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Abstract: Within the context of sustainable development and a low-carbon economy, electric vehi-

cles (EVs) are regarded as a promising alternative to engine vehicles. Since the increase of charging 

EVs brings new challenges to charging stations and distribution utility in terms of economy and 

reliability, EV charging should be coordinated to form a friendly and proper load. This paper pro-

poses a novel approach for pricing of charging service fees in a public charging station based on 

prospect theory. This behavioral economics-based pricing mechanism will guide EV users to coor-

dinated charging spontaneously. By introducing prospect theory, a model that reflects the EV 

owner’s response to price is established first, considering the price factor and the state-of-charge 

(SOC) of batteries. Meanwhile, the quantitative relationship between the utility value and the charg-

ing price or SOC is analyzed in detail. The EV owner’s response mechanism is used in modeling the 

charging load after pricing optimization. Accordingly, by using the particle swarm optimization 

algorithm, pricing optimization is performed to achieve multiple objectives such as minimizing the 

peak-to-valley ratio and electricity costs of the charging station. Through case studies, the deter-

mined time-of-use charging prices by pricing optimization is validated to be effective in coordinat-

ing EV users’ behavior, and benefiting both the station operator and power systems. 
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1. Introduction 

As an important section of ecology and sustainable development in the field of trans-

portation, electric vehicles (EVs) have already been recognized as a global solution to the 

energy crisis and greenhouse gas emissions [1,2]. Among different technical routes, bat-

tery electric vehicles have been chosen by most of the automobile manufacturers (e.g., 

Tesla motors and BYD, etc.), and even countries [3,4]. Charging facilities, especially public 

charging stations, are of paramount importance for the promotion of electric vehicles. Fig-

ure 1 depicts the number of development trends of EVs and public charging piles (also 

called charging points) in China. Obviously, both of them are in a period of rapid devel-

opment in recent years, and the vehicle–pile ratios are almost the same from 2018 to 2021, 

at about 7.2. By the end of 2021, EV parc surged to more than 7.8 million units in China, 

and hence huge charging demand is starting to emerge. From the perspective of urban 

service and alleviating mileage anxiety, public charging stations provide a useful supple-

ment beyond household charging [5,6]. 
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Figure 1. Development trends of EVs and public charging piles in China. 

As elaborated in the literature, the increase of charging EVs will result in new prob-

lems for charging stations and distribution utilities due to the randomness of EV users’ 

charging behavior. An impact assessment of EV integration on the voltage profiles and 

power lines’ congestion levels was made in ref. [7]. Its results indicated that the load in 

the peak hour increases 85% in the scenario with 52% of integrated EVs compared to that 

without EVs, and significantly affects the voltage profiles and congestion levels. Power 

losses and voltage deviations in the distribution grid caused by charging EVs was ana-

lyzed in refs. [8,9]. Similarly, with the increment of EV penetration levels, power losses 

and maximum voltage deviations will rise significantly. In addition, uncontrolled dumb 

charging may cause unbalance or overloading in transformers [10,11], or harmonic prob-

lems. 

To reduce the impacts of EVs on power system daily load profiles, power losses and 

voltage deviations, etc., academia and industry are actively exploring relevant methods 

to coordinate the charging of EVs. In general, coordinated charging can be achieved by 

several approaches, of which two mainstream ideas are: (1) direct control, which is based 

on the intention of management and can be implemented by the charging station operator 

or the EV aggregator, etc. A decentralized charging time switching control was applied to 

accomplish approximate valley-filling in ref. [12]. Similarly, interruptions during the 

charging process were performed to minimize the total charging cost in ref. [13]. A hier-

archical coordinated charging framework was presented in ref. [14], and charging power 

was allocated to achieve electricity cost minimization and peak load controlling. In ref. 

[15], Silvestre et al. devised an optimal strategy to control the recharge start time for a 

given parking lot to minimize feeder losses or purchased energy cost. This type of coordi-

nation regulates the charging time or power directly, ignoring EV user’s demand and ben-

efit. (2) Indirect guidance, which is user-friendly and based on the principle of demand-

side response; the price mechanism is often adopted here. For example, an optimization 

model for determining the configuration of a distributed generation and storage system, 

as well as the optimal charging prices for EVs, was presented to maximize the EV-parking 

lot owner’s profit in ref. [16], and EV charging was coordinated to absorb excess wind 

energy via two-stage time-of-use tariff schemes in ref. [17]. In addition to the coordination 

achieved by user-friendly guidance, a positive economic effect on the station operator and 

its customers may be achieved in this price-based mechanism. The charging price mecha-

nism may benefit both the charging station operators and their customers. In addition, 

there is also another research line concentrated on the so-called market-based approach. 

Such an approach analyzes the possibilities of coordination by pricing the bids submitted 

by participants [18]. In ref. [19], the optimal charging schedule of buses with restricted 

access to charging stations from the market-based perspective of an electric bus aggrega-

tor in a day-ahead energy auction was introduced to realize cost-minimization. 



Energies 2022, 15, 5308 3 of 20 
 

 

One of the crucial issues in daily operation of a public charging station is the charging 

price mechanism, i.e., the pricing of the charging fee [5]. Usually, the charging fee should 

include two parts: electricity charge and service charge. The service charge means a fee 

collected to pay for services related to the charging in a public station. 

Currently, there are only a few studies that have conducted research related to charg-

ing pricing. In ref. [20], the fixed admission fee is charged when an EV joins the charging 

service system of a charging station. From the perspective of the business model based on 

charging service fee, ref. [21] proposed a mobile charging service mode with high service 

fees or low service fees depending on different service efficiency. Pricing should consider 

the interests of different entities. A payment distribution mechanism based on the coop-

erative game theory was proposed to balance the interests of the employer who built the 

charging station and the employee (EV owner) in ref. [22]. Based on static non-cooperative 

game theory, a model about charging service fee was proposed in ref. [23], which consid-

ers the interests of the three parties: the government, the charging facility operators, and 

consumers. In ref. [24], the price model of fast charging price including a service fee was 

proposed through solving the Stackelberg game problem between grid-owned stations 

and third-party stations to maximize stations’ profits, and the relationship between charg-

ing service fee and electricity production cost is analyzed. In addition, the profit of power 

systems should also be considered in the pricing process. With the node voltage of power 

systems as the optimization target, ref. [25] introduced the idea of the alliance game pric-

ing model to conduct a preliminary study to balance interests among the power grid, 

charging station operators and EV users in the initial stage of an open charging market. 

To alleviate the peak-valley pressure of charging load, refs. [26,27] proposed the time pe-

riod division method for the EV charging service fee pricing based on affinity propagation 

clustering. Different from refs. [26,27], which considered the profit of power systems only, 

a bi-level model was formulated in ref. [28], to optimally determine charging service fees 

for guiding EVs and minimizing the total social cost, which means reducing the traffic 

congestion and improving the integration of renewable energy. Each station was assigned 

a charging service fee to regulate the spatial distribution of the charging load of different 

stations. In ref. [28], for a specific station, the charging service fee was fixed, which meant 

that the time-based adjustment of the charging service fee in the station was not involved. 

In the above studies, the charging price was mostly constant for a charging station, or the 

interests of different entities were often not taken into account simultaneously. 

In addition, there are some studies related to charging selection and decision making. 

Most of them focused on EVs’ charging station selection decisions from the perspective of 

spatial selection; the choice of the charging station was made by game theory in refs. 

[29,30], and by fuzzy multi-criteria decision-making method in ref. [31]. From the perspec-

tive of temporal selection, a charging pricing algorithm was introduced to maximize the 

total welfare of the charging system in ref. [32] by adopting the concept of utility function 

from microeconomics. The decision-making problem of determining the start time of 

charging and discharging was solved by prospect theory in ref. [33], and by the combina-

tion of the Roth–Erev algorithm and prospect theory in ref. [34]. Few works have ad-

dressed the problem of charging pricing considering the service fee for a charging station 

based on user response from the perspective of behavioral economics, especially with the 

objectives such as minimizing the peak-to-valley difference and the operation expenses of 

a charging station, reducing solar curtailment, and minimizing the peak power of a solar-

assisted charging station. 

In this paper, a novel approach based on behavioral economics—prospect theory—

for pricing of charging service fees in an EV public charging station is proposed. Consid-

ering the adjustability of people’s charging decision and behavior, this behavioral eco-

nomics-based pricing mechanism will guide EV users to coordinated charging spontane-

ously. By the obtained daily time-varying charging price that consisted of the time-of-use 

(TOU) electricity price and time-varying charging service fees, although EV owners will 

respond differently based on one’s specific demand and status, the holistic time-based 
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adjustment of charging loads will be achieved to benefit power systems, charging station 

operators, and finally EV users, such as minimizing the peak-to-valley difference ratio and 

the operation expenses of a charging station, and reducing solar curtailment and the peak 

power at the point of common coupling (PCC) of the solar-assisted charging station. 

This paper is organized into the following sections. The main problems and motiva-

tion for this paper are described in Section 2. Section 3 introduces prospect theory to model 

the EV user’s price response behavior towards different charging prices and state-of-

charge (SOC). Then, on the basis of the EV user’s response mechanism and pricing opti-

mization, the modeling of optimal charging loads are pursued to obtain the daily time-

varying charging price and achieve multiple objectives of coordinated charging in Section 

4. In Section 5, case studies are presented to demonstrate the effectiveness of the novel 

approach. Finally, conclusions are drawn in Section 6. 

2. Motivating Scenarios 

For a public charging station, how to reduce its passive impacts on power systems 

and operation costs of the charging station, especial the electricity costs, is a problem that 

should be taken into consideration. As elaborated above, a proper charging price mecha-

nism is absolutely essential. Currently, a charging service fee is charged in Beijing when 

an EV is charged in the station, according to the policy of the government administration. 

The upper limit of the charging service fee per kWh is 15% of the maximum retail price 

per liter of 92# gasoline, and the charging station operator can set specific charging service 

prices within the maximum limit. Meanwhile, similar to other loads of power systems, a 

large industrial electricity fee is charged as well, according to the TOU electricity tariff 

shown in Figure 2. 

 

Figure 2. TOU (Time-of-use) electricity prices for large industrial customers in Beijing. 

In other words, in the public charging stations of China, the charging prices Prchg,t can 

be represented as the sum of the TOU electricity price Prgrid,t and the charging service price 

(fee) Prservice,t, and hence 
, , ,= +chg t grid t service tPr Pr Pr . Therefore, it is possible to realize the coor-

dinated charging of EVs by considering the manner in which the charging service prices 

are time-varying and flexibly formulated. 

This study was motivated by the problems that exist in fast charging stations. Con-

sidering the operation costs and the promotion of sustainable energy generation, a charg-

ing station is likely to be equipped with a photovoltaic (PV) distributed generation system. 

A typical topology of a fast charging station, in which PV is included, is depicted in Figure 

3. Since the power at the PCC affects the distribution networks to some extent, it is 

necessary to improve the daily load curve at this point. 
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Figure 3. Typical topology of the charging station and its information framework for the proposed 

approach. 

In addition, an information framework for the proposed pricing approach is also 

depicted in Figure 3. Within this framework, the EV user will sign a contract with the 

station. The station publishes their charging price determined by the novel pricing 

approach in this paper, based on which EVs will respond artificially or automatically by 

an on-board intelligent terminal. This on-board intelligent terminal is an electronic unit 

that can provide bidirectional communications between the charging station and vehicles. 

In general, the response of an EV to the charging price can be made automatically by the 

on-board intelligent terminal in the manner of the pre-embedded program of the EV user’s 

price response model. If an individual EV user cannot abide by the terms of the contract 

and ignores the recommendation of the intelligent terminal, uncertainty of the EV 

response will emerge, and the effect of coordinating charging will be diminished to some 

extent. In this paper, the EV response is assumed to be almost certain, since the same 

response mechanism was applied in pricing and automatic response of the on-board 

intelligent terminal; hence, we do not take behavior uncertainty into consideration in this 

paper. 

3. EV User’s Response to Price 

The price mechanism can be applied to guide EV users’ charging behaviors because 

of the price sensitivity. For instance, in the case of TOU electricity prices, EVs may change 

their charging behaviors depending on the price information provided by the charging 

station, and contribute to off-peak power consumption of power systems. This can be even 

more flexible, provided that there is a proper mechanism. In addition, the operation 

expenses of the station will be reduced to some extent. Prospect theory in behavioral 

economics is introduced to describe the EV’s response behavior to charging prices in this 

paper. 

3.1. Prospect Theory of Behavioral Economics 

As a theory in cognitive psychology and behavioral economics, prospect theory, 

proposed by Dr. Kahneman, is often used to precisely characterize the decision-making 

process [35–37]. Prospect theory demonstrates that people make decisions based on 

expected utility relative to a reference point rather than final outcomes. It is a behavioral 

model for real-life choices that can describe how EV users make charging choices between 

different options or prospects based on charging price mechanisms. 

The value function of prospect theory has the following features. Firstly, most people 

are risk-averse towards gains. Secondly, most people are risk-biased towards losses. 
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Thirdly, the sensitivity to losses compared to gains is much higher. Kahneman’s value 

function of prospect theory is defined in Equation (1). 

 
0

( ) 0

x x
V x

x x





 
 

  
( )  (1)

where x is the potential outcome;   and   exhibit the level of unevenness in gain 

value and loss value, respectively; and   is the losses-to-gains ratio. Calibrated by 

Kahneman,  =   = 0.88, and   = 2.25. Recent literature shows that the parameters 

calibrated by Kahneman may not be suitable for decision-making in other contexts [38,39]. 

Therefore, the suitable parameters for pricing require a mass of real operational data in 

our proposed approach. A closed-loop and iterative correction of the parameters based 

on collected data and the actual effect of coordination is necessary. 

In this paper, we introduce the concept of value function of prospect theory to obtain 

the charging price utility value at a point in time to EV users. 

3.2. Response Modeling 

The factors which affect user’s charging behavior include the charging price and the 

SOC of EV. Based on these two influencing factors, the charging value function can be 

established. 

3.2.1. Response Model Only Considering the Price Factor 

The reference point is significant in determining the model [40], and the reference 

points among different people may be different [41,42]. The charging prices before pricing 

optimization are chosen as the reference point at every time point without considering 

this difference among EV users, since the response can be implemented by the same on-

board intelligent terminal rather than people whose behavior is not rational enough [43]. 

Hence, there are three reference points according to the TOU electricity tariff and the 

original service fee, which are the peak rate, the flat rate, and the valley rate, respectively, 

depending on the time of the day. 

According to prospect theory, if the charging price after optimization is smaller than 

the price of the reference point at a specific time point, the charging decision will be 

considered to be the gain; on the contrary, the charging decision will be considered to be 

the loss. In the case of considering the influencing factor of charging price only, the value 

functions describing charging and no-charging can be defined as follows: 

 

 

* *
, , , ,

,
* *

, , , ,

cg t cg t cg t cg t

cg t

cg t cg t cg t cg t

Pr Pr Pr Pr
V

Pr Pr Pr Pr






  
 
  

 (2)

 

 

* *
, ,

,
* *

, ,

α

cg t cg,t cg,t cg t

nocg t β

cg,t cg t cg,t cg t

Pr Pr Pr Pr
V

Pr Pr Pr Pr

  
 
  

 (3)

where Vcg,t and Vnocg,t stand for the value functions of the decision of whether to charge or 

not charge made by the electric vehicle while only considering the price factor, 

respectively; Pr*cg,t and Prcg,t stand for the charging price at the time index t before and after 

optimized pricing, respectively. As discussed above, Pr*cg,t is the sum of the TOU electricity 

tariff and the original service fee at time t. 

According to Equation (2), Figure 4 depicts the charging values in different periods 

(peak charging price periods, flat charging price periods, and valley charging price 

periods, respectively) of the original charging tariff before optimal pricing. The detailed 

reference prices are based on the charging prices in Beijing, that being 1.8044 CNY/kWh 
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in peak hours, 1.495 CNY/kWh in flat hours, and 1.1946 CNY/kWh in valley hours. Take 

the situation in peak charging price hours as an example; if the determined charging price 

after optimization is higher than the peak price reference, it means losses to users, and the 

charging value is relatively low. On the contrary, if the determined charging price is lower 

compared to the peak price reference, it means gains to users, and the charging value is 

relatively high. 
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Figure 4. Charging values in different periods of the original charging tariff. 

As shown in Figure 4, the value function is steeper for losses than gains, indicating 

that losses outweigh gains since people are more sensitive to losses compared to gains. In 

addition, the charging value function at peak times of the original charging tariff exhibits 

a higher value than that at flat or valley times. This is because if the determined charging 

price after optimization is 1 CNY/kWh, it means a 0.8044 CNY/kWh reduction at peak 

times and a 0.1946 CNY/kWh reduction at valley times. The higher reduction will lead to 

more profits, and thus a greater probability of changing the charging decision of EV users 

in a certain period. In other words, in Figure 4, the similar slopes in different periods of 

the original charging price tariff indicates that if the charging price changes the same, the 

charging utility values of the three different periods would be the same, which means 

with the same price changes, users behave the same. 

Due to the similarity of the analysis, the value function of not charging will not be 

detailed here. 

3.2.2. Response Model Considering Both the Price Factor and SOC 

In addition to the charging price, the current SOC of an electric vehicle is another 

factor that affects the charging behavior of electric vehicles. Assuming that current SOC 

of an electric vehicle is 100%, this means that this vehicle no longer needs to be charged 

anymore, no matter whether the charging price is higher or lower than the original price 

reference. Hence, the charging value is zero. If the SOC of an EV is almost 100%, the 

charging value for this vehicle is relatively low. Similarly, when the SOC of an EV is close 

to the minimum SOC, the demand for charging is significantly increased, and the charging 

value at this time is relatively high. 

Therefore, based on the willingness of EV users, the value functions represent 

charging and no-charging, considering both price factors and SOC, can be defined as: 

 , 1 SOC
, 1

n
cg tVn

cg tV e e    (4)
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1 SOC SOC
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n
nocg tV n

n
nocg t

n

e e
V

  
 
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 (5)

where n stands for the number of electric vehicles; SOCn stands for the state-of-charge of 

vehicle n; SOCmin is the minimum allowable SOC of EVs; and Vncg,t and Vnnocg,t are value 

functions represent charging and no-charging decisions of electric vehicle n while only 

considering the price factor and SOC, respectively. 

According to Equation (4), Figure 5 depicts the charging values of different SOCs at 

peak price times of the original charging tariff. It can be deduced that a smaller SOC 

corresponds to larger charging values at the same time. When the SOC of EV approaches 

100%, charging is not an absolute necessity anymore, and the charging value for the EV 

user is close to zero at this moment. At a certain SOC, the charging value function still 

follows the basic value function of Equation (2), except the natural exponential function is 

introduced to express the law of natural growth. This is because, when the SOC is smaller, 

the charging value brought by the part 1 SOC 1
n

e    of Equation (4) increases faster 

compared to the higher SOC, which can be easily derived from the derivative operation 

of 1 SOC 1
n

e   . 
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Figure 5. Charging values of different SOCs at peak price times of the original charging tariff. 

Figure 6 shows the three-dimensional plots of the charging values considering both 

the price factor and SOC, in which the relationship between charging price, SOC and 

charging value defined by the equation is clearly revealed. As shown in Figure 6a–c, both 

the lower charging price after pricing optimization and the lower SOC of EVs will result 

in a higher charging utility value. The highest charging value will appear at the lowest 

charging price and the lowest SOC, indicating the demand for charging and the 

willingness for price response. If the SOC is 100%, there is no battery capacity for charging. 

Thus, the charging value at this moment is zero, since the charging price and SOC are 

always independent. In addition, as depicted in Figure 6d, the charging values are higher 

at peak price times compared to that at the valley price times. This is due to the same 

reason as is shown in Figure 4, and can be described by the following: for the same 

charging price after optimization, EV users are more likely to change their charging 

behaviors at peak price times compared to valley times because of the bigger reduction in 

charging price. 
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Figure 6. Charging values considering both the price factor and SOC: (a) At peak price times of the 

original charging price tariff; (b) at flat price times of the original charging price tariff; (c) at valley 

price times of the original charging price tariff; (d) comparison of charging values at peak and valley 

price times of the original charging price tariff. 

Similarly, due to similarity of the analysis, the value function of not charging will not 

be detailed here. 

4. Charging Load Model and Pricing Optimization 

4.1. Typical Charging Load 

Assume that the charging power of electric vehicles is constant, and vehicles charged 

in the station will be fully charged every time. Hence, for each electric vehicle, the 

charging duration, the charging ending time and the charging capacity of EV batteries can 

be calculated according to the charging starting time and the initial SOC. Subsequently, 

the number of electric vehicles to be charged, and the charging load of all vehicles can be 

counted to obtain the total charging load of electric vehicles at each moment in the 

charging station. The related equations are as follows: 

(1 SOC ) /n n
chg batT E P    (6)

n n n

e s chg
T T T 

 
(7)
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(9)

where Tns, Tne, and Tnchg stand for the charging starting time, the charging ending time, and 

the charging duration, respectively; Ebat is the capacity of EV; P is the rated charging power 

of an individual vehicle; Pnload,t is the charging power of EV n at time t; nsum is the total 

number of EVs; and Pev,t is the total charging power of the charging station at time t. 

4.2. Optimal Pricing Based on EV Response Model 

4.2.1. Charging Load Model after Pricing Optimization Based on Prospect Theory 

Denote the charging probability of vehicle n at time t by P
～

nchg,t, and the probability of 

not charging by P
～

nnochg,t. Hence, 

, ,
1n n

chg t nochg t
P P    (10)

Based on Equations (4) and (5), the charging probability of the nth vehicle at the time 

point t is: 

,

,

, ,

n

cg tn

chg t n n

cg t nocg t

V
P

V V



  (11)

Then, the matrix of charging probability of all n vehicles at every time point can be 

obtained by their charging values. 

1 2

,1 ,1 ,1

1

,2

,

1

, ,

n

chg chg chg

chg

P chg

n

chg t chg t

P P P

P
M

P P

 
 
 
 
 
  



  
  

  
  

 (12)

Since the sum of the charging probabilities at all times for an electric vehicle is 1, for 

each column of the above matrix, the normalization should be performed according to 

Equation (13). 

,'

,

,
1

sum

n

chg tn

chg t t
n

chg t
t

P
P

P










 

(13)

where tsum is the number of the time index considered in the optimization. 

According to Equations (12) and (13), and the charging capacity of vehicles derived 

from the state-of-charge at the charging beginning time, the optimized charging power 

with pricing is depicted as: 

1 2

,1 ,1 ,1

1

,2

1

, ,

sum

ev

sum

sum sum

n

load load load

load

P

n

load t load t

P P P

P
M

P P

 
 
 
 
 
  



 

  

 
 

(14)
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where Pnload,t is the equivalent charging load of the nth vehicle at time t. 

Thus, the total charging loads of the charging station after pricing optimization is: 

, ,
1

sumn
n

ev t load t
n

P P



 

(15)

4.2.2. Objective Functions of the Pricing Optimization 

Take charging prices of the tariff as the optimization variables, the objective functions 

for coordinated charging of the electric vehicle charging station will be presented in the 

following description. 

Since the charging loads may bring new impacts to the power grid, usually it is 

expected that the charging load curve of the station will be relatively stable during 

operation. Therefore, one objective function of the coordinated charging pricing 

optimization should be minimizing the peak-to-valley ratio of the charging station, shown 

as Equation (16). 

   , ,

1

,

max min
min min ( ) / =min 1,2, ,

max

ev t ev t

peak valley peak sum

ev t

P P
f P P P t t

P

  
    

  
 (16)

where Ppeak and Pvalley stand for the maximum and minimum daily charging loads of the 

charging station, respectively. 

In addition, to reduce the operation cost and benefit the operator of the charging 

station, the EV user can be guided to charge at valley price times of the TOU electricity 

tariff by flexibly pricing the charging service fee under the premise of not increasing user’s 

charging cost, thereby reducing electricity costs of the charging station. This objective 

function is as follows: 

2 , ,
t 1

min min
sumt

ev t grid tf P Pr


 
  

 
  (17)

Since the decision variables of Equations (16) and (17) are the charging prices after 

optimization, these two objectives are coupled to each other. Therefore, a multi-objective 

optimization can be performed following this function: 

1 2
3 1 2

1 2

min min
max max

f f
f

f f
 

     
     

     
 (18)

where 1  and 2  stand for the weight coefficients of the two objectives, 1 2+ =1  , 

and hence transfer the multi-objective optimization problem to a single-objective 

optimization. 

In a charging station with PV distributed generation system integrated, the most 

ideal operation mode is to realize the local consumption of photovoltaic power by 

charging load. At the same time, if the photovoltaic system is not integrated to the power 

grid, it is necessary to maximize the utilization of photovoltaic power and reduce the 

impact of the charging load on the power grid. Therefore, reducing solar curtailment can 

be chosen as the objective function for a PV charging station. 

4 ,
1

, , , ,

,
, ,

min

0

sumt

curtail t
t

pv t ev t pv t ev t

curtail t
pv t ev t

f P

P P P P
P

P P










    



 

(19)
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where Pcurtail,t and Ppv,t stand for the power of solar curtailment at time t and the power 

generated by the PV system, respectively; and   stands for the time interval. 

When the PV power is equal to the power of the charging load of EVs, the charging 

station does not need to purchase electricity from the power grid. When the PV power is 

insufficient to supply the charging of EVs vehicle at that time, the charging station needs 

to purchase electricity from the power grid to compensate for the power difference, as 

shown in the Equation (20). In order to reduce the impact of EVs on the utility grid, it is 

necessary to minimize the peak load of the charging station, and hence reduce the capacity 

electricity price cost; the objective function is as shown in Equation (20). 

   5 ,

, , , ,

,
, ,

min max 1,2, ,

0

pcc t sum

ev t pv t ev t pv t

pcc t
ev t pv t

f P t t

P P P P
P

P P

   


  
 

 

 (20)

where Ppcc,t is the power at the PCC of the charging station; that is, the demanded power 

of the whole station to the utility grid. 

4.2.3. Constrains of the Pricing Optimization 

The constraint conditions that should be satisfied in the pricing optimization for 

coordinated charging are outlined as follows: 

For conservation of energy, the total charging loads of the charging station before 

and after pricing optimization are the same since the same time interval is considered, as 

shown in Equation (21). 

,

*

,
1 1

sum sum

ev t

t t

ev t
t t

P P
 

 
 

(21)

where P*ev,t is the charging load without pricing optimization at time t. 

The number of EVs in charging should not exceed the number of charging piles Npile, 

as shown in Equation (22). 

 ,
max

1,2, ,ev t

pile sum

P
N t t

P
    (22)

The power at the PCC of the charging station should not exceed the capacity of the 

distribution transformer Pgrid, as shown in Equation (23). 

 ,max 1,2, ,pcc t grid sumP P t t    (23)

Usually, the government administration tends to give a ceiling for the charging 

service fee, as shown in Equation (24). 

 , 1,2, ,service t limit sumPr Pr t t    (24)

where Prlimit stands for the upper limit of the charging service fee, which is considered to 

be 30% of the price of 92# gasoline on that day in this paper. 

4.3. Optimization Process and Solution 

Considering the complexity of the constrained non-linear optimization, the 

improved particle swarm optimization (PSO) algorithm is adopted to solve the problem 

in this paper. PSO is one of the random search heuristic algorithms, which has excellent 

performance for continuous solution space. For simplicity, its basic principle and 

equations will not be detailed here. 

The solution of the optimization is the daily charging service prices with the 

maximum dimension 24 × 1, and for each dimension, the solution is a real number within 
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the range of zero to the upper limit of the charging service fee defined in Equation (24). 

The lower dimensions and limited solution space will result in small computational cost, 

which makes PSO qualified for the pricing optimization. It should be noticed that the 

proposed pricing method is mainly used for day-ahead or same-day pricing, and can be 

used for ultra-short term pricing. 

Figure 7 is the flow chart of the proposed pricing approach for coordinated charging 

of the charging station based on prospect theory. Through optimization, the charging 

prices at each time step can be obtained, together with the ideal coordinated charging 

loads of the charging station based on this obtained tariff. 

 

Figure 7. Flow chart of the proposed pricing approach. 

Specific steps are as follows. 

Step 1: Input the relevant parameters of the pricing optimization, such as the original 

charging prices which are composed of the TOU electricity tariff and the original charging 

service fee, and the initial SOC of the EVs, etc. 

Step 2: Randomly initialize the optimal charging prices as particles of PSO, 

considering the constraint of the upper limit of the charging service fee. Start the first 

iteration of PSO. 

Step 3: Calculate the value of charging value function only considering the price 

factor at first. Afterward, calculate the value of charging value function considering both 

the price factor and SOC. Then, calculate the charging probability matrix of vehicles at 

each time based on the charging values of these vehicles, and normalize each element in 

the matrix. Finally, based on the charging probability matrix and the energy demand of 

each vehicle, calculate the optimal charging power with pricing optimization. 

Step 4: Calculate the fitness value of the objective functions in the case of these 

particles. 
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Step 5: Update the location and velocity of particles according to rules of improved 

PSO. 

Step 6: Determine whether the iteration process of PSO is finished. If so, continue to 

step 7. Otherwise, go back to step 3, and start a new iteration until the iteration is done. 

Step 7: Find the best fitness value and optimal value of particles. 

Step 8: Output the optimal charging prices for coordinated charging of the charging 

station to guide the EVs. 

5. Case Studies and Validation 

5.1. Scenario I—A Fast Charging Station for Electric Taxis 

A fast charging station with 45 units of 25 kW fast chargers is chosen as the first case 

study. This charging station is located in Beijing and serves 428 electric taxis daily. The 

energy capacity of the electric taxi is 30 kWh. Through investigation and statistics, the 

minimum SOC for electric taxis is 30%, and the initial SOC when the vehicle arrives at the 

station is distributed normally with mean =0.5471  and standard deviation =0.1335
. The charging station operator charges vehicles based on the charging prices. The original 

charging prices are composed of the TOU electricity tariff of Beijing and a constant 0.8 

CNY/kWh charging service fee. This paper intends to set the optimal charging service 

prices for a taxi driver who works during the daytime. The charging period is from 6:00 

to 23:00, and hence the length of the period for optimization is 18. 

To decrease the operation expenses, if we take minimizing the electricity purchase 

cost of the charging station as the objective function, results of pricing optimization-based 

coordinated charging are shown in Figures 8 and 9. 

 

Figure 8. Comparison of charging loads before and after pricing optimization in Scenario I, only 

reducing the operation cost as the objective. 
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(a) (b) 

Figure 9. Comparison of prices before and after pricing optimization in Scenario I, only reducing 

the operation cost as the objective: (a) Original and optimal charging prices; (b) original and optimal 

charging service prices. 

As shown in Figure 8, in the case of uncoordinated charging, the peak-to-valley ratio 

was 0.502. However, with the coordination of optimal charging prices, the peak-to-valley 

ratio increased to 0.8797, and the load peak increased significantly, which may cause the 

overload of the distribution transformer. This is because the model of the pricing 

optimization is a single-objective problem, only considering the operation cost of the 

charging station. By calculating based on the prices in Figure 9, the electricity purchase 

cost of the charging station reduced to 4002.4 CNY/day with price based coordinated 

charging, from 4727.1 CNY/day in the case of the original charging prices. Moreover, the 

revenue of the station operator increased from 4580.6 CNY/day to 5256.4 CNY/day. Thus, 

an additional 14% of profits are earned by the proposed pricing optimization. 

The results before and after pricing optimization in Scenario I, only considering the 

reduction of operation cost, are shown in Table 1. 

Table 1. Results before and after pricing optimization in Scenario I, only reducing the operation cost 

as the objective. 

Index 
Before Pricing 

Optimization 

After Pricing 

Optimization 

Peak-to-valley ratio of the charging station 0.502 0.8797 

Electricity purchase cost of the station (CNY/day) 4727.1 4002.4 

Revenue of the station operator (CNY/day) 4580.6 5256.4 

EV users charging cost (CNY/day) 9307.7 9258.8 

Through the above analysis, it can be determined that single-objective optimization 

of the charging prices may result in undesired results. Hereby, a multi-objective 

optimization with the objectives of reducing both the peak-to-valley ratio and the 

operation cost is performed in this paper. As shown in Figures 10 and 11, due to the 

balancing of the two objectives, the peak-to-valley ratio of charging loads of the station is 

reduced to 0.3714 from the value 0.502 before pricing optimization, and the value 0.8797 

while considering the operation cost only. At the same time, the electricity purchase cost 

of the charging station is reduced to 4474.1 CNY/day with price-based coordinated 

charging, from 4727.1 CNY/day in the case of the original charging prices. The revenue of 

the station operator increased slightly from 4580.6 CNY/day to 4591.8 CNY/day since the 

EV users’ charging cost has reduced to some extent. It is obvious that both the regulation 

of charging loads and the cost reduction for EV users and station operators has been 

realized by adjusting the charging service fee from a constant value to variable values. 
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Figure 10. Comparison of charging loads before and after pricing optimization in Scenario I, 

reducing both the peak-to-valley ratio and the operation cost as the objectives. 

  

(a) (b) 

Figure 11. Comparison of prices before and after pricing optimization in Scenario I, reducing both 

the peak-to-valley ratio and the operation cost as the objectives: (a) Original and optimal charging 

prices; (b) original and optimal charging service prices. 

The results before and after pricing optimization in Scenario I, considering the 

reduction of both the peak-to-valley ratio and the operation cost, are shown in Table 2. 

Table 2. Results before and after pricing optimization in Scenario I, reducing both the peak-to-valley 

ratio and the operation cost as the objectives. 

Index 
Before Pricing 

Optimization 

After Pricing 

Optimization 

Peak-to-valley ratio of the charging station 0.502 0.3714 

Electricity purchase cost of the station (CNY/day) 4727.1 4474.1 

Revenue of the station operator (CNY/day) 4580.6 4591.8 

EV users’ charging cost (CNY/day) 0.502 0.3714 

5.2. Scenario II—A Fast Charging Station with PV Integrated 

In this case, the fast charging station with 120 kWp PV integrated is studied. This PV 

system only provides energy to the station, and excess energy generated cannot be fed 

back to the grid. Therefore, solar curtailment occurs frequently. The rated charging power 

of piles in the station that serves 50 commuting vehicles is 25 kW. The battery energy of 

EVs is 30 kWh. The original charging price in this charging station is constant, at 1.2 

CNY/kWh, including 0.4 CNY/kWh electricity price and 0.8 CNY/kWh charging service 
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fee. Since only office hours from 7:00 to 17:00 are taken into consideration in the pricing 

optimization, the number of the time index is 11. 

In this case, considering the existence of solar curtailment and the peak power effect 

on the utility gird, a multi-objective optimization of reducing solar curtailment and 

minimizing the peak power at the PCC of the charging station is performed to generate 

an optimal charging price tariff for a PV charging station. 

Optimized by PSO, Figure 12a depicts the charging loads before and after pricing 

optimization in Scenario II. It can be seen that solar curtailment exists between the times 

of 11:00 and 16:00 because of the mismatch of uncoordinated commuting charging and PV 

generation. Through the application of coordinated charging based on optimal charging 

prices, the daily solar curtailment has been reduced from 195.24 kWh to 11.15 kWh. The 

solar curtailment rate has also been reduced from 30% to 1.7%. Meanwhile, the peak 

power at the PCC of the charging station has been reduced significantly, from 80.52 kW 

to 4.27 kW, which can be seen clearly in Figure 12b. The power capacity demand for the 

utility grid decreases significantly. Therefore, it is conceivable that the basic electricity fee 

of the charging station is expected to decrease as well. 

  

(a) (b) 

Figure 12. Comparisons before and after pricing optimization in Scenario II, reducing both solar 

curtailment and the peak power at the PCC as the objectives: (a) Charging loads; (b) power at the 

PCC. 

As shown in Figure 13, the charging prices have changed from the constant 1.2 

CNY/kWh to variable values. Based on prospect theory, since the EV users will change 

their charging behavior according to the charging prices, the PV power curve and the 

optimal charging prices are generally opposite in trends. The electricity purchase cost of 

the charging station has reduced to 3.66 CNY/day with price-based coordinated charging, 

from 77.3 CNY/day in the case of the original charging prices. The revenue of the station 

operator has increased slightly from 702.23 CNY/day to 755.64 CNY/day at the same time. 

Thus, it can be determined that the purpose of coordinated charging is achieved. The 

results before and after pricing optimization in Scenario II, considering the reduction of 

both solar curtailment and the peak power at the PCC, are shown in Table 3. 
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Figure 13. Comparison of the charging prices whether with the optimal pricing or not in Scenario 

II, reducing both solar curtailment and the peak power at the PCC as the objectives. 

Table 3. Results before and after pricing optimization in Scenario II, reducing both solar curtailment 

and the peak power at the PCC as the objectives. 

Index 
Before Pricing 

Optimization 

After Pricing 

Optimization 

Solar curtailment (kWh/day) 195.24 11.15 

Peak power at the PCC (kW) 80.52 4.27 

Electricity purchase cost of the station (CNY/day) 77..3 3.66 

Revenue of the station operator (CNY/day) 702.23 755.64 

EV users’ charging cost (CNY/day) 779.53 759.29 

6. Conclusions 

Towards a proper charging price mechanism and coordinated charging, this paper 

proposes a novel approach for pricing of charging service fees in an EV public charging 

station based on prospect theory. Firstly, the EV user’s response to price is modelled on 

the basis of prospect theory, including the response model considering the price factor 

and the response model considering both the price factor and SOC. The quantitative 

relationship between the utility value and the charging price or SOC is analysed in detail. 

Secondly, on the basis of the price response model, charging load model after pricing 

optimization is established. Finally, charging pricing optimization can be performed to 

achieve multiple objectives such as minimizing the peak-to-valley difference and 

electricity expenses of the station, and reducing solar curtailment and the peak power at 

the PCC of the charging station using the PSO algorithm. The results of the case studies 

indicate that: (1) EV users’ charging behavior, which directly corresponds to the charging 

loads, is related to the charging prices and current SOC. The introduction of prospect 

theory for the quantitative description of decision making can effectively characterize the 

price response behavior of EV users during charging. (2) Based on the policy of China, the 

flexible pricing of time-varying charging prices with the proposed novel pricing approach 

can guide EV users to adjust charging hours, and hence coordinated charging of the 

charging station is achieved. The reduction of electricity costs, solar curtailment, and peak 

power at the PCC of the charging station could benefit both the station operator and 

power systems. In addition, based on the limitations of this paper that need to be 

addressed, many potential extensions of the work reported in this paper are possible, such 

as: 

 The EV response is assumed to be almost certain since the same response mechanism 

was applied in the pricing and automatic response of the on-board intelligent 

terminal, and hence we do not take behavior uncertainty into consideration in this 
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paper. EV user’s behavior modeling with uncertainty is worth studying in the future, 

especially in the case of manual response. 

 Since the parameters of prospect theory calibrated by Kahneman may not be suitable 

for decision-making in other contexts, the suitable parameters for pricing require a 

mass of real operational data. It is necessary to perform case studies based on the 

precise description of the price response model in a charging station when real 

operational data are collected, or assuming that massive historical data are available. 

 Since the response can be implemented by the same on-board intelligent terminal, 

we did not consider reference points difference among different people in modeling. 

The reference point is significant in determining the response model, and the 

reference points among different people may be different. This is another limitation 

that needs to be addressed in future research. 
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