Machine Learning in Operating of Low Voltage Future Grid
Abstract
:1. Introduction
1.1. Research Gap
- Dynamic management of power flows in the LV grid, with high levels of distributed power generation in prosumer installations. Most papers list the static or emergency operating states due to the objective function;
- Application of ANN machine learning models in LV grids for control of AC/DC power converter systems—the research hypothesis presented in this paper;
- Development of new processes for the management of DSO assets in Poland in connection with the increasing digital transformation. New models of operation for actuation and control devices under the operator’s supervision;
- Building an architecture for the logical aggregation of metering data from LV grids, e.g., Advance Metering Infrastructure class meters in offline and online modes.
1.2. Motivation
1.3. Research Procedures
2. Materials and Methods
2.1. Original Infrastructure—Research Environment
- PgN—Nominal PV power value per prosumer [kW];
- Pgc—PV generation current capacity [kVA];
- θ—Angular distance between the azimuth and the PV installation;
- A—Azimuth.
2.2. Research Methodology
3. Results
3.1. Regression Models—Data Training
3.1.1. First LV Grid Operation System with BESS
- —training data,
- y—response variable,
- —error variance,
- β—coefficient estimated from data x,
- —latent variables i = 1, 2, …, n,
- h—explicit basis functions.
- mdl teaching data for 80% of the population (actual);
- mdl validation data for 20% of the population (predicted).
3.1.2. Second LV Grid Operation System with BESS 1 and BESS 2
3.2. Neural Networks—Data Training
- —training data
- —attenuation factor
- —weight for perceptron j in layer l for incoming node i,
- —bias for perception i in layer l,
- —neuron value for perception i in layer l.
3.2.1. First LV Grid Operation System with BESS
3.2.2. Second LV Grid Operation System with BESS 1 and BESS 2
3.3. Neural Networks—Data Testing
- x1—input, data testing;
- y1—output, FNN response signal;
- PID—signal controller from FNN.
3.3.1. LV Grid Operation System with BESS
3.3.2. LV Grid Operation System with BESS 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Zhou, F.; Guo, F.; Fan, F.; Huang, Z. Optimized Energy Storage System Configuration for Voltage Regulation of Distribution Network With PV Access. Front. Energy Res. 2021, 9, 641518. [Google Scholar] [CrossRef]
- Wang, G.; Wang, X.; Lv, J. An Improved Harmonic Suppression Control Strategy for the Hybrid Microgrid Bidirectional AC/DC Converter. IEEE Access 2020, 8, 220422–220436. [Google Scholar] [CrossRef]
- Shamshiri, M.; Gan, C.K.; Sardi, J.; Au, M.T.; Tee, W.H. Design of Battery Storage System for Malaysia Low Voltage Distribution Network with the Presence of Residential Solar Photovoltaic System. Energies 2020, 13, 4887. [Google Scholar] [CrossRef]
- Fernández, G.; Galan, N.; Marquina, D.; Martínez, D.; Sanchez, A.; López, P.; Bludszuweit, H.; Rueda, J. Photovoltaic Generation Impact Analysis in Low Voltage Distribution Grids. Energies 2020, 13, 4347. [Google Scholar] [CrossRef]
- Alasali, F.; Haben, S.; Foudeh, H.; Holderbaum, W. A Comparative Study of Optimal Energy Management Strategies for Energy Storage with Stochastic Loads. Energies 2020, 13, 2596. [Google Scholar] [CrossRef]
- Mazza, A.; Mirtaheri, H.; Chicco, G.; Russo, A.; Fantino, M. Location and Sizing of Battery Energy Storage Units in Low Voltage Distribution Networks. Energies 2020, 13, 52. [Google Scholar] [CrossRef] [Green Version]
- Ullah, Z.; Arshad; Hassanin, H. Modeling, Optimization, and Analysis of a Virtual Power Plant Demand Response Mechanism for the Internal Electricity Market Considering the Uncertainty of Renewable Energy Sources. Energies 2022, 15, 5296. [Google Scholar] [CrossRef]
- Khaboot, N.; Chatthaworn, R.; Siritaratiwat, A.; Surawanitkun, C.; Khunkitti, P. Increasing PV Penetration Level in Low Voltage Distribution System Using Optimal Installation and Operation of Battery Energy Storage. Cogent Eng. 2019, 6, 1641911. [Google Scholar] [CrossRef]
- Ren, C.; Liu, L.; Han, X.; Zhang, B.; Wang, L.; Wang, P. Multi-mode control for three-phase bidirectional AC/DC converter in hybrid microgrid under unbalanced AC voltage conditions. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019; pp. 2658–2663. [Google Scholar] [CrossRef]
- Kumar, A.; Meena, N.K.; Singh, A.R.; Deng, Y.; He, X.; Bansal, R.C.; Kumar, P. Strategic integration of battery energy storage systems with the provision of distributed ancillary services in active distribution systems. Appl. Energy 2019, 253, 113503. [Google Scholar] [CrossRef]
- Zhang, D.; Li, J.; Hui, D. Coordinated control for voltage regulation of distribution network voltage regulation by distributed energy storage systems. Prot. Control. Mod. Power Syst. 2018, 3, 3. [Google Scholar] [CrossRef]
- Rasol, M.; Sedighi, A.; Savaghebi, M.; Guerrero, J.M. Optimal Placement, Sizing, and Daily Charge/Discharge of Battery Energy Storage in Low Voltage Distribution Network with High Photovoltaic Penetration. Appl. Energy 2018, 226, 957–966. [Google Scholar]
- Meyer, M.; Kurth, M.; Ulbig, A. Robust Assesment of the Effectiveness of Smart Grid Technologies for Increasing PV Hosting Capacity in LV Grids. In Proceedings of the 2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Espoo, Finland, 18–21 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Osma-Pinto, G.; García-Rodríguez, M.; Moreno-Vargas, J.; Duarte-Gualdrón, C. Impact Evaluation of Grid-Connected PV Systems on PQ Parameters by Comparative Analysis based on Inferential Statistics. Energies 2020, 13, 1668. [Google Scholar] [CrossRef] [Green Version]
- Barrero-González, F.; Pires, V.F.; Sousa, J.L.; Martins, J.F.; Milanés-Montero, M.I.; González-Romera, E.; Romero-Cadaval, E. Photovoltaic Power Converter Management in Unbalanced Low Voltage Networks with Ancillary Services Support. Energies 2019, 12, 972. [Google Scholar] [CrossRef] [Green Version]
- Cortés, A.; Mazón, J.; Merino, J. Strategy of management of storage systems integrated with photovoltaic systems for mitigating the impact on LV distribution network. Int. J. Electr. Power Energy Syst. 2018, 103, 470–482. [Google Scholar] [CrossRef]
- Antoniadou-Plytaria, K.E.; Kouveliotis-Lysikatos, I.N.; Georgilakis, P.S.; Hatziargyriou, N.D. Distributed and decentralized voltage control of smart distribution networks: Models, methods, and future research. IEEE Trans. Smart Grid 2017, 8, 2999–3008. [Google Scholar] [CrossRef]
- Mahmud, N.; Zahedi, A. Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation. Renew. Sustain. Energy Rev. 2016, 64, 582–595. [Google Scholar] [CrossRef]
- Castro, J.R.; Saad, M.; Lefebvre, S.; Asber, D.; Lenoir, L. Optimal voltage control in distribution network in the presence of DGs. Int. J. Electr. Power Energy Syst. 2016, 78, 239–247. [Google Scholar] [CrossRef]
- Sigalo, M.B.; Eze, K.O.; Usman, R. Analysis of medium and low voltage distribution network with high level penetration of distributed generators using eracs. Eur. J. Eng. Technol. 2016, 4, 9–23. [Google Scholar]
- Castelo de Oliveira, T.E.; Bollen, M.; Ribeiro, P.F.; de Carvalho, P.M.S.; Zambroni, A.C.; Bonatto, B.D. The Concept of Dynamic Hosting Capacity for Distributed Energy Resources: Analytics and Practical Considerations. Energies 2019, 12, 2576. [Google Scholar] [CrossRef] [Green Version]
- Nazaripouya, H.; Pota, H.R.; Chu, C.-C.; Gadh, R. Real-time model-free coordination of active and reactive powers of distributed energy resources to improve voltage regulation in distribution systems. IEEE Trans. Sustain. Energy 2020, 11, 1483–1494. [Google Scholar] [CrossRef]
- Kersting, W.H. Distribution feeder voltage regulation control. In Proceedings of the 2009 IEEE Rural Electric Power Conference (REPC), Fort Collins, CO, USA, 26–29 April 2009; C1-C1-7. IEEE: Piscataway, NJ, USA, 2009. ISBN 978-1-4244-3420-6. [Google Scholar]
- Khaboot, N.; Srithapon, C.; Siritaratiwat, A.; Khunkitti, P. Increasing Benefits in High PV Penetration Distribution System by Using Battery Enegy Storage and Capacitor Placement Based on Salp Swarm Algorithm. Energies 2019, 12, 4817. [Google Scholar] [CrossRef] [Green Version]
- Visser, L.R.; Schuurmans, E.M.B.; AlSkaif, T.A.; Fidder, H.A.; Van Voorden, A.M.; Van Sark, W.G.J.H.M. Regulation strategies for mitigating voltage fluctuations induced by photovoltaic solar systems in an urban low voltage grid. Int. J. Electr. Power Energy Syst. 2022, 137, 107695. [Google Scholar] [CrossRef]
- Liao, J.T.; Chuang, Y.S.; Yang, H.T.; Tsai, M.S. BESS-Sizing Optimization for Solar PV System Integration in Distribution Grid. IFAC-Pap. 2018, 51, 85–90. [Google Scholar] [CrossRef]
- Guo, R.; Li, Q.; Zhao, N. An overview of grid-connected fuel cell system for grid support. Energy Rep. 2022, 8 (Suppl. S10), 884–892. [Google Scholar] [CrossRef]
- Pattabiraman, D.; Lasseter, R.H.; Jahns, T.M. Comparison of grid following and grid forming control for a high inverter penetration power system. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting, Portland, OR, USA, 5–10 August 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Unruh, P.; Nuschke, M.; Strauß, P.; Welck, F. Overview on Grid-Forming Inverter Control Methods. Energies 2020, 13, 2589. [Google Scholar] [CrossRef]
- Rosso, R.; Wang, X.; Liserre, M.; Lu, X.; Engelken, S. Grid-forming converters: An overview of control approaches and future trends. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition, Detroit, MI, USA, 11–15 October 2020; pp. 4292–4299. [Google Scholar] [CrossRef]
- Lasseter, R.H.; Chen, Z.; Pattabiraman, D. Grid-forming inverters: A critical asset for the power grid. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 925–935. [Google Scholar] [CrossRef]
- Network Code on Demand Side Flexibility. Available online: https://smartEn-DSF-NC-position-paper-FINAL.pdf (accessed on 15 June 2022).
- European Smart Grids Task Force. Expert Group 3, Final Raport, Demand Side Flevabilility. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/eg3_final_report_demand_side_flexiblity_2019.04.15.pdf (accessed on 15 June 2022).
- IRENA. Demand-Side Flexibility for Power Sector Transformation. Available online: https://www.irena.org/publications/2019/Dec/Demand-side-flexibility-for-power-sector-transformation (accessed on 15 June 2022).
- Mróz, M. The Impact of Energy Commodity Prices on Selected Clean Energy Metal Prices. Energies 2022, 15, 3051. [Google Scholar] [CrossRef]
- Eurostat. Imporst Prices in Industry—Quarterly Data. Available online: https://ec.europa.eu/eurostat/databrowser/view/sts_inpi_q/default/bar?lang=en (accessed on 15 June 2022).
- Eurostat. Gas Prices by Type of User. Available online: https://ec.europa.eu/eurostat/databrowser/view/ten00118/default/bar?lang=en (accessed on 15 June 2022).
- Przekota, G.; Szczepańska-Przekota, A. Pro-Inflationary Impact of the Oil Market—A Study for Poland. Energies 2022, 15, 3045. [Google Scholar] [CrossRef]
- Kulpa, J.; Olczak, P.; Surma, T.; Matuszewska, D. Comparison of Support Programs for the Development of Photovoltaics in Poland: My Electricity Program and the RES Auction System. Energies 2022, 15, 121. [Google Scholar] [CrossRef]
- Kaszyński, P.; Komorowska, A.; Zamasz, K.; Kinelski, G.; Kamiński, J. Capacity Market and (the Lack of) New Investments: Evidence from Poland. Energies 2021, 14, 7843. [Google Scholar] [CrossRef]
- Kelm, P.; Wasiak, I.; Mieński, R.; Wędzik, A.; Szypowski, M.; Pawełek, R.; Szaniawski, K. Hardware-in-the-Loop Validation of an Energy Management System for LV Distribution Networks with Renewable Energy Sources. Energies 2022, 15, 2561. [Google Scholar] [CrossRef]
- Liu, D.; Cao, J.; Liu, M. Joint Optimization of Energy Storage Sharing and Demand Response in Microgrid Considering Multiple Uncertainties. Energies 2022, 15, 3067. [Google Scholar] [CrossRef]
- Talluri, G.; Lozito, G.M.; Grasso, F.; Iturrino Garcia, C.; Luchetta, A. Optimal Battery Energy Storage System Scheduling within Renewable Energy Communities. Energies 2021, 14, 8480. [Google Scholar] [CrossRef]
- Cerna, F.V.; Pourakbari-Kasmaei, M.; Pinheiro, L.S.S.; Naderi, E.; Lehtonen, M.; Contreras, J. Intelligent Energy Management in a Prosumer Community Considering the Load Factor Enhancement. Energies 2021, 14, 3624. [Google Scholar] [CrossRef]
- Torres, I.C.; Farias, D.M.; Aquino, A.L.L.; Tiba, C. Voltage Regulation For Residential Prosumers Using a Set of Scalable Power Storage. Energies 2021, 14, 3288. [Google Scholar] [CrossRef]
- Simmini, F.; Caldognetto, T.; Bruschetta, M.; Mion, E.; Carli, R. Model Predictive Control for Efficient Management of Energy Resources in Smart Buildings. Energies 2021, 14, 5592. [Google Scholar] [CrossRef]
- Manoj Kumar, N.; Ghosh, A.; Chopra, S.S. Power Resilience Enhancement of a Residential Electricity User Using Photovoltaics and a Battery Energy Storage System under Uncertainty Conditions. Energies 2020, 13, 4193. [Google Scholar] [CrossRef]
- Andresen, C.A.; Sæle, H.; Degefa, M.Z. Sizing Electric Battery Storage System for Prosumer Villas. In Proceedings of the 2020 International Conference on Smart Energy Systems and Technologies (SEST), Istanbul, Turkey, 7–9 September 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Zepter, J.M.; Lüth, A.; Crespo del Granado, P.; Egging, R. Prosumer integration in wholesale electricity markets: Synergies of peer-to-peer trade and residential storage. Energy Build. 2019, 184, 163–176. [Google Scholar] [CrossRef]
- Francisco, R.; Roncero-Clemente, C.; Lopes, R.; Martins, J.F. Intelligent Energy Storage Management System for Smart Grid Integration. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; pp. 6083–6087. [Google Scholar] [CrossRef] [Green Version]
- Pijarski, P.; Kacejko, P. Voltage Optimization in MV Network with Distributed Generation Using Power Consumption Control in Electrolysis Installations. Energies 2021, 14, 993. [Google Scholar] [CrossRef]
- Pijarski, P.; Jędrychowski, R.; Adamek, S.; Miller, P. Optimization of the selection of power supply points for buildings equipped with PV installations in urban areas. In Proceedings of the 2019 Progress in Applied Electrical Engineering (PAEE), Zakopane, Poland, 17–21 June 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, T.; Meskin, M.; Zhao, Y.; Grinberg, I. Optimal power flow in distribution networks with high penetration of photovoltaic units. In Proceedings of the 2017 IEEE Electrical Power and Energy Conference (EPEC), Saskatoon, SK, Canada, 22–25 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Jamal, R.; Men, B.; Khan, N.H. A Novel Nature Inspired Meta-Heuristic Optimization Approach of GWO Optimizer for Optimal Reactive Power Dispatch Problems. IEEE Access 2020, 8, 202596–202610. [Google Scholar] [CrossRef]
- Modha, H.; Patel, V. Minimization of Active Power Loss for Optimum Reactive Power Dispatch using PSO. In Proceedings of the 2021 Emerging Trends in Industry 4.0 (ETI 4.0), Raigarh, India, 19–21 May 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Ningyu, Z.; Qian, Z.; Jiankur, L.; Chenggen, W.; Fanwushuang, X. Research on Multi-Objective Optimization Method for DG’s Locating and Sizing in Distribution Network Based on PSO. In Proceedings of the 2018 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Xi’an, China, 15–17 August 2018; pp. 786–789. [Google Scholar] [CrossRef]
- Sidea, D.O.; Picioroaga, I.I.; Tudose, A.M.; Bulac, C.; Tristiu, I. Multi-Objective Particle Swarm optimization Applied on the Optimal Reactive Power Dispatch in Electrical Distribution Systems. In Proceedings of the 2020 International Conference and Exposition on Electrical And Power Engineering (EPE), Iasi, Romania, 22–23 October 2020; pp. 413–418. [Google Scholar] [CrossRef]
- Sysko-Romańczuk, S.; Kluj, G.; Hawrysz, L.; Rokicki, Ł.; Robak, S. Scalable Microgrid Process Model: The Results of an Off-Grid Household Experiment. Energies 2021, 14, 7139. [Google Scholar] [CrossRef]
- Ruester, S.; Schwenen, S.; Batlle, C.; Pérez-Arriaga, I. From distribution networks to smart distribution systems: Rethinking the regulation of European electricity DSOs. Util. Policy 2014, 31, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Bobinaite, V.; Di Somma, M.; Graditi, G.; Oleinikova, I. The Regulatory Framework for Market Transparency in Future Power Systems under the Web-of-Cells Concept. Energies 2019, 12, 880. [Google Scholar] [CrossRef] [Green Version]
- Esmat, A.; Usaola, J.; Moreno, M.Á. A Decentralized Local Flexibility Market Considering the Uncertainty of Demand. Energies 2018, 11, 2078. [Google Scholar] [CrossRef] [Green Version]
- Mroczek, B.; Pijarski, P. DSO Strategies Proposal for the LV Grid of the Future. Energies 2021, 14, 6327. [Google Scholar] [CrossRef]
- Ciocia, A.; Chicco, G.; Spertino, F. Benefits of On-Load Tap Changers Coordinated Operation for Voltage Control in Low Voltage Grids with High Photovoltaic Penetration. In Proceedings of the 2020 International Conference on Smart Energy Systems and Technologies (SEST), Istanbul, Turkey, 7–9 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Wancerz, M.; Miller, P. Problemy napięciowe w instalacjach niskiego napięcia z dużą koncentracją mikroźródeł. Przegląd Elektrotechniczny 2018, 94, 34–37. [Google Scholar] [CrossRef]
- Neagu, B.C.; Grigoras, G. Optimal Voltage Control in Power Distribution Networks Using an Adaptive On-Load Tap Changer Transformers Techniques. In Proceedings of the 2019 International Conference on Electromechanical and Energy Systems (SIELMEN), Craiova, Romania, 9–11 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6, ISBN 978-1-7281-4011-7. [Google Scholar]
- Zhou, H.; Yan, X.; Liu, G. A review on voltage control using on-load voltage transformer for the power grid. IOP Conf. Ser. Earth Environ. Sci. 2019, 252, 32144. [Google Scholar] [CrossRef]
- Dutta, A.; Ganguly, S.; Kumar, C. Model predictive control-based optimal voltage regulation of active distribution networks with OLTC and reactive power capability of PV inverters. IET Gener. Transm. Distrib. 2020, 14, 5183–5192. [Google Scholar] [CrossRef]
- Małkowski, R.; Izdebski, M.; Miller, P. Adaptive Algorithm of a Tap-Changer Controller of the Power Transformer Supplying the Radial Network Reducing the Risk of Voltage Collapse. Energies 2020, 13, 5403. [Google Scholar] [CrossRef]
- Rocha, S.A.; Mattos, T.G.; Cardoso, R.T.N.; Silveira, E.G. Applying Artificial Neural Networks and Nonlinear Optimization Techniques to Fault Location in Transmission Lines—Statistical Analysis. Energies 2022, 15, 4095. [Google Scholar] [CrossRef]
- Valedsaravi, S.; El Aroudi, A.; Barrado-Rodrigo, J.A.; Issa, W.; Martínez-Salamero, L. Control Design and Parameter Tuning for Islanded Microgrids by Combining Different Optimization Algorithms. Energies 2022, 15, 3756. [Google Scholar] [CrossRef]
- Kaushik, E.; Prakash, V.; Mahela, O.P.; Khan, B.; Abdelaziz, A.Y.; Hong, J.; Geem, Z.W. Optimal Placement of Renewable Energy Generators Using Grid-Oriented Genetic Algorithm for Loss Reduction and Flexibility Improvement. Energies 2022, 15, 1863. [Google Scholar] [CrossRef]
- Aydin, O.; Igliński, B.; Krukowski, K.; Siemiński, M. Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland. Energies 2022, 15, 3159. [Google Scholar] [CrossRef]
- Pravesjit, S.; Longpradit, P.; Kantawong, K.; Pengchata, R.; Seng, S. An Improvement of Genetic Algorithm with Rao Algorithm for Optimization Problems. In Proceedings of the 2021 2nd International Conference on Big Data Analytics and Practices (IBDAP), Bangkok, Thailand, 26–27 August 2021; pp. 72–75. [Google Scholar] [CrossRef]
- Yang, J. Indoor space compositions based on genetic algorithms to optimize neural networks. Phys. Commun. 2020, 42, 101167. [Google Scholar] [CrossRef]
- Cao, Z.; Cui, F.; Xian, F.; Zhai, C.; Pei, S. A hybrid approach using machine learning and genetic algorithm to inverse modeling for single sphere scattering in a Gaussian light sheet. J. Quant. Spectrosc. Radiat. Transf. 2019, 235, 180–186. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, D.; Liu, D.; Pan, Z. A Network Selection Algorithm Based on Improved Genetic Algorithm. In Proceedings of the 2018 IEEE 18th International Conference on Communication Technology (ICCT), Chongqing, China, 8–11 October 2018; pp. 209–214. [Google Scholar] [CrossRef]
- Osowski, S.; Szmurlo, R.; Siwek, K.; Ciechulski, T. Neural Approaches to Short-Time Load Forecasting in Power Systems—A Comparative Study. Energies 2022, 15, 3265. [Google Scholar] [CrossRef]
- Li, D.; Liu, Z.; Xiao, P.; Zhou, J.; Armaghani, D.J. Intelligent rockburst prediction model with sample category balance using feedforward neural network and Bayesian optimization. Undergr. Space 2021, 6, 1–14. [Google Scholar] [CrossRef]
- Machado, E.; Pinto, T.; Guedes, V.; Morais, H. Electrical Load Demand Forecasting Using Feed-Forward Neural Networks. Energies 2021, 14, 7644. [Google Scholar] [CrossRef]
- Cortes-Robles, O.; Barocio, E.; Obushevs, A.; Korba, P.; Sevilla, F.R.S. Fast-training feedforward neural network for multi-scale power quality monitoring in power systems with distributed generation sources. Measurement 2021, 170, 108690. [Google Scholar] [CrossRef]
- Ren, Y.; Li, H.; Lin, H.-C. Optimization of Feedforward Neural Networks Using an Improved Flower Pollination Algorithm for Short-Term Wind Speed Prediction. Energies 2019, 12, 4126. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.; Kim, B.; Sidorov, D. Machine Learning for Energy Systems Optimization. Energies 2022, 15, 4116. [Google Scholar] [CrossRef]
- Slowik, M.; Urban, W. Machine Learning Short-Term Energy Consumption Forecasting for Microgrids in a Manufacturing Plant. Energies 2022, 15, 3382. [Google Scholar] [CrossRef]
- Sohani, A.; Sayyaadi, H.; Cornaro, C.; Shahverdian, M.H.; Pierro, M.; Moser, D.; Karimi, N.; Doranehgard, M.H.; Li, L.K.B. Using machine learning in photovoltaics to create smarter and cleaner energy generation systems: A comprehensive review. J. Clean. Prod. 2022, 364, 132701. [Google Scholar] [CrossRef]
- Li, L.; Zhou, T.; Li, J.; Wang, Z. A machine learning-based decision support framework for energy storage selection. Chem. Eng. Res. Des. 2022, 181, 412–422. [Google Scholar] [CrossRef]
- Lin, Y.; Li, B.; Moiser, T.M.; Griffel, L.M.; Mahalik, M.R.; Kwon, J.; Alam, S.M.S. Revenue prediction for integrated renewable energy and energy storage system using machine learning techniques. J. Energy Storage 2022, 50, 104123. [Google Scholar] [CrossRef]
- Shams, M.H.; Niaz, H.; Na, J.; Anvari-Moghaddam, A.; Liu, J.J. Machine learning-based utilization of renewable power curtailments under uncertainty by planning of hydrogen systems and battery storages. J. Energy Storage 2021, 41, 103010. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, W.; Lai, S.; Hao, M.; Wang, Z. Dynamic GPU Energy Optimization for Machine Learning Training Workloads. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 2943–2954. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Z.; Zhang, C.; Zhou, A.C.; Zhai, J.; Du, X. An Efficient Parallel Secure Machine Learning Framework on GPUs. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 2262–2276. [Google Scholar] [CrossRef]
- Huang, T.-W. Machine Learning System-Enabled GPU Acceleration for EDA. In Proceedings of the 2021 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 19–22 April 2021; p. 1. [Google Scholar] [CrossRef]
- Mutlu, G.; Aci, Ç. Time and Memory Comparison of Parallel K-Nearest Neighbor Algorithms on GPUs. In Proceedings of the 2021 Innovations in Intelligent Systems and Applications Conference (ASYU), Elazig, Turkey, 6–8 October 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Bagheri, A.; de Oliveira, R.A.; Bollen, M.H.J.; Gu, I.Y.H. A Framework Based on Machine Learning for Analytics of Voltage Quality Disturbances. Energies 2022, 15, 1283. [Google Scholar] [CrossRef]
- Trębska, P.; Biernat-Jarka, A.; Wysokiński, M.; Gromada, A.; Golonko, M. Prosumer Behavior Related to Running a Household in Rural Areas of the Masovian Voivodeship in Poland. Energies 2021, 14, 7986. [Google Scholar] [CrossRef]
- Amaral, T.G.; Pires, V.F.; Pires, A.J. Fault Detection in PV Tracking Systems Using an Image Processing Algorithm Based on PCA. Energies 2021, 14, 7278. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M.; Bindzár, P. Assessing the Level of Renewable Energy Development in the European Union Member States. A 10-Year Perspective. Energies 2021, 14, 3765. [Google Scholar] [CrossRef]
- Wang, D.; Tanaka, T. A Robust Method for Kernel Principal Component Analysis. In Proceedings of the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 19–21 February 2020; pp. 294–297. [Google Scholar] [CrossRef]
- Liao, G.-C. Fusion of Improved Sparrow Search Algorithm and Long Short-Term Memory Neural Network Application in Load Forecasting. Energies 2022, 15, 130. [Google Scholar] [CrossRef]
- Hou, T.; Fang, R.; Tang, J.; Ge, G.; Yang, D.; Liu, J.; Zhang, W. A Novel Short-Term Residential Electric Load Forecasting Method Based on Adaptive Load Aggregation and Deep Learning Algorithms. Energies 2021, 14, 7820. [Google Scholar] [CrossRef]
- Afzal, A.; Alshahrani, S.; Alrobaian, A.; Buradi, A.; Khan, S.A. Power Plant Energy Predictions Based on Thermal Factors Using Ridge and Support Vector Regressor Algorithms. Energies 2021, 14, 7254. [Google Scholar] [CrossRef]
- Yu, J.; Li, C.; Yang, K.; Chen, W. GRG-MAPE and PCC-MAPE Based on Uncertainty-Mathematical Theory for Path-Loss Model Selection. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Zielińska-Sitkiewicz, M.; Chrzanowska, M.; Furmańczyk, K.; Paczutkowski, K. Analysis of Electricity Consumption in Poland Using Prediction Models and Neural Networks. Energies 2021, 14, 6619. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2016/631 of 14 April 2016 Establishing a Network Code on Requirements for Grid Connection of Generators. Available online: https://EUR-Lex-32016R0631-EN-EUR-Lex(europa.eu) (accessed on 15 June 2022).
Scenario | Real Time | Pgc | Type of Load | Power Factor |
---|---|---|---|---|
1 | 0:50 | 7.8–8 kW | SF—weekend | 1 |
2 | 3:10 | 5.9–8 kW | SF—weekend | 0.95 |
3 | 3:20 | 5.7–8 kW | R—week | 1 |
4 | 4:40 | 4.3–8 KW | R—week | 0.95 |
Training Data | Testing Data |
---|---|
Pgc, p.f.: 2d (two-dimensional) Load: 4d (four-dimensional) BESS Predictors: 26d (twenty-six-dimensional) BESS 1 Predictors: 13d (thirteen-dimensional) BESS 2 Predictors: 10d (ten-dimensional) | Pgc, p.f.: 2d (two-dimensional) Load: 4d (four-dimensional) BESS Predictors: 26d (twenty-six-dimensional) BESS 2 Predictors: 10d (ten-dimensional) |
Output: 1 | Output: Prediction |
Scenario: 12 | Scenario: 4 |
Low Voltage grid operation type: BESS and BESS1/2 | Low Voltage grid operation type: BESS and BESS1/2 |
Regression Model | MAPE [%] |
---|---|
Gaussian Processes Model—Kernel | 0.22392 |
Stepwise AIC | 6.6313 |
Stepwise | 7.4609 |
SVM Standardize | 10.378 |
Linear Model 2 | 11.73 |
Gaussian Processes Model | 12.376 |
Linear Model 1 | 13.42 |
Tree Model 1 | 19.049 |
Tree Model 3 (Leaf Limit) | 19.049 |
SVM Kernel | 21.39 |
Tree Model 2 (Prune) | 43.792 |
SVM Linear | 53.002 |
Regression Model | MAPE [%] |
---|---|
Gaussian Processes Model—Kernel | 0.74225 |
Stepwise | 1.1026 |
Stepwise AIC | 1.5352 |
Linear Model 2 | 2.5383 |
Linear Model 1 | 2.6361 |
SVM Standardize | 17.639 |
Tree Model 1 | 64.088 |
Tree Model 3 (Leaf Limit) | 64.088 |
Gaussian Processes Model | 113.67 |
SVM Kernel | 129.43 |
SVM Linear | 140.2 |
Tree Model 2 (Prune) | 252.7 |
Regression Model | MAPE [%] |
---|---|
Gaussian Processes Model | 0.60121 |
Gaussian Processes Model—Kernel | 0.63229 |
Stepwise | 0.96011 |
Stepwise AIC | 0.96956 |
Linear Model 2 | 0.99487 |
Linear Model 1 | 1.1293 |
SVM Standardize | 5.7958 |
Tree Model 1 | 24.406 |
Tree Model 3 (Leaf Limit) | 24.406 |
Tree Model 2 (Prune) | 29.002 |
SVM Kernel | 38.853 |
SVM Linear | 39.113 |
Technical Solution Currently Proposed in the Literature | Limiting the Voltage Value to 1.1. UN p.u. | Limiting the Power Flow and Energy to the MV Grid | |
---|---|---|---|
1 | Reconstruction and enlargement of the LV line cross–section up to 70 mm2. | −/+ | − |
2 | OLTC + STATCOM application. | + | − |
The solution was proposed in the article | |||
3 | 4 wire-AC/DC power converter + BESS + Machine Learning. | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mroczek, B.; Pijarski, P. Machine Learning in Operating of Low Voltage Future Grid. Energies 2022, 15, 5388. https://doi.org/10.3390/en15155388
Mroczek B, Pijarski P. Machine Learning in Operating of Low Voltage Future Grid. Energies. 2022; 15(15):5388. https://doi.org/10.3390/en15155388
Chicago/Turabian StyleMroczek, Bartłomiej, and Paweł Pijarski. 2022. "Machine Learning in Operating of Low Voltage Future Grid" Energies 15, no. 15: 5388. https://doi.org/10.3390/en15155388
APA StyleMroczek, B., & Pijarski, P. (2022). Machine Learning in Operating of Low Voltage Future Grid. Energies, 15(15), 5388. https://doi.org/10.3390/en15155388