Waterways in Poland for the Years 2016-2020 with a Perspective until 2030); Ministry of Maritime Economy and Inland Navigation: Warsaw, Poland, 2016. [Google Scholar]
- DHV Hydroprojekt Ltd.; IMGW PIB. Analysis of the Adaptation of the Vistula River in the Section from Włocławek to the Mouth of the Gulf of Gdańsk for Large and Small Cascades-Modeling; State Water Holding Polish Waters: Gdansk, Poland, 2018; p. 69. [Google Scholar]
- JACOBS Halcrow Group Ltd. Studium Wykonalności dla Kompleksowego Zagospodarowania Międzynarodowych dróg Wodnych: E-40 dla rzeki Wisły na Odcinku od Gdańska do Warszawy, E-40 od Warszawy do Granicy Polska-Białoruś (Brześć) oraz E-70 na Odcinku od Wisły do Zalewu Wiślanego (Elbląg) (Feasibility Study for Comprehensive International Inland Waterway Management: E-40 for Vistula River between Gdansk and Warsaw, E-40 from Warsaw to the Poland-Belarus Border (Brest) and E-70 between the Vistula River and the Vistula Lagoon (Elblag)); State Water Holding Polish Waters: Gdańsk, Poland, 2020. [Google Scholar]
- Gajda, M. Characteristic of the Barrage as a Part of the Ecological River Stabilization. Water Resour. 2013, 9, 359–360. [Google Scholar]
- Petts, G.E. River Regulation. In Environmental Geology. Encyclopedia of Earth Science; Springer: Dordrecht, The Netherlands, 1999; pp. 521–528. ISBN 978-1-4020-4494-6. [Google Scholar]
- Égré, D.; Senécal, P. Social Impact Assessments of Large Dams throughout the World: Lessons Learned over Two Decades. Impact Assess. Proj. Apprais. 2003, 21, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Tilt, B.; Braun, Y.; He, D. Social Impacts of Large Dam Projects: A Comparison of International Case Studies and Implications for Best Practice. J. Environ. Manag. 2009, 90, S249–S257. [Google Scholar] [CrossRef]
- Kibler, K.M.; Tullos, D.D. Cumulative Biophysical Impact of Small and Large Hydropower Development in Nu River, China. Water Resour. Res. 2013, 49, 3104–3118. [Google Scholar] [CrossRef]
- Roscoe, D.W.; Hinch, S.G. Effectiveness Monitoring of Fish Passage Facilities: Historical Trends, Geographic Patterns and Future Directions. Fish Fish. 2010, 11, 12–33. [Google Scholar] [CrossRef]
- Larinier, M. Environmental Issues, Dams and Fish Migration. In Dams, Fish and Fisheries: Opportunities, Challenges and Conflict Resolution; FAO Fisheries Technical Paper; FAO: Rome, Italy, 2001; Volume 419, pp. 45–89. [Google Scholar]
- Poff, N.L.; Schmidt, J.C. How Dams Can Go with the Flow. Science 2016, 353, 1099–1100. [Google Scholar] [CrossRef]
- Reitan, O.; Thingstad, P.G. Responses of Birds to Damming-a Review of the Influence of Lakes, Dams and Reservoirs on Bird Ecology. Ornis Nor. 1999, 22, 3–37. [Google Scholar]
- Ackermann, W.C.; White, G.F.; Worthington, E.B.; Ivens, J.L. Man-Made Lakes: Their Problems and Environmental Effects; Washington DC American Geophysical Union Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 1973; Volume 17. [Google Scholar] [CrossRef]
- Liao, W.; Bhargava, D.S.; Das, J. Some Effects of Dams on Wildlife. Environ. Conserv. 1988, 15, 68–70. [Google Scholar] [CrossRef]
- Nilsson, C.; Dynesius, M. Ecological Effects of River Regulation on Mammals and Birds: A Review. Regul. Rivers Res. Manag. 1994, 9, 45–53. [Google Scholar] [CrossRef]
- Winton, R.S.; Calamita, E.; Wehrli, B. Reviews and Syntheses: Dams, Water Quality and Tropical Reservoir Stratification. Biogeosciences 2019, 16, 1657–1671. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Xu, L. Review of Ecological Compensation in Hydropower Development. Renew. Sustain. Energy Rev. 2016, 55, 729–738. [Google Scholar] [CrossRef]
- Arthington, Á.H.; Naiman, R.J.; Mcclain, M.E.; Nilsson, C. Preserving the Biodiversity and Ecological Services of Rivers: New Challenges and Research Opportunities. Freshw. Biol. 2010, 55, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Renöfält, B.M.; Jansson, R.; Nilsson, C. Effects of Hydropower Generation and Opportunities for Environmental Flow Management in Swedish Riverine Ecosystems. Freshw. Biol. 2010, 55, 49–67. [Google Scholar] [CrossRef]
- Roni, P.; Pess, G.R.; Beechie, T.J.; Hanson, K.M. Fish-Habitat Relationships and the Effectiveness of Habitat Restoration; US Department of Commerce: Washington, DC, USA, 2014. [Google Scholar]
- Roni, P.; Hanson, K.; Beechie, T. Global Review of the Physical and Biological Effectiveness of Stream Habitat Rehabilitation Techniques. N. Am. J. Fish. Manag. 2008, 28, 856–890. [Google Scholar] [CrossRef]
- Quinn, J.S.; Morris, R.D.; Blokpoel, H.; Weseloh, D.V.; Ewins, P.J. Design and Management of Bird Nesting Habitat: Tactics for Conserving Colonial Waterbird Biodiversity on Artificial Islands in Hamilton Harbour, Ontario. Can. J. Fish. Aquat. Sci. 1996, 53, 45–57. [Google Scholar] [CrossRef]
- Kolerski, T.; Zima, P.; Szydłowski, M. Mathematical Modeling of Ice Thrusting on the Shore of the Vistula Lagoon (Baltic Sea) and the Proposed Artificial Island. Water 2019, 11, 2297. [Google Scholar] [CrossRef] [Green Version]
- Giroux, J.-F. Use of Artificial Islands by Nesting Waterfowl in Southeastern Alberta. J. Wildl. Manag. 1981, 45, 669–679. [Google Scholar] [CrossRef]
- JACOBS Halcrow Group Ltd. Analiza ekonomiczna (Cost Benefit Analysis). In Feasibility Study for Comprehensive International inland Waterway Management: E-40 for Vistula River between Gdansk and Warsaw, E-40 from Warsaw to the Poland-Belarus Border (Brest) and E-70 between the Vistula River and the Vistula Lagoon (Elblag); State Water Holding Polish Waters: Gdańsk, Poland, 2020. [Google Scholar]
- Wrzosek, K.; Sobiesak, P.; Sikorski, G. Charakterystyczne rozwiązania techniczne planowanych stopni wodnych na rzece Wiśle na odcinku Międzynarodowej Drogi Wodnej E40 (Characteristic technical solutions of the planned barrages on the Vistula River on the section of the International Waterway E40). Gospod. Wodna 2021, 10, 29–32. [Google Scholar]
- Rolbiecki, R.; Wojewódzka-Król, K. Changes in the Transport Capacity of Polish Inland Waterways Against the Background of European Waterway Use for Transport. Transp. Econ. Logist. 2019, 81, 155–164. [Google Scholar] [CrossRef]
- JACOBS Halcrow Group Ltd. Analiza Techniczna (Technical Analysis). In Feasibility Study for Comprehensive International Inland Waterway Management: E-40 for Vistula River between Gdansk and Warsaw, E-40 from Warsaw to the Poland-Belarus Border (Brest) and E-70 between the Vistula River and the Vistula Lagoon (Elblag); State Water Holding Polish Waters: Gdańsk, Poland, 2020. [Google Scholar]
- Woś, K. Plans for the Development of Polish Inland Waterways. Probl. Transp. Logist. 2017, 1, 297–310. [Google Scholar] [CrossRef]
- Woś, K.; Wrzosek, K. The Siarzewo Barrage Project as an Example of a New Quality in the Realization of Investments for the Rational Water Resources Management in Poland. Hydropower Dams 2021, 2, 34–40. [Google Scholar]
2029 | 2030 | 2040 | 2050 | 2060 | |
---|---|---|---|---|---|
(Million PLN) | |||||
No project implementation | 0.13 | 0.14 | 0.18 | 0.23 | 0.28 |
Alternative 2 | 95.95 | 95.95 | 431.15 | 619.57 | 763.43 |
Benefits | Total value (PLN billion) discounted | % of total benefits |
Savings in transport costs for cargo owners | 24.81 | 22.80% |
Savings in accident costs | 6.79 | 6.24% |
Cost saving for atmospheric pollution | 0.56 | 0.51% |
Savings in climate change costs | 2.01 | 1.85% |
Noise cost savings | 1.41 | 1.29% |
Savings in congestion costs | 9.19 | 8.44% |
Savings in the cost of flood losses | 21.25 | 19.54% |
Savings in forest fire costs | 5.48 | 5.04% |
Savings in drought costs in agriculture | 0.10 | 0.10% |
Revenue from the sale of electricity | 7.16 | 6.58% |
Savings in CO2 emissions in electricity production | 3.43 | 3.15% |
Benefits due to increased expenses in tourism | 9.51 | 8.74% |
Economic residual value | 17.10 | 15.72% |
Overall | 108.79 | 100% |
Costs | Total value (PLN billion) discounted | % of total costs |
Investment outlays | 24.49 | 63.23% |
Maintenance and operation costs | 14.24 | 36.77% |
Overall | 38.73 | 100% |
Economic net present value (NPV) | 70.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woś, K.; Wrzosek, K.; Kolerski, T. The Energy Potential of the Lower Vistula River in the Context of the Adaptation of Polish Inland Waterways to the Standards of Routes of International Importance. Energies 2022, 15, 1711. https://doi.org/10.3390/en15051711
Woś K, Wrzosek K, Kolerski T. The Energy Potential of the Lower Vistula River in the Context of the Adaptation of Polish Inland Waterways to the Standards of Routes of International Importance. Energies. 2022; 15(5):1711. https://doi.org/10.3390/en15051711
Chicago/Turabian StyleWoś, Krzysztof, Krzysztof Wrzosek, and Tomasz Kolerski. 2022. "The Energy Potential of the Lower Vistula River in the Context of the Adaptation of Polish Inland Waterways to the Standards of Routes of International Importance" Energies 15, no. 5: 1711. https://doi.org/10.3390/en15051711
APA StyleWoś, K., Wrzosek, K., & Kolerski, T. (2022). The Energy Potential of the Lower Vistula River in the Context of the Adaptation of Polish Inland Waterways to the Standards of Routes of International Importance. Energies, 15(5), 1711. https://doi.org/10.3390/en15051711