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Abstract: To address time delay and noise problems in control systems, in this study, we integrated 

an extended state filter for signal filtering into an active disturbance rejection control (ADRC) system 

and derived an improved ADRC approach. In addition to the active anti-disturbance and active 

tracking estimation functions of the existing ADRC, the proposed approach also includes active 

filtering and active advance prediction functions, which can filter out the effect of measurement 

noise on system state observation while reducing the delay between the system control output and 

the detection of the sensor input. We verified through an evaluation in a simulation environment 

that the proposed approach may be expected to achieve improved control accuracy and increase the 

stability of closed-loop control systems. 
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1. Introduction 

In recent years, the theory of active disturbance rejection control (ADRC) technology 

has been actively developed [1,2]. Several studies [3,4] have analyzed the frequency 

approximation of ADRC control systems, and found that their stability margins are large 

and their stability is less influenced by system parameters. 

It is well known that phase delay is a key issue that affects the stability of control 

systems. For example, the design of controllers for time-delay systems is very challenging 

as the time delay induces an additional phase delay [5]. Similarly, if a time delay is present 

between the input of the system sensing a signal and the output action of the controller, a 

phase delay is also introduced, which leads to an increase in the control time uncertainty 

and a decrease in the stability margin of the system, and may even cause the system to 

become unstable. Predictive ADRC was proposed to reduce the time delay between the 

system input and the controller output [6]. Additionally, random measurement noise is 

prevalent in the sensing and detection systems of realistic controllers [7–9], which reduces 

the observer bandwidth of ADRC. Furthermore, high-gain bandwidth introduces high-

frequency noise, which vastly degrades the control performance of a closed-loop system, 

and may even destabilize the system. 

The Kalman filter (KF), based on the least variance estimation, is an unbiased least 

variance estimation only for linear systems with Gaussian white noise. Extended Kalman 

filtering (EKF) is the application of the KF algorithm to linearized nonlinear systems. 

However, it has some limitations in dealing with nonlinear uncertain systems, because 

EKF is linearly expanded at the current estimate value of the state, which makes the 

linearization error a higher-order term of the current estimate error. When the system 

linearization error is large, the linearization error may become the main term in the 

system, which makes the filter value diverge. Therefore, when the initial estimation error 

and noise term are large, the stability of EKF is difficult to be guaranteed. 

Citation: Shi, S.; Zeng, Z.; Zhao, C.; 

Guo, L.; Chen, P. Improved Active 

Disturbance Rejection Control 

(ADRC) with Extended State Filters. 

Energies 2022, 15, 5799. https:// 

doi.org/10.3390/en15165799 

Academic Editors: Baoling Guo, 

Hebertt Sira Ramirez, Rafal 

Madonski and Juri Belikov 

Received: 15 June 2022 

Accepted: 8 August 2022 

Published: 10 August 2022 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2022 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Energies 2022, 15, 5799 2 of 22 
 

 

An ESF considers the uncertainty, process noise, and measurement noise of the 

system. Based on the idea of ESO, the total uncertain disturbance of the system is 

compensated, and the nonlinear uncertain system is changed into a linear system. 

Considering the process noise and measurement noise of the system at the same time, the 

ESF extended observation filter is derived based on the optimal prediction and estimation 

correction idea of the Kalman filter. ESO and KF are very mature algorithms. Using ESO 

disturbance compensation, the uncertain nonlinear system can be compensated to a linear 

system. Combined with KF filtering algorithm, it avoids the divergence and instability of 

the system caused by the linearization error of EKF approximation. 

To address the time delay and noise problems in control systems, in this study, we 

derived a new anti-disturbance algorithm named EPADRC, the core idea of which is to 

incorporate an extended state filter [10,11] used for signal filtering into the PADRC control 

technology. This not only reduces the delay between the system output and the controller 

output, but also enables adaptive adjustment of ADRC parameters, which reduces the 

effect of random noise on the control system, because it performs the functions of active 

filtering, active tracking estimation, active anti-disturbance, and active prediction. 

Active disturbance rejection control algorithms have been widely used in 

engineering and academia, but the traditional active disturbance rejection algorithm is 

basically used in engineering at present. In view of the uncertainty, high-frequency 

process noise, and measurement noise in practical control systems, this paper proposes 

for the first time an intelligent combination of an ESF and PADRC to solve the problems 

of limited gain of ESO that lead to low tracking and control accuracy of traditional ADRC 

and PADRC. 

An extended state filter (ESF) serves as the core of predictive ADRC technology 

(PADRC) with ESF, which is primarily used to filter the detection signal. However, in the 

new ADRC technique EPADRC proposed in this work, the ESF can not only track the 

system output signal and the differential state of each order, but also dynamically reject 

random noise generated by sensors. Thus, the EPADRC can replace existing PADRC, and 

the control performance can be guaranteed in the presence of the significant external 

disturbances, which meet the specific requirements of power-electronics-based systems. 

2. Extended State Filter 

ESFs are a new type of observer with filters proposed for certain multi-input and 

multi-output (MIMO) nonlinear systems [12,13] with continuous uncertain dynamics and 

discrete measurements containing noise. An ESF is both a filter and an observer. Although 

the system contains nonlinear time-varying uncertainty, the covariance of the ESF filter 

error converges, and the range of the filter error can be evaluated in real time by the 

parameters (gain coefficients) of the ESF filter. Moreover, if the uncertainty is an invariant 

constant value, an ESF can be proven to be a linear minimum variance filter. 

Developed from the extended state observer (ESO) [14–16], an ESF improves the ESO 

structure by considering the nature of measurement noise, uncertain dynamics, and 

discrete errors present in the system, and automatically optimizes the parameters of ESO 

to form the ESF. The authors of [17] derived the ESF through state estimation, tracking a 

MIMO system from a rigorous mathematical perspective. The derivation is relatively 

complex and technical. Hence, in this section, we consider single-input and single-output 

(SISO) systems [18,19] as an example to derive a corresponding recursive ESF algorithm. 

First, we consider an nth-order nonlinear time-varying uncertainty system. 



Energies 2022, 15, 5799 3 of 22 
 

 



 =


=


 = +


= +

1 2

2 3

( , , )

( )
n

k d k

x x

x x

x f x w t bu

y C x k n

 (1) 

where x  denotes the continuous state variable, y represents the discrete sampled 

measurement output,   is the sampling time, and 
k

n  is the measurement noise. This is 

a typical hybrid system in which the observation equation is continuous and the 

measurement equation is discrete. In this study, we focus primarily on the filtering 

characteristics of the ESF under open-loop conditions, i.e., when = 0u . In this case, 

Equation (1) may be rewritten as 
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From Equation (2) above, it may be deduced that the ESF filter was designed to 

estimate the system state =   1 2
( ) , , ,

n
x t x x x  and unknown disturbances 

( , , )f x w t  from discrete measurement outputs in the presence of uncertainty ( )f  and 

measurement noise 
k

n . The uncertainty ( )f  exists because computing the value of 

( )f  from the function ( , , )f x w t  is impossible in practical engineering, even if the 

model of the function ( , , )f x w t  is known, because the true value of the system state 

=   1 2
( ) , , ,

n
x t x x x  is unknown. 

Because filtering algorithms are usually implemented via numerical calculations 

carried out by computers, for example, by ZOH or FOH methods, the hybrid system (2) 

may be equivalently converted to the following discrete form. 

+
 = + +
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The discrete error 
k

w  satisfies [20]. 
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We assume that the measurement noise 
k

n  is a zero-mean Gaussian sequence. 

Taking 
k

f  as an extended state, system (3) is equivalent to 

+

+
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where 
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Let the nominal model of the nonlinear function ( , , )f x w t  be ( , )f x t  and the 

relationship of ( , )f x t  to the state variables be known in advance. Then, 
k

G , the 

nominal model of 
k

G , is given as 

   = = + + −( , ) ( , ) ( , )
k k d k d k k

G G x k f A x B f k f x k   (6) 

Then, the state filter of the discrete system (5) is 

+
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1
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where 
+

=
1, 2, 1,

( )T

k k k n k
z z z z , which denotes the tracking estimates of the state 

variables 
1 2
, , ,

n
x x x  and ( )f  of system (5) at =t k , respectively. They are also 
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referred to as the filtered values ˆˆ( , )
k k

x f . Equation (7) presents the extended state filter 

(ESF) of the hybrid system (2). 

The optimal solution of 
k

K , the gain of ESF, in Equation (7) is critical for the ESF 

algorithm. The derivation of 
k

K  based on the optimal recursion method and the proof 

of stability of the ESF is given below. 
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The stability analysis of the ESF: 
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(𝑒𝑖) = 0, 𝑖 = 1,2, … , 𝑛 + 1. 

If the noise of the system is to be considered, the Equation (8) is a stochastic system 

and can be rewritten as: 
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where R  and 1R  are angular moments. 

Assuming that the above Equation (15) can ensure that the following formula holds, 

( ) ( )1 1( , ) ( , )k k k kE V e W E V e W+ +    (16) 

Then by recursion, we can get: 

( ) ( )0 0( , ) ( , )k

k kE V e W E V e W   (17) 

Additionally, the mathematical expectation of 
0 0( , )V e W  satisfies the following 

equation: 
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Since there is always a real number 1c , 1 0c  , satisfying 
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From Equations (20) and (21), it can be deduced that: 

( ) 1

T

k kE e R e c     (22) 

Equation (22) shows that the state tracking error of the ESF is bounded, thus proving 

the stability of the ESF. 

The gain of LESO is based on the same pole allocation in [21]. It is known that the 

convergence of ESO is lim
𝑡→∞

|𝑒𝑖| ≤ 𝜌, 𝑖 = 1,2, … , 𝑛 + 1, where 𝜌 is a small positive number. 

In addition, the literature [22] provides the following convergence formula for a 

LESO stability proof: 

lim
𝑡→∞

(𝑒𝑖) ≤ 𝑂(𝑚𝑎𝑥 {
𝑙𝑛𝜔𝑒

𝜔𝑒
,
1

𝜔𝑒
}), 𝑖 = 1,2, … , 𝑛 + 1, where 𝜔𝑒 is the bandwidth of LESO. 

Additionally, for the stability of generalized ESO, the convergence conclusion is as 

follows in reference [23]: 

lim
𝑡→∞

(𝑒𝑖) ≤ 𝑂(𝜀𝑛+1−𝑖), 𝑖 = 1,2, … , 𝑛 + 1, where 𝜀 < 1. 

In summary, the convergences of [21–23] mentioned above are proved, and ESF is 

based on the minimum variance of 𝑒 to obtain the gain. It can be seen that lim
𝑡→∞

(𝑒𝑖) =

0, 𝑖 = 1,2,… , 𝑛 + 1. 

Equations (10)–(13) constitute the ESF parametric self-seeking algorithm, which has 

the following important properties and advantages. 

1. The mean squared error of the estimation error of the ESF is bounded regardless of 

whether the system is linear or nonlinear, time-variant or time-invariant, whether the 

dynamic model is known, and whether it contains measurement noise. Furthermore, 

the upper bound of the covariance matrix of the estimation error can be obtained 

online in real time by the parameter Pk. As is well known, in practical engineering, 

obtaining the exact value of the estimation error is impossible, because the state of 
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the system is unknown. Thus, ESFs can obtain the estimation error evaluation online, 

which is of great significance in engineering. 

2. ESF can actively estimate the nonlinear part of the system (2), whereas other existing 

filters usually require an accurate model of the nonlinear part. Hence, ESF provides 

a new approach to deal with nonlinear unknown dynamics, whereas other filters 

have divergent filter values for large ranges of uncertain systems. 

3. Using ESO disturbance compensation principle, ESFs transform the uncertain 

nonlinear system into a linear system. Combined with a KF filtering algorithm, it 

avoids the divergence and instability of the system caused by the linearization error 

of EKF approximation. 

In this way, another salient advantage of the ESF over the extended Kalman filter 

(EKF) is that it does not require linearization of the system model, which avoids complex 

computations and linearization errors. In fact, the convergence of the traditional EKF is 

only guaranteed for approximately linear systems. The ESF is not subject to this limitation, 

because it inherits the core idea of ESO—extending the nonlinear part into a new state. 

That is, ESF guarantees consistency (i.e., = − − ˆ ˆ( )( )ˆ T

k k k k k k
S E x x x x P ), whereas EKF 

does not guarantee consistency, and its estimation error may be divergent. 

4. The smaller the choice of (P0, Qk, Rk) when Equation (13) is satisfied, the smaller the 

PK and the better the designed ESF, as may be observed from Equation (12). Thus, 

P0, a diagonal array, is taken as small as possible to exceed the required variance of 

the initial estimation error, which is physically meaningful. 

5. When the nonlinear uncertainty function is constant and the initial value of the 

system state variable is known, the ESF is the linear minimum variance filter. That is, 

when 
0

( , )f x t f , = − =
0 0 0

( ) 0Ev E X z , =
0 0 0

TP Ev v , the ESF is the linear 

minimum variance estimator of ( , )T

k k
x f . Conversely, the ESF is the optimal 

tracking estimator for a system under constant total perturbations. 

6. If    , , 1
k k

Q Q R R k , then 
→

=lim
kk

P P , where P is the unique solution to 

the following Riccati equation. 




 

−   +
= − + + − +  

+   

1
1 1

(1 )
1

T T T TP APC CPC R CPA APA Q   (23) 

It can be concluded that if 𝑅𝑘 and 𝑄𝑘 are consistently bounded, and their bounded 

values are 𝑅 and 𝑄, respectively, then the consistent bound 𝑃 of 𝑃𝑘 is the solution to 

the Riccati Equation (23) above. 

Further analysis indicates that the EKF observer gain matrix Kk also converges to a 

constant matrix 




−

 
= − + + 

+ 

1
1

(1 )
1

T T TP APC CPC R CPA   (24) 

which is defined as the stability factor of the ESF. Additionally, θ is chosen based on the 

principle that P is minimized according to Equation (13). 

As may be deduced from this analysis, the purpose of considering the extended state 

in ESF is to estimate the uncertainty term in the model in real time. Thus, its tracking 

estimation of the state variables is not affected by the bias resulting from the uncertainty 

and nonlinearity of the model, because linearization processing is not required. Hence, a 

filter designed in this manner does not depend on the exact model of the system, thereby 

avoiding the complex calculations and linearization error involved. Thus, the filter is a 

self-adaptive filter with self-seeking optimization, which can ensure the convergence and 

tracking by the filter of the state variables submerged in the measurement noise. 
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3. EPADRC Algorithm Incorporating ESF Filtering 

A practical discrete system implementation would involve a strict time constraint 

such that the delay between the sensor input and the controller output should be as small 

as possible, which implies that the computational time consumption of the controller 

should be minimized. Owing to the observer-based approach, the ADRC controller has a 

greater computational complexity than the conventional proportional-integral-derivative 

(PID) controller. Thus, we aim to reduce the computational complexity of ADRC, and 

propose improved methods to reduce the delay between input and output in this work. 

Furthermore, as random measurement noise is prevalent in the sensing and detection 

system of the real controller, a high-gain bandwidth introduces high-frequency noise, 

which significantly degrades the control performance of closed-loop systems, and can 

lead to system instability. Thus, such noise reduces the observer bandwidth of ADRC. 

In this section, we describe our approach to fuse the ESF filter with the PADRC 

control technology to constitute a new anti-disturbance control technology. Because this 

new technology is the first new ADRC control technology proposed in this work, we refer 

to it hereafter as EPADRC control technology. In this section, we introduce the derivation 

process of EPADRC, and present that the results of simulations conducted verify that 

EPADRC can perform active filtering, active tracking estimation, active anti-disturbance, 

and active prediction, among other functions, as well as highly dynamic and high-

accuracy performance. 

3.1. Predictive ADRC Techniques 

For nonlinear uncertain systems, compared to traditional ADRC, the PADRC has the 

advantage of leading the phase and reducing the input and output delay of the entire 

system. The literature [24] adopts the ZOH method to realize advanced observation of 

ESO, while PADRC is advanced predictive control of the whole control algorithm, 

including not only advanced prediction of the ESO part, but also advanced predictive 

control processing of the control law calculation part. 

In applications with a fixed sampling frequency, the performance of the controller 

can be improved by reducing the delay between obtaining the system output signal and 

refreshing the controller output signal (which is also the system input signal) within a 

single sampling cycle. The input-output lag does not necessarily depend on the entire 

computation of the controller algorithm, but rather on the necessary computation 

required to obtain the controller output, whereby the tedious and complex computation 

can be performed whenever possible in the remaining time of the sampling cycle after the 

controller output refresh. Thus, we propose a PADRC control technique with prediction 

followed by correction. 

We consider a second-order nonlinear time-varying uncertain system given as 

follows. 

 = + +


=

( , , )x Ax f x w t Bu

y Cx
  (25) 

where 

 
=  
 

0 1

0 0
A

, 

 
=  
 

0
B

b
, =   1 0C . 

This is a continuous time system, where x  denotes the continuous state variable 

=   1 2
, , ,

n
x x x x , and y denotes the system output. Its corresponding PADRC loop 

iteration algorithm is given as follows. 
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+

+ + +

 = − + +


= +
 =  + 

 = −


1 2 3

1

1
1 1 1

( )

[1 1 1]

k k k

k k E k

k E k E k

k k k

u u l l l y

x x L y

x A x B u

k
u r x

b

  (26) 

where 
−= 1

E E
A T A T

, 
−= 1

E E
B T B

, 
−= 1

E E
L T L

, 
−= 1 ˆx T x , 

= − = − =, ,
E E E

A A LCA B B LCB L L
, and 

 
=  
 

1

0 1

A
A , 

 
=  
 0

b
B , 

=   0C C , 
−

 
 

=  
 
 

1

1

2

1

1

k

T k
b

. 

Because the matrices 
E

A , 
E

B , 
E

L , and + +
1 2 3

( )l l l  can be computed ahead of 

the control algorithm, only a single multiplication and subtraction operation is performed 

at time 
k

t , and the other complex calculations are performed after the ADRC controller 

output 
k

u  is refreshed, which significantly reduces the time delay between the system 

output 
k

y  and the controller output 
k

u . In contrast, the delay between the feedback 

system output and the input is an important factor that affects the dynamic tracking 

accuracy of the system. 

3.2. Theoretical Derivation of EPADRC Algorithm with an ESF 

The derivation in this section includes a new EPADRC control algorithm that 

combines an ESF with PADRC. EPARC aims to improve the filtering performance, 

uncertainty compensation, phase advance, and system stability of the whole system for 

nonlinear and uncertain systems. 

Here, we consider nth-order nonlinear time-varying uncertain systems. 

 = + +


=

( , , )
C c uc

d

x A x B f x w t B u

y C x
  (27) 

where 

 
 
 
 =
 
 
 
 

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

c
A

, 

 
 
 
 =
 
 
 
 

0

0

0

1

c
B

, 

 
 
 
 =
 
 
 
 

0

0

0
uc

B

b
, =   1 0 0 0

d
C

. 
This is the continuous time system, where x  denotes the continuous state variable 

=   1 2
, , ,

n
x x x x  and y represents the system output. 

By the ZOH or FOH methods, the continuous system (18) can be equivalently 

converted to the following discrete form. 
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+
 = + + +


= +

1k d k d k ud k

k d k k

x A x B f B u w

y C x n
  (28) 

where 







   
   
   = =
   
   

     

1, 1

2, 2

,

( )

( )

( )

k

k

k

nn k

x x k

x x k
x

x kx

 and = ( , , )
k k

f f x w k . Moreover, 

 







−

−



 
 

− 
 
 

− =
 
 
 
 
 
  

2 1

2

1
2! ( 1)!

0 1
( 2)!

0 0 0

0 0 0 1

n

n

d

n n

n

n
A , 









−



 
 
 
 
 −
 

=  
 
 
 
 
 
  

1

2

1

!

( 1)!

2!

n

n

d

n

n

n

B , 









−



 
 
 
 
 −
 

=  
 
 
 
 
 
  

1

2

1

!

( 1)!

2!

n

n

ud

n

n

n

B b    

The linearized discrete error 
k

w  satisfies 











−

−

+

 + −
 

− 
 + −
 

− = −
 
 
 
 + −
 
  



1

2

( 1)

(( 1) )

( 1)!

(( 1) )

( 2)!
[ ( ( ), , ) ]

( 1)

1

n

n

k

k k

k

k t

n

k t

n
w f x t w t f dt

k t

, (29) 

We assume that the measurement noise 
k

n  is a zero-mean Gaussian sequence. 

Taking 
k

f  as an expansion state, the system (28) is equivalent to 

+

+

     
= + + +     

     


 
= + 

 

1

1
0

k k k

G k k

k k

k

k k

k

x x w
A B G Bu

f f

x
y C n

f

  (30) 

where 

 
=  
 0 1

d d
A B

A

, 
+

= −
1k k k

G f f , 

 
=  
 

1
0

1
nx

G
B

, 

 
=  
 0

ud
B

B

, =   0
d

C C . 

For the discrete system (28), the terms 
k

w , 
k

G , and 
k

n  are added to the ESF 

covariance array for consideration. Its corresponding discrete time-extended state filter 

DESF is given as: 
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+
 = + − −


=

1
ˆ ˆ ˆ( )

ˆ ˆ
k k k k k k

k k

x Ax Bu K y y

y Cx
  (31) 

where 
+

=
1, 2, 1,

ˆ ˆ ˆ ˆ( )T

k k k n k
x x x x  denotes the state variables 

1 2
, , ,

n
x x x  of the 

system (30) and the filtered values ˆˆ( , )
k k

x f  of ( )f  at =t k , respectively. 

Through the derivation in Section 3.2, we know that the ESF observer gain 
k

K  is 

recursively given by 



 
= − + 

+ 1

T

T T k
k k k

R
K AP C CP C  (32) 

( )( ) ( )



+

+
= + + + + +

1

1
1

T T

k k k k k k k k
P A K C P A K C K R K Q   (33) 

 
=  

 

1

2

0
2

0
k

k

k

Q
Q

Q
, 

 
 

=  
 
  

1, ,1

2

1

2

1, ,

0

0 0

0 0

k

k

k n

q

Q

q

, = 2

2 2,k k
Q q ,   (34) 

of which 

 − − =
0 1, 2, ,

[( )( ) ] , ( , , , , )T T

k k k k k k k n k k
P E X z X z X x x x f    

 ( )T

k k k
R E n n    

 =
1, , ,

| | , 1,2, ,
k i k i

q w i n   (35) 

+
 −

2, 1
| |

k k k
q f f    

  0    

 


=
2,

ˆ ( , )
k k k

G sat G q , 


= ˆ( , )
k k

G G x k , =
0 0

ˆf̂ f   

In the dependencies given above, the matrix inequalities like X > Y, it means that 

every element of X is larger than that in Y if X and Y are matrixes. 

Here, =
1, 2, ,

ˆˆ ˆ ˆ ˆ( , , , , )
k k k n k k

x x x x f  contains the estimate the extended state 
k

f . 

Then, we can obtain its estimation error dispersion equation, 

+ + +
= − = + −

1 1 1
ˆ ˆ( )( )

k k k k k k
e x x A K C x x   (36) 

As can be deduced from the estimation error Equation (36), the characteristic roots of 

the matrix +( )
k

A k C  determine the decay process of estimation error dynamics. The 

observer gain 
k

K  determines the pole configuration of the matrix +( )
k

A k C , while 

k
K  can be obtained automatically from Equation (32) based on the magnitude of the 

noise variance, indicating that the ESF has an automatic optimal configuration of the poles 

of the matrix. 

Siemens engineers have been using the delay of the signal to lead to a deadband, the 

existence of which may render the control loop unstable. To reduce unnecessary time 

delay, we adopted the “advance prediction” and “current correction” strategy introduced 



Energies 2022, 15, 5799 13 of 22 
 

 

above. Similar to the basic idea of Kalman filtering, the process of refreshing and 

outputting a filtering result is divided into two steps. First, the prediction phase is 

performed, in which the predicted value is obtained based on the latest measurement at 

time k–1. Second, the correction phase is performed, in which the predicted value is 

corrected based on the latest current measurement output 
k

y  to obtain the final estimate 

k
x . 

− −
 = + +


= −

1 1
ˆ( ) ( )

ˆ ( )
k k k k

k k k k

predictix on

corx recy tiK on

A K C x Bu

x
  (37) 

We substitute the prediction expression of Equation (37) into the correction 

expression to obtain 

− −
= +  +  − 

1 1
ˆ ˆ( )

k k k k k k
x A K C x B u K y   (38) 

For Equation (38), we simplify the Digital Linear ESO (DLESO) as 

− −
=  +  + 

1 1
ˆ ˆ

k E k E k E k
x A x B u L y   (39) 

where 
= + = = −, ,

E k E E k
A A K C B B L K

. 

For the nth-order system of Equation (37), we generally use the linear state feedback 

control law given as 

+ +
= =

− − − − −

= =
 1 1, , 1, 1 , 1,

2 1

ˆ ˆ ˆ ˆ ˆ( )
n n

k k i i k n k k i i k n k
i i

k

k r x k x x k r k x x

u
b b

  
(40) 

where = =ˆ ,( 1, , ))i
i i

k
x x i n

b
, 

+ +
=

1 1

1
ˆ

n n
x x

b
. Then, Equation (40) can be simplified as 

+

=

= −
1

1
,

1

n

k k i k
i

k
u r x

b
  (41) 

The structure of the improved ADRC controller is presented in Figure 1. 

Observer

r
K1/b1

u y

---

Process

…

1
~x

2
~x

1
~

+nx

 

Figure 1. Diagram of the improved ADRC structure. 

Comparing Equations (40) and (41), through matrix transformation, we can convert 

the new estimated variable x  from the previously estimated variable x̂ . 
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+ +

    
    
    =
    
    

        

1 11

2 2

1 1

ˆ

ˆ1

ˆ1
n

n n

x xk

x x

kb

x x

  (42) 

where −

 
 
 =
 
 
  

1

1 1

1
n

k

T
kb

. From Equation (39), we obtain DLESO with the new 

estimated variable x  as the estimated value of the state variable 

− −
=  +  + 

1 1k E k E k E k
x A x B u L y   (43) 

where 
−= 1

E E
A T A T

, 
−= 1

E E
B T B

, 
−= 1

E E
L T L

. 

If the matrices 
E

A , 
E

B , and 
E

L  can be precalculated ahead of the control 

algorithm, resource-consuming calculations such as the division of the state variables with 

b  and the multiplication with 
i

k  in the feedback control law (40) can thus be avoided, 

thereby greatly reducing the execution time of the algorithm. Because the value of the 

desired output 
k

r  at each time point is known in advance, 1
k

k
r

b
 can be computed before 

the algorithm execution time point, which can further improve the operational efficiency 

of the controller. Finally, the simplified control feedback law may be obtained as given in 

Equation (30). 

Because the estimated state variable 
i

x  must be updated at each time point 
k

t  

according to Equation (43) and the controller output 
k

u  is calculated using Equation 

(40), further optimization of the control algorithm is required. 

Substituting Equation (43) directly into Equation (44) yields 

− −
= − + +1

1 1
(1 1 1)( )

k k E k E k E k

k
u r A x B u L y

b
 (44) 

As may be observed from Equation (44), the control output 
k

u  depends not only on 

the system output 
k

y  and the system output expectation at the moment of 
k

r
k

t , but 

also on 
−1k

u  and 
−1k

x  at the moment of 
−1k

t . A method that can compute 
k

u  with 

low latency is required for this purpose; at the moment of 
−1k

t , it must precompute the 

part of 
k

u  that can be computed 
k

u  and correct 
k

u  with the current value after 

obtaining the system measurement output 
k

y  and the system output expectation 
k

r  at 

time 
k

t  to improve the computational efficiency of 
k

u . 

Normally, the system output expectation setting r  is known, and the calculation 

can be further optimized by calculating the term related to 
k

r  in advance at the moment 

of 
−1k

t  so that only the system measurement output 
k

y  is involved in the update of the 

control output 
k

u  at the moment of 
k

t . Then, we adopt the prediction and correction to 

refresh the 
k

u  output, which is obtained from Equation (44) as: 
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− −

− −

+

=

= − + +

= − + −

= −

= − 

1
1 1

1
1 1

1

1

(1 1 1)( )

(1 1 1)( ) (1 1 1)

(1 1 1)

( )

k k E k E k E k

k E k E k E k

k E k

n

k i k
i

k
u r A x B u L y

b
k

r A x B u L y
b

u L y

u l y

  (45) 

where 

− −
= − +1

1 1
(1 1 1)( )

k k E k E k

k
u r A x B u

b
  (46) 

The state estimate 
k

x  is updated using the forecast term 
k

x  correction, the update 

equation of which is given by (46). 

− −
=  +  + 

= + 

1 1k E k E k E k

k E k

x A x B u L y

x L y
  (47) 

where 

− −
=  + 

1 1k E k E k
x A x B u   (48) 

Substituting Equation (48) directly into Equation (46), the prediction term 
k

u  for the 

control output 
k

u  is derived as 

= −1 (1 1 1)
k k k

k
u r x

b
  (49) 

According to Equation (47), the estimated state prediction term described in Equation 

(49) 
k

x  is expressed as 

− −

− − −

=  + 

= + + 

1 1

1 1 1
( )

k E k E k

E k E k E k

x A x B u

A x L y B u
  (50) 

Then, Equations (45), (47), (49), and (50) form the ADRC controller loop iteration 

algorithm, as given below. 

+

=

+

+ + +

  
= −  

 


= + + 

 = −



1

1

1

1
1 1 1

( )

(1 1 1)

n

k k i k
i

k E k E k E k

k k k

u u l y

x A x L y B u

k
u r x

b

  (51) 

Incorporating the recursive Equations (32)–(34) for the ESF gain 
k

K  derived in 

Section 2 into Equation (51), a new ADRC technique with self-adaptive filtering and state 

and control output prediction with optimal time delays is derived as follows, which we 

refer to as EPADRC. 
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+

=

+

+ + +

  
= −  

 


=  + + 

 = −


 （ ）

（ ） （ ）

（ ）

1

1

1

1
1 1 1

 

 

(1 1 1)  

n

k k i k
i

k E k E k E k

k k k

u
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3.3. Convergence of EPADRC 

Since the control law of EPADRC adopts the feedforward compensation of 

disturbance, which is obtained by ESF observation, the nonlinear uncertain system (1) is 

approximately transformed into a linear series integral type: 


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1 2

2 3
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x x

x x

x bu

y C x k

  (54) 

According to Equation (40), the feedback control law of linear system (54) can be 

obtained as follows: 

=

− −

=
1 1
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k r x k x

u
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(55) 

Further, the closed-loop transfer function of the system can be obtained as follows: 
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(56) 

Then, the error transfer function is: 
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For step input, the flowing formula can be obtained by using the final value theorem: 
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  (58) 

So, it has been proven above that EPADRC is stable. 

4. Simulation and Analysis of Results 

Here, we consider a second-order nonlinear system as given below. 

 =


= + + +
 = +

1 2

2 1 2

1

20 78 10 230

k

x x

x x x u

y x n

  (59) 

We considered the following simulated experimental scenario. The desired trajectory 

was set to a sine signal = 4sin(2 )r t  and a step signal = 20r , and the measured 

noise variance comprised several combinations of σ = 0.0, σ = 0.001, and σ = 0.01. The 

sampling time was 1 ms, and the system (59) was a closed loop controlled using PADRC 

and EPADRC, respectively. The results of the simulation are shown in Figures 2–7. 

A comparative analysis of the subfigures (d) of each of Figures 2–7 indicates that the 

control accuracy of EPADRC is higher than that of PADRC (except for the initial stage of 

the controller output, when the peaking phenomenon exists. In the actual project, to avoid 

the initial peaking phenomenon, the output u  was set to zero in the initial stage of 


u

t t  time, both in terms of dynamic and stable control accuracy). In the initial stage, the 

control error of EPADRC is large, because the initial value of ESF observer gain is zero, 

and a short period of time is required it to seek the optimal value. Once the ESF 

automatically seeks the optimal value of the observer gain, its tracking accuracy greatly 

improves over time. 

By comparing the subfigures (c) of each of Figures 2–7, it may be deduced that 

EPADRC exhibited a high accuracy in estimating the unknown perturbation 

= + +
1 2

( , ) 20 78 10f x t x x  tracking, and thus the control error of EPADRC was 

smaller than that of PADRC. 

As may be deduced from the subfigures (a), (b), (c), and (d) of each of Figures 2–7, 

the tracking estimates of EPADRC for each state of the system were less affected by 

measurement noise, and the output state estimates were thus closer to the true values, 

thereby exhibiting better filtering capability. Conversely, the state tracking estimates of 

PADRC were sensitive to measurement noise, and thus the tracking estimation errors 

were larger compared with EPADRC. 
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Figure 2. Comparison of PADRC and EPADRC dynamic control performance without 

measurement noise. 

 

Figure 3. Comparison of PADRC and EPADRC dynamic control performance for measurement 

noise σ = 0.00. 
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Figure 4. Comparison of PADRC and EPADRC dynamic control performance for measurement 

noise σ = 0.01. 

 

Figure 5. Comparison of PADRC and EPADRC steady-state control performance without 

measurement noise. 
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Figure 6. Comparison of PADRC and EPADRC steady-state control performance for measurement 

noise σ = 0.001. 

 

Figure 7. Comparison of PADRC and EPADRC steady-state control performance for measurement 

noise σ = 0.01. 



Energies 2022, 15, 5799 21 of 22 
 

 

These results demonstrate that EPADRC outperformed PADRC from the perspective 

of theory and simulation experiments, whereas PADRC outperformed the traditional 

ADRC because it has less delay between the system output measurement signal and the 

input control signal. Furthermore, among the three, EPADRC exhibited the best control 

and filtering performance. 

In addition, the gain of ESF in EPADRC is the real-time optimal gain based on the 

minimum variance of the observation error, considering the system process noise and 

measurement noise. For traditional ADRC (including PADRC), the coincidence pole 

assignment proposed by Professor Gao Zhiqiang [25] is generally used to obtain the 

relationship between ESO gain and equivalent bandwidth 𝜔𝑜, and then the equivalent 

bandwidth 𝜔𝑜 is manually adjusted to obtain ESO gain. The ESO gain obtained by this 

method is not optimal, and it is difficult to debug the optimal gain of ESF manually. 

5. Conclusions 

Based on a rigorous analysis and investigation of ESF, in this study, we have 

proposed the idea of incorporating an ESF filter in a PADRC closed-loop control system, 

and derived a new ADRC algorithm named the EPADRC control technique through an 

analysis of the optimization process of ADRC algorithm. Moreover, we have seamlessly 

incorporated the recursive algorithm of the ESF gain into ADRC. 

We comparatively studied the tracking and filtering characteristics of EPADRC and 

PADRC through simulations in MATLAB, which verified that the algorithm not only 

possesses the functions of traditional ADRC, including active anti-disturbance and active 

tracking estimation, but also active filtering and active advance prediction. These new 

functions can filter out the effect of system measurement noise on observations of the 

system state, and concurrently reduce the delay between the system control quantity 

output and the detection of sensor inputs, thereby improving the control accuracy of the 

system. Hence, the proposed approach may be expected to increase the stability of closed-

loop control systems. 
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