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Abstract: The article is a continuation of the authors’ ongoing research related to power flow and
voltage control in LV grids. It outlines how the Distribution System Operator (DSO) can use Machine
Learning (ML) technology in a future grid. Based on supervised learning, a Selectively Coherent
Model of Converter System Control for an LV grid (SCM_CSC) is proposed. This represents a fresh,
new approach to combining off and on-line computing for DSOs, in line with the decarbonisation
process. The main kernel of the model is a neural network developed from the initial prediction
results generated by regression analysis. For selected PV system operation scenarios, the LV grid of
the future dynamically controls the power flow using AC/DC converter circuits for Battery Energy
Storage Systems (BESS). The objective function is to maintain the required voltage conditions for
high PV generation in an LV grid line area and to minimise power flows to the MV grid. Based on
the training and validation data prepared for artificial neural networks (ANN), a Mean Absolute
Percentage Error (MAPE) of 0.15% BESS and 0.51–0.55% BESS 1 and BESS 2 were achieved, which
represents a prediction error level of 170–300 VA in the specification of the BESS power control.
The results are presented for the dynamic control of BESS 1 and BESS 2 using an ANN output and
closed-loop PID control including a 2nd order filter. The research work represents a further step in
the digital transformation of the energy sector.

Keywords: regression models; artificial neural networks; feedforward neural network; Battery Energy
Storage System (BESS); LV grid

1. Introduction

An increasing number of authors have published studies which suggest that there are
beneficial applications for AC/DC converter systems connected to low voltage grids [1–12].
Power flow in an LV grid is controlled to suit the bidirectional nature of their operation.
It should be noted that every LV grid is different, due to the number of consumers, its
physical parameters, or the number of prosumers. However, a number of patterns are
present that have a significant impact on the operation of LV grids, i.e., PV generation
power factor (p.f.) and grid capacity [13–21].

Poland supports the European decarbonisation process. It currently faces the challenge
of reconciling the growth of distributed power generation and its local consumption for
sustainable development in the energy system. The use of AC/DC converter circuits in LV
grids alone is insufficient for DSOs to achieve the objectives of grid control. The dynamics
of the changes in LV grids, due to the load profile and the movement of the sun during the
day, require active control of converter P and Q [22–26]. Grid support follow-up systems
become insufficient, as they are an improvement to the power/voltage grid parameters at
one selected connection point of the AC/DC system [27–30]. These types of systems work
very well in closed microgrid-class systems. An LV grid requires a coherent perspective,
with consideration of all its nodal points, especially those at the ends of the lines.

It should be stressed that the transformation of the energy sector will force a paradigm
shift in the operation of LV grids. This concerns the operating boundary conditions for

Energies 2022, 15, 5388. https://doi.org/10.3390/en15155388 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15155388
https://doi.org/10.3390/en15155388
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-9162-4115
https://orcid.org/0000-0003-3413-2258
https://doi.org/10.3390/en15155388
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15155388?type=check_update&version=2


Energies 2022, 15, 5388 2 of 30

PV generation in particular. The objective function for DSOs will be to maximise local
generation from the PV in favour of taking this power from the TSO nodes, the opposite
of what current practice dictates [31–33]. This is due to the volatile prices of fuel, coal and
gas, or the availability of hydrogen for central power and energy generation units in the
electrical power system [34–40]. The costs of fuels, the switching of industries to electrical
power and its flow from HV to LV will become increasingly expensive. DSOs will be forced
to optimally and selectively manage power and energy at the generating sites.

A review of the literature on the subject suggests that there is currently no description
of dynamic control for AC/DC converters in LV grids by application of simultaneous
decentralised microcontrollers. As an alternative, the literature only indicates the use of
BESS by the prosumer and the possibility of cooperation for the LV grid [41–50].

1.1. Research Gap

• Dynamic management of power flows in the LV grid, with high levels of distributed
power generation in prosumer installations. Most papers list the static or emergency
operating states due to the objective function;

• Application of ANN machine learning models in LV grids for control of AC/DC
power converter systems—the research hypothesis presented in this paper;

• Development of new processes for the management of DSO assets in Poland in connec-
tion with the increasing digital transformation. New models of operation for actuation
and control devices under the operator’s supervision;

• Building an architecture for the logical aggregation of metering data from LV grids,
e.g., Advance Metering Infrastructure class meters in offline and online modes.

1.2. Motivation

The motivation for the research was to discover the architecture for the AC/DC
converter control and through which algorithms the DSO can achieve the intended objective,
being dynamic control of power flows in the LV grid. This means achieving not only a
limitation of the increase in voltage ratings at the PV connection points, but also the
limitation of the power flows to the MV grid. The proposal was to use regression methods
and neural networks (ANN) to predict the P + Q values of a converter system operated to
improve the voltage performance of the LV grid.

1.3. Research Procedures

The object of analyses and research work was an actual LV grid (see description in
Section 2.1). Power flow analyses were performed in terms of the changes in p.f. 〈0.95− 1〉,
PV power (0− 8〉 kW and load scenarios (see Table 1). The observations of voltage condi-
tions were the datasets used for machine learning (see Table 2). The training, validation
and test data X→ R had a single PowerWord data source; however, they were not common
sets as they were independent. MATLAB was used as the modelling environment for ANN
machines and SIMULINK for the signal control dynamics.

Table 1. Times of voltage condition overruns of the test object on 22 June.

Scenario Real Time Pgc Type of Load Power Factor

1 0:50 7.8–8 kW SF—weekend 1
2 3:10 5.9–8 kW SF—weekend 0.95
3 3:20 5.7–8 kW R—week 1
4 4:40 4.3–8 kW R—week 0.95
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Table 2. Characteristics of the training and test data.

Training Data Testing Data

Pgc, p.f.: 2d (two-dimensional)
Load: 4d (four-dimensional)
BESS Predictors:
26d (twenty-six-dimensional)
BESS 1 Predictors:
13d (thirteen-dimensional)
BESS 2 Predictors:
10d (ten-dimensional)

Pgc, p.f.: 2d (two-dimensional)
Load: 4d (four-dimensional)
BESS Predictors:
26d (twenty-six-dimensional)
BESS 2 Predictors:
10d (ten-dimensional)

Output: 1 Output: Prediction
Scenario: 12 Scenario: 4
Low Voltage grid operation type:
BESS and BESS1/2

Low Voltage grid operation type:
BESS and BESS1/2

2. Materials and Methods
2.1. Original Infrastructure—Research Environment

In practice, there were two models for DSO management for the on/off actuators or
technical parameter control (see Figure 1). The first mode was “A”, or centralised control.
The master computing unit performed the parameterisation calculations for a defined
condition and objective function. This required building an advanced computing unit, but
the calculation results were close to the real ones. In this case, it was voltage optimization of
the nN grid nodes for the values of P and Q [51–57] of the given converter in time window
t. The second model, “B”, was decentralised control, which dispersed the decision-making
locally in the place where control was required directly. The local unit, a microcontroller,
controlled the operation of the converter system in a simplified way, as it was unable to
run advanced calculations by itself, as in the case of model A. It was possible to combine
the two models as one hybrid. This enabled use of the best features of models A and
B. The fixed parameters of the LV grid and its development will eventually be allocated
centrally in a dedicated domain environment, while the optimal output set responses for
the converter control function will be made local.

With these operational activities and assumed logic of operation, a change was re-
quired in the processes relevant to the management of the DSO assets in the LV and MV
grids [58–61]. The LV grid mapped in GIS class systems had to have functionalities which
enabled analysis of the power flows with distributed power generation. The purpose of
the new functionalities was to collect training data for the building of machines learning
local control as a function of the adopted objective. The hybrid operation system for the
two possible locations of BESS in the LV grid is shown in Figure 2.

The LV grid model was adopted from the authors’ publication [62], which involved
a grid studied for power flows using the PowerWorld environment (the test object). The
power generation capacity for a system of PV modules installed by the prosumers changed
dynamically with the movement of the sun on a given day of the year. During this work, it
was assumed that the day would be 22 June for the geographical location of the LV grid
specified below: Latitude: 52.10.04, Longitude: 22.16.17 UTC + 1. A mathematical model of
the transition from the PV physical quantities (PgN) to the actual value Pgc(t) is shown in
Figure 3.

Where:

PgN—Nominal PV power value per prosumer [kW];
Pgc—PV generation current capacity [kVA];
θ—Angular distance between the azimuth and the PV installation;
A—Azimuth.
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Figure 1. Models for DSO management of actuators and controls.

PV systems in Poland have typically been installed facing south, allowing the maxi-
mum generation capacity to be achieved with θ = 90◦. The solar motion (see Figure 3) made
the operation of the test object dynamic, due to the change in Pgc(t). As the power flow
changed, consequently, the voltage conditions of the test object increased. The determinants
for the overrun of temporal voltage conditions, Un < 1.1 p.u., for the connection points
were: Pgc, load and power factor (see Table 1). The data were obtained with the assumption
of zero cloud cover and full operational performance for all PVs within the test object. The
calculation error compared to the actual data for the tested day could be affected by the
ambient temperature, reducing the nominal capacity of the PV panels.

The time-stamped measurement data from the test object had to be transmitted to
the BESS controller from the overvoltage overruns according to a 10-min average (see
EN-50549-1). This means that a communication line had to be set up with AC/DC PV
converter systems for RMS Un measurement towards the BESS controller. To develop the
boundary conditions, the authors assumed 10-min measurement sequences of the test
object for time window t of the BESS control (see Table 1).

A review of the scientific literature suggested that On-Load Tap Changer (OLTC)
operation had a direct effect on the variation in the RMS voltage value of an LV grid that
was highly penetrated by PVs [63–67]. To confirm this, simulations were carried out on the
test object. For this purpose, the feasibility of OLTC control was applied with TAP = 2.5%
in the ∆U p.u. change from the voltage rating, resulting from the transformer ratio (MV/LV
transformer primary voltage rating). The change in voltage ratio was simulated in the
PowerWord environment at the TAP:2 upward (5% Un) and TAP:3 upward (7.5% Un)
positions. Two main scenarios were adopted for the analysis of power flow in the test
object: SF and R (see Table 1). The power generation capacity Pgc was 8, 9 and 10 kW per
consumer. Figures 4–7 show the RMS p.u. voltage waveforms independently for the two
branches (Feeder 1: 13 connection points, Feeder 2: 10 connection points).
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Figure 2. Two hybrid systems for LV grid operation with BESS: (a) centralised, (b) deep in the LV
grid.
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Figure 3. Mapping the movement of the sun during the day to the PV power–Pgc(t).

Figure 4. Scenario SF, power factor = 1, TAP-2 and 3, Feeder 1—(a) and Feeder 2—(b).

Analysis of Figure 4: Note the evident improvement in Un values with TAP-3, even
with considerable values of Pgc = 10 kW.

Analysis of Figure 5: Note that for Feeder 1, TAP-3 reduced the overrun of 1.1 Un to
9 kW. For Feeder 2, there was a reduction at Pgc = 8 kW.

Analysis of Figure 6: Note the evident improvement in Un values with TAP-3, even
with considerable values of Pgc.

Analysis of Figure 7: Note that for Feeder 1, TAP-3 improved Un only at 8 kW and
9 kW per connection point. For Feeder 2, only TAP-3 provided an improvement, yet only
up to a power of Pgc = 8 kW.
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Figure 5. Scenario SF, power factor = 0.95, TAP-2 and 3, Feeder 1—(a) and Feeder 2—(b).

Figure 6. Scenario R, power factor = 1, TAP-2 and 3, Feeder 1—(a) and Feeder 2—(b).
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Figure 7. Scenario R, power factor = 0.95, TAP–2 and 3, Feeder 1–(a) and Feeder 2–(b).

2.2. Research Methodology

The Selectively Coherent Model of Converter System Control for LV grid–SCM_CSC,
shown in Figure 8, was proposed for the construction of a logic topology for a microcon-
troller to implement dynamic control of the power flow in an LV grid using an AC/DC
power converter system(s) [62]. The model consisted of three instances of operation,
presented in three sequential blocks.

Figure 8. Selectively Coherent Model of Converter System Control for LV grid (Block A: Optimal
AC Power Flow for a 3-phase LV grid: Building a database for machine learning using a genetic
algorithm, for example [68–76]; The final product of the instance was the P + Q values for the BESS
(Battery Energy Storage System), which was optimal given the type, load, p.f., Pgc and the LV grid
power flow. Block B1: Artificial Neural Network: Using the FNN BP [77–81] to build a class ML
machine [82–87]; The final product of the instance was a tested neural network according to defined
predictors; Preparation of the ML for verification on a dataset without a BESS. Block B2: Power Flow
dataset of the LV grid without a BESS or any optimisation applied. Block C: ML output: The system
response to the B2 data; Comparison of MAPE B1 and B2 results.).

The first two instances of the SCM_CSC model had to be made offline and were used
to prepare the target control for the third instance. The final instance ran online through a
GPU microcontroller-type actuator [88–91]. The SCM_CSC model was based on Machine
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Learning (ML) technology by collecting predictors according to a predefined classification
and the expected response for the control system.

SCM_CSC Block A—this required offline preparation of two categories of measure-
ment data from the grid system (training data and testing data). The training data were
a matrix which represented the prediction data (predictors) with the optimal P + Q selec-
tion for the BESS in the hybrid operation system (see Figure 2a,b). The matrix was built
based on pre-developed scenarios of the test object operation considering p.f. 〈0.95− 1〉,
apparent power S for PV (0− 8〉 kVA, increment 0.25 kW and the load characteristics on
the prosumer side (load–SF/R) [62].

The preparation of the training data for the tests included the selection of the data
characteristics and their regularities between each other. Principal Component Analysis
(PCA) was used for this purpose [92–96]. The extract of the analysis gave the identified
clusters of converging characteristics and their common hierarchical relationship to the
BESS, p.f. Pgc.

The analysis showed an existing data linkage between each other, as the future predic-
tors (see Figures 9 and 10). The control variables for the data model (p.f. and Pgc) interacted
differently through the hierarchy with the different nodes in the feeders. Furthermore,
future prediction would have to learn these relationships in order to recognise them cor-
rectly. The datasets presented were systems of non-linear functions. Due to the number
of input parameters (16–26) of the predictors, a mathematical description in the form of a
polynomial up to the 26th order would be difficult. The ability to control a system through
equations of state with this number of variables would be infeasible. To assess the quality
of prediction by the future machines and their application, Figures 11 and 12 show the
training data distribution separately for BESS and BESS 2. The granularity of the data
collected for training had a direct impact on the quality of the control as well as on the
distribution of the AC OPF results.

Figure 9. Analysis of the characteristics and their links. Operation system—BESS. The red circles in
the figure indicate clusters of data features.

The empty spaces between the data in Figures 11 and 12 would hinder correct machine
predictions. Despite the limitations, continuity and predictive validity could be demon-
strated. The reason for this work was that the application of machine learning to LV grid
data (Table 2) would enable dynamic control of BESS.
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Figure 10. Analysis of the characteristics and their links. Operation system—BESS 2. The red circles
in the figure indicate clusters of data features.

Figure 11. Power flow data distribution–optimal operation of connecting points, BESS-only operation
system. In the figure, circles with low data density have been marked with circles.

Figure 12. Power flow data distribution–optimal operation of connecting points, BESS 2-only opera-
tion system. In the figure, circles with low data density have been marked with circles.
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3. Results

For analytical purposes, regression-based mathematical models (mdl) were used to
verify and compare the validity of machine learning. Measures for the learning quality of a
machine were MAPE and MSE [97–101]:

MAPE =
N

∑
t=1

∣∣∣∣TRAINING DATAt − Predictedt

TRAINING DATAt

∣∣∣∣× 100
N

, (1)

MSE =
1
N

N

∑
t=1

∣∣∣(TRAINING DATAt − Predictedt)
2
∣∣∣, (2)

3.1. Regression Models—Data Training

Three groups of regression-based machines were built for the development of the
SCM_CSC product 2. This was because three independent microcontrollers were used,
working for the two potential operation systems of the LV grid. One microcontroller was
used for BESS at an MV/LV substation and two independent microcontrollers for BESS 1
and BESS 2.

3.1.1. First LV Grid Operation System with BESS

The objective for mdl was to predict the P + Q values for control under BESS in
order maintain the voltage condition value. See Table 3 for the results of the mdl machine
calculations. A model based on Gaussian fitting and squared exponential kernel with a
separate length scale per predictor (kernel) achieved the best MAPE results. For the MAPE
values (Tables 3–5), no uncertainly error was calculated, because DATA TRAINING was
obtained only through simulation and not a physical measurement [62].

Table 3. Computational results for mdl in the operation system of the test object with a single BESS.

Regression Model MAPE [%]

Gaussian Processes Model—Kernel 0.22392
Stepwise AIC 6.6313

Stepwise 7.4609
SVM Standardize 10.378

Linear Model 2 11.73
Gaussian Processes Model 12.376

Linear Model 1 13.42
Tree Model 1 19.049

Tree Model 3 (Leaf Limit) 19.049
SVM Kernel 21.39

Tree Model 2 (Prune) 43.792
SVM Linear 53.002

Table 4. Computational results for mdl in the operation system for the test object with BESS 1.

Regression Model MAPE [%]

Gaussian Processes Model—Kernel 0.74225
Stepwise 1.1026

Stepwise AIC 1.5352
Linear Model 2 2.5383
Linear Model 1 2.6361

SVM Standardize 17.639
Tree Model 1 64.088

Tree Model 3 (Leaf Limit) 64.088
Gaussian Processes Model 113.67

SVM Kernel 129.43
SVM Linear 140.2

Tree Model 2 (Prune) 252.7
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Table 5. Computational results for mdl in the operation system for the test object with BESS 2.

Regression Model MAPE [%]

Gaussian Processes Model 0.60121
Gaussian Processes Model—Kernel 0.63229

Stepwise 0.96011
Stepwise AIC 0.96956

Linear Model 2 0.99487
Linear Model 1 1.1293

SVM Standardize 5.7958
Tree Model 1 24.406

Tree Model 3 (Leaf Limit) 24.406
Tree Model 2 (Prune) 29.002

SVM Kernel 38.853
SVM Linear 39.113

The Gaussian Processes Model is a regression algorithm with probability distribution
P according to the following notation:

P(y| f (xi), xi) ∼ N(y
∣∣∣h(xi)

T β + f (xi), σ2), (3)

where:
xi ∈ Rd—training data,
y—response variable,
σ2—error variance,
β—coefficient estimated from data x,
f (xi)—latent variables i = 1, 2, . . . , n,
h—explicit basis functions.
The mdl machine learning results were obtained by dividing the training data into:

mdl teaching data for 80% of the population (actual);
mdl validation data for 20% of the population (predicted).

The distribution of the data for the BESS control values did not take a linear value,
as shown in Figure 13—the observation number. A MAPE of 0.2239% with a maximum
BESS of 200 kVA in this operation system gave a control underestimation of approximately
0.448 kVA.

Figure 13. Machine learning results of the GPM mdl for BESS.
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3.1.2. Second LV Grid Operation System with BESS 1 and BESS 2

In the second operation system of the test object, there were two independent mdls
for BESS 1 and BESS 2. The training data had fewer predictors: 16 for BESS 1 and 13 for
BESS 2. The results obtained for BESS 1 are given in Table 4 and those for BESS 2 are given
in Table 5. Again, the Gaussian Processes Model mdl achieved the best MAPE results for
BESS 1 with the kernel function and for BESS 2 without this function.

The MAPE for BESS 1 at 0.7423% (see Figure 14) and a maximum 33.5 kVA operating
level gave a prediction error of about 0.25 kVA. For BESS 2, the MAPE achieved was 0.6012%
(see Figure 15), for a maximum of 37.5 kVA with an error of approximately 0.22 kVA.

Figure 14. Machine learning results of the GPM mdl for BESS 1.

Figure 15. Machine learning results of the GPM mdl for BESS 2.

3.2. Neural Networks—Data Training

A feedforward neural network was used to map the input–output data with forward
coupling. A description of the FNN algorithm is shown in Figure 16. Two algorithms
for machine training by FNN were then applied. The procedure for calculating the cost
function, J, was implemented in a different way. The first algorithm was applied to the
operation system of the test object with a single BESS, the second algorithm to the two
independent BESSs. Difficulties were found in machine learning with fewer predictors due
to the control of a different part of the LV grid, where the number of connection points was
different and lower than in the case with a single BESS.
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Figure 16. FNN algorithm.

The first method used for function optimization was the Levenberg–Marquardt algo-
rithm, with the following notation:

xi+1 = xi − (H(xi) + λdiag[H])−1∇F(xi), (4)

where:

xi ∈ Rd—training data
λ—attenuation factor
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The second was the Bayesian regularization backpropagation algorithm, with the
following notation:

∂J
∂wl

ij
=

∂J
∂zl

i
f l−1
j , (5)

∂J
∂wl

ij
=

∂J
∂zl

i
f l−1
j , (6)

where:

wl
ij—weight for perceptron j in layer l for incoming node i,

bl
i—bias for perception i in layer l,

zl
i—neuron value for perception i in layer l.

3.2.1. First LV Grid Operation System with BESS

A MAPE of 0.15% (see Figure 17) with a maximum BESS of 200 kVA in this system
gave a control underestimation of approximately 0.3 kVA.

Figure 17. FNN machine learning results for BESS.

3.2.2. Second LV Grid Operation System with BESS 1 and BESS 2

The MAPE for BESS 1 at 0.5105% (see Figure 18) and a maximum 33.5 kVA operating
level gave a prediction error of about 0.17 kVA.

Figure 18. FNN machine learning results for BESS 1.
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For BESS 2, the MAPE achieved was 0.5557% (see Figure 19), for a maximum of
37.5 kVA with an error of approximately 0.2 kVA. The results obtained cause optimism, as
they indicated the applicability of ANN for P + Q prediction for BESS.

Figure 19. FNN machine learning results for BESS 2.

3.3. Neural Networks—Data Testing

Data testing was developed to verify correct operation of the FNN machine models and
to develop the final control results for BESS. This is a set of flow data from Un overruns for
individual nodes of the test object without BESS control, as corrections to the operation of
the LV grid (SCM_CSC Block B2). The dynamics of the Pgc changes are described in Section 2
of the paper—see Figure 3. The control scenarios for BESS are shown in Table 1. This
represents the implementation of the tasks of Block C for SCM_CSC, where actual values
were provided as a data testing set in order for BESS to respond dynamically to changes in
the nN grid. Figure 20 presents the operation system for the FNN BackPropagation (FNN
BP) machine.

x1—input, data testing;
y1—output, FNN response signal;
PID—signal controller from FNN.

Figure 20. Dynamic machine model in the SIMULINK environment, closed loop.

For the tests in the SIMULINK environment, the dynamics used for a change in P
(kW) were evaluated on the time axis in seconds from the data described in Section 2 of the
paper. The flow data were counted sequentially with a 10-min change in Pgc during the
movement of the sun.

The control of BESS and BESS 2 is shown in seconds. This approach made it possible
to observe the entire control period and to assess the stability of the control loop (PID with
a 2nd order filter).
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3.3.1. LV Grid Operation System with BESS

The signal control results for BESS are presented for the four scenarios shown in
Table 1.

Figure 21 shows the stability of signal control from the FNN machine for the test data.
The proposed control system mitigated the stepped nature of the machine. Figure 22 shows
the comparison of predictions to the training data. This example of control discontinuity
was caused by underestimation in the prediction by the machine. This was because there
was insufficient training data in the Pgc area, ranging from 7.75 to 8 kW—see Figure 11, area
A1. With the test object operation at p.f. = 1, there remained a narrow control band for BESS
and thus a small volume of training data. However, the machine sought to approximate
the control.

Figure 21. Control signal for BESS, p.f. = 1, SF—weekend.

Figure 22. Compilation of the training data with the machine response, scenario 1.
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Figure 23 shows stable control. The comparison of the predictions for the training data
in Figure 24 revealed the correct prediction. The machine followed the logic of the training
data, with a larger data range from 6 to 8 kW.

Figure 23. Control signal for BESS, p.f. = 0.95, SF—weekend.

Figure 24. Compilation of the training data with the machine response, scenario 2.

Figure 25 shows the operation of the machine with the starting point for the BESS
returning power to the LV grid. The controller reacted in a stable manner to the signal
from the machine. Figure 26 shows a correct prediction with slight underestimation in the
range from 7.5 to 7.75 kW—see also Figure 11, area A2. Similar to Figure 22, there were no
training data and the machine shifted the prediction to the nearest data present.
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Figure 25. Control signal for BESS, p.f. = 1, R—week.

Figure 26. Compilation of the training data with the machine response, scenario 3.

The too-wide control range for 0.25 kW grain introduced underestimations in the
results. There was no control undershoot in the range from 4.5 to 6 kW. Despite this, the
signal control was stable over the full control range (see Figures 27 and 28).
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Figure 27. Control signal for BESS, p.f. = 0.95, R—week.

Figure 28. Compilation of the training data with the machine response, scenario 4.

3.3.2. LV Grid Operation System with BESS 2

According to Figure 2, the second operation system was BESS 1, regulating operation
for feeder 1 and BESS 2, regulating operation for feeder 2. This paper presents only the
signal control results for BESS 2 and the four scenarios listed in Table 1. It was deemed
more difficult for the machine to control BESS 2 as the operating conditions were close to
1.1 Un p.u. (RMS 253 VAC). To illustrate the problem, Figure 29 shows the distribution of
the optimal value of the Un p.u. predictors for individual connection points and under
different load type scenarios (SF, R, etc.) and p.f. values. BESS 2 was controlled by an ANN
machine built on three hidden layers, see Figure 19.
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Figure 29. Power flow data distribution—optimal operation of connection points.

Figure 30 presents the stability of signal control from the FNN machine for the test
data, with a control period of 6 s. The machine behaved identically for BESS 2 to the case
with BESS—see Figure 22. The limitation was the volume of data for optimising feeder
2 operation at p.f. = 1 (see Figure 12, area A4). Nevertheless, the machine was able to
regressively follow the control trend, which confirmed its application was correct (see
Figure 31).

Figure 30. Control signal for BESS 2, p.f. = 1, SF—weekend.
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Figure 31. Compilation of the training data with the machine response, scenario 1.

Figure 32 shows stable PID control. The comparison of predictions to the training data
in Figure 33 demonstrated correct prediction. The FNN correctly followed the training data.

Figure 32. Control signal for BESS 2, p.f. = 0.95, SF—weekend.

Figure 34 shows the stability of the signal control from the FNN for the test data. The
proposed control system mitigated the stepped nature of the FNN. Figure 35 compares the
predictions in the training data. Control discontinuity was evident, caused by underestima-
tion of the FNN prediction. This was due to the insufficient training data in the Pgc area,
ranging from 7.75 to 8 kW—see Figure 12, area A5.
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Figure 33. Compilation of the training data with the machine response, scenario 2.

Figure 34. Control signal for BESS 2, p.f. = 1, R—week.

Figure 36 presents the stability of signal control for the FNN over the test data. It
followed the test data, meaning correct prediction of the system (see Figure 37).
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Figure 35. Compilation of the training data with the machine response, scenario 3.

Figure 36. Control signal for BESS 2, p.f. = 0.95, R—week.
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Figure 37. Compilation of the training data with the machine response, scenario 4.

4. Discussion

The solution proposed here features new technical requirements for future LV grids.
For the SCM_CSC to function correctly, synchronous RMS voltage measurement at the
nodal points is essential. A common clock is required to read the voltage RMS value. For
real systems, observation of the LV grid and acquisition of load profiles representative of
the LV grid part is required. The application of the SCM_CSC model will require—for Block
A—to collect data at a smaller grain size than 0.25 kW to fully characterise the control.

There are technologically less expensive solutions to control the voltage in the LV grid,
such as by using OLTCH (on-load tap changers) together with an upgrade to the LV grid
to 50–70 mm2 wiring. However, this requires the use of STATCOM for reactive power
management to maintain a power factor of 1 (see Figures 4–7). Unfortunately, the solution
has limitations in PV production of about 8 kW per prosumer—type A RfG NC [102].
Furthermore, such a solution will not facilitate power balancing at the MV/LV substation,
the power being sent to a section of the MV network. A summary of the functionality of
the available technologies is shown in Table 6.

Table 6. Comparison of the functionalities of the technologies with potentially feasible application.

Technical Solution Currently Proposed in the
Literature

Limiting the Voltage Value to
1.1. UN p.u.

Limiting the Power Flow and
Energy to the MV Grid

1 Reconstruction and enlargement of the LV line
cross–section up to 70 mm2.

−/+ −

2 OLTC + STATCOM application. + −
The solution was proposed in the article

3 4 wire-AC/DC power converter + BESS +
Machine Learning.

+ +

5. Conclusions

The collected simulation data clearly indicate that the power factor for PV generation
and the movement of the sun directly affect the overrun times in the LV grid (see Table 1).
The larger the p.f. value (closer to 1) and the higher the instantaneous load value (the
load profile—e.g., SF), the shorter the UN p.u. overrun time in the LV grid operation. The
analysis of the training and validation data used for machine learning shows that the
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data became clustered (see Figures 9 and 10). This makes ‘room’ for application of these
correlations in LV grid control. These data indicate that the use of class ANN FNN and
FNN BP machines has great potential for BESS control (see Figures 22–37). The adopted
hypothesis (see Research Gap) was confirmed by the results obtained (see Figures 17–19)
and in terms of dynamic control of BESS (see Figures 20–37).

Moreover, the work indicates that the correct approach is for DSOs to seek solutions
for balancing locally generated electricity, rather than restricting it. This would improve the
energy efficiency and the grid loss parameters by reducing the upstream transfers needed.
Voltage overruns at the connection point, with more than 1.1 p.f. (253 VAC) on the source
side, according to PN-EN 50438:2014-02, trip the automatic disconnect system. A static
AC/DC inverter then ceases to perform the inverter functionality towards the LV grid. This
solution reduces the voltage spikes in the LV grid and improves the PV productivity, as
there are no electricity generation interruptions.

The work presented here opens a new avenue for the application of ML in the power
grids of the future. It represents a fresh approach to DSO management and implements
the Network Code on Demand Side Flexibility [32–34]. Consequently, further work by the
authors will focus on the application of deep learning with significantly increased volumes
of data for machine learning.
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72. Aydin, O.; Igliński, B.; Krukowski, K.; Siemiński, M. Analyzing Wind Energy Potential Using Efficient Global Optimization: A
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