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Abstract: Decarbonisation and efficiency goals set as a response to global warming issue require
appropriate decision-making strategies to promote an effective and timely change in energy
systems. Conceptualization of change is a relevant part of energy transitions research today, which
aims at enabling radical shifts compatible with societal functions and market mechanisms. In this
framework, construction sector can play a relevant role because of its energy and environmental
impact. There is, however, the need to move from general instances to specific actions. Open data
and open science, digitalization and building data interoperability, together with innovative
business models could represent enabling factors to accelerate the process of change. For this reason,
built environment research has to address the co-evolution of technologies and human behaviour
and the analytical methods used for this purpose should be empirically grounded, transparent,
scalable and consistent across different temporal/spatial scales of analysis. These features could
potentially enable the emergence of “ecosystems” of applications that, in turn, could translate into
projects, products and services for energy transitions in the built environment, proposing
innovative business models that can stimulate market competitiveness. For these reasons, in this
paper we organize our analysis according to three levels, from general concepts to specific issues.
In the first level, we consider the role of building energy modelling at multiple scales. In the second
level, we focus on harmonization of methods for energy performance analysis. Finally, in the third
level, we consider emerging concepts such as energy flexibility and occupant-centric energy
modelling, considering their relation to monitoring systems and automation. The goal of this
research is to evaluate the current state of the art and identify key concepts that can encourage
further research, addressing both human and technological factors that influence energy
performance of buildings.

Keywords: energy transitions; energy modelling; energy analytics; data-driven methods; building
performance analysis energy efficiency; energy flexibility; occupant-centric design; open energy
data

1. Introduction

In recent years, a notable research effort has been devoted to the conceptualisation
of sustainability transitions [1]and, more specifically for energy, to the identification of
“complementarities” at multiple levels|2,3]. Transition processes embody the necessity of
radical-shifts and they represent an opportunity for innovation and entrepreneurship [4],
with a clear focus on issues such as global warming and decarbonisation of energy
systems [5]. In these innovation processes, the role of intermediaries and strategic niches
appears to be crucial. In fact, understanding how actors can control and accelerate the
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energy transition is a key issue for research today [6] and intermediaries can play a
fundamental role in this direction [7]. Intermediaries (i.e., public, non-profit, and private
third-parties [8]) are actors which facilitate relations between key actors and enable
knowledge sharing and pooling [9].The opportunities for the construction industry in this
sense are relevant, because of the impact of built environment in terms of raw resources,
energy and carbon emissions [10], but also because of the potential to exploit innovative
technologies within emerging paradigms such as circular economy [11]. There is,
however, the need to move from general instances to specific actions. These actions have
to enable radical shifts compatible with societal functions and market mechanisms; for
this reason, in this research we focus on energy modelling and analytics that can provide
critical insights in this sense. At present, it possible to identify multiple enabling factors
for radical shifts and acceleration of the process of change. First, the evolution of practices
focused on concepts such as open data, open innovation, open science [12-14] and, in
particular, open energy modelling principles [15,16]. Second, advances in building data
interoperability (technical, informational and organizational) [17] and data availability at
multiple levels, using technologies such as the Internet of Things (IoT) [18-20] and cyber-
physical systems [21], which can enable, in turn, innovation in end-user energy delivery
[22], and in energy infrastructures [23]. Third, the increasing decentralization of energy
systems where the co-evolution of built environment and energy infrastructures [24] plays
a fundamental role, that can be investigated by means of “soft-linking” of energy
modelling approaches, from planning to operation [25]. Finally, innovative business
models proposing concepts such as prosumer [26] and prosumager [27], which are
determining changes in the way energy market works and energy trading takes place, for
example using Peer-to-Peer automated exchange mechanisms, exploiting Blockchain
technologies [28].

In this rapidly evolving framework, research aimed at radical changes in energy
systems and built environment needs to consider the enabling factors reported above and
to acknowledge the limitations and bottlenecks in view of energy efficiency and carbon
reduction goals. The aim of this paper is to discuss to what extent and in what ways energy
modelling and analytics can support the process of change for energy transitions in the
construction sector. In Section 2 we illustrate the background of the research, explaining
the fundamental elements that motivate it.

2. Background and Motivation

Energy transitions involve the transformation of the network of players and
organisations traditionally working in the energy sector (e.g., policy-makers, regulators,
transmission and distribution authorities, etc.) as well as the change of the role of
customers, from passive to active (i.e., prosumers [26] and prosumagers [27]).In fact,
socio-technical innovations are critically dependent on the possibility to access new
information, knowledge and resources, which are key enablers for the development of
innovative products and services [29], within a market mechanism. Construction sector
can be conceptualized, for example, by considering three fundamental domains [30]:
project, product and service. All these domains are going to be deeply influenced by socio-
technical changes in energy transitions, which will transform the way buildings are
designed, built and managed. Sharing knowledge among actors is crucial when
addressing building energy performance in a comprehensive way, considering both
human and technical factors [31]. In fact, the impact of occupants has to be considered
from multiple stand-points [32] and users’ behaviour can determine both “re-bound” [33]
and “pre-bound” effects [34,35], that can create a substantial difference between expected
and measured performance, which can be inscribed in the general category of
“performance gaps” [36-38]. A “performance gap” can be found in all the stages of
building life cycle [39] and the use of standardized assumption in modelling, e.g., to create
Energy Performance Certificates, has to be critically questioned when using them to
estimate actual energy consumption and potential savings [40].
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Additionally, the dynamic interaction between building and energy infrastructures
[41,42] has to be considered as well for multiple reasons (e.g., operational constraints,
limitations of the penetration of renewables, innovative business model for the electricity
market, etc.) and in light of possible developments in terms of “soft-linking” of energy
models [25]. Finally, considering building performance from a whole life cycle perspective
(indeed critical for emerging paradigms such as circular economy [11]), embodied energy
in materials, technologies and processes represents another potential “performance gap”
to be considered [43,44]. In fact, all these potential gaps create risks and lack of credibility
when investing in energy efficiency and sustainability measures. Therefore, monitoring,
verifying and tracking performance (i.e., energy, emission and cost in particular) using
robust, transparent and empirically grounded methods is essential to evaluate the
effectiveness of measures and share knowledge regarding practices. This, in turn, can
contribute to investment de-risking and stimulate the growth of business “ecosystems” in
energy and sustainability transitions, particularly for the construction sector.
Additionally, the co-benefits of energy efficiency measures (e.g., improved indoor
environmental quality, health, productivity, pollution reduction, etc.) [45] have to be
considered both by policy makers and investors, to weight properly cost and benefits.
Following the general trend towards open science, briefly outlined in Section 1, the
research community in the energy field has stressed in recent years the fundamental
importance of open energy data and models [46,47] and we can envisage an evolution
towards systems of model [48] designed to address key problems in energy transitions,
eventually taking advantage of “soft-linking” approaches [25,49]. Rather than being
designed for separate applications, models can be potentially conceived and work like
“ecosystems” [48] of interconnected applications, based on open data and modelling
standard [46] where the researchers are opening their modelling “black-boxes” [47].
Indeed, transparent and robust models can become part of innovative business strategies,
leading to techno-economically feasible pathways in transitions(thereby enabling a
radical change to happen in practice). In fact, this review is part of a more extensive
research work focused on “Buildings-as-Energy-Service” concept, in which separate
literature reviews were conducted to explore both social and physical science perspectives
on this topic. The concepts emerging from the reviews represent the basic elements of a
Cognitive Mapping [50] process. The aim of this process is to create an inter-disciplinary
research environment (a cognitive framework) [51] that is essential for innovation
processes, where creativity is stimulated by the participation of user in the process of
knowledge creation and sharing [52]. In Section 3 we describe the research methodology
used to identify the role of energy modelling and analytical techniques in relation to the
issues mentioned above.

3. Research Methodology

Considering the issues briefly outlined in Sections 1 and 2, the objective of this review
study is to identify and analyse the features of energy modelling and analytical techniques
that could be enabling factors in energy transition processes. The two fundamental
research questions posed in this study are the following. First, what are the modelling
techniques that can meet the criteria that will be described later in this section? Second,
what are the essential characteristics (of modelling approaches) that can contribute to
reduce the level of fragmentation of knowledge? The modelling framework proposed as
outcome of the research attempts to reduce the level of fragmentation of the highly
diversified body of knowledge available and to help in the conceptualization of processes
of change (energy transition) by identifying opportunities, together with limitations and
bottlenecks.

In this research both qualitative and quantitative data are analysed and it is therefore
a “mixed approach” [53]. For this reason, we used concepts from Grounded Theory [54]
as a reference for our research, in which both qualitative and quantitative data are utilised
(“all is data” [55]). In brief, Grounded Theory (GT) can be defined as a “a set of integrated
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conceptual hypotheses systematically generated to produce an inductive theory about a
substantive area” [56] and as “theory that was derived from data, systematically gathered
and analysed through the research process” [57]. The results of a GT study are “a set of
concepts, related to each other in an interrelated whole” [58].

The limitations of such approach depend on the fact that the selection in literature
sampling depend on the subjective judgment (point of view) of the researcher and cannot
stand outside of it [58]. However, the process can become more transparent and
reproducible by stating the steps and the criteria used in it. In this research, we followed
seven steps:

(1) Definition of knowledge domains of interest;

(2) Stratified search using domain and keywords in Web of Science database (WoS);
(3) Initial selection of pertinent literature on WoS;

(4) Definition of additional criteria for inclusion/exclusion of literature;

(5) Initial verification of literature using title, keywords and abstract;

(6) Final selection of literature;

(7) Detailed analysis of literature.

The fundamental knowledge domain of interest is “Building Energy Performance”
(step 1) and the keywords considered initially are “Building stock”, “Uncertainty” and
“Flexibility” (step 2), to address fundamental topics in research. “Building stock” is
chosen to identify examples of building energy modelling at multiple scales (e.g., for
planning and policy, utility scale studies, etc.). “Uncertainty” is chosen to identify studies
that analyse the critical dimension of energy performance uncertainty, which may create
risks and lack of credibility for efficiency practices, starting from fundamental principles
in Measurement and Verification (M&V) and Monitoring & Targeting (Mé&T).
“Flexibility” is chosen to identify research regarding the interaction between building and
infrastructures, which is strictly related to their technological co-evolution. The results
obtained in step 2 are summarized in Table 1.

Table 1. Knowledge domain, keywords and criteria for literature selection.

Sources in
D in of Sources in Categories: S in Final
omain o ource in Fina
Domain and Keywords WoS Architecture Motivation for Criteria Selection ]
Interest R Selection
Database Construction
Planning
“Building Energy Building energy modelling for
Performance” 1335 870 enefgty planning anc? policy targfets, 5
AND utility scale analysis, parametric
“Building stock” building performance studies.
Methods based on M&V and M&T
“Building Energy principles that can help tracking
“Building Performance” 1551 705 energy pel.rformance t'ransparently 123
Energy AND (and reducing uncertainty) and that
Performance” “Uncertainty” can be applied at multiple temporal
and spatial scales.
“Building Energy Strategies to c-ontrol buildirnlg-s 'and
enhance their energy flexibility
Performance” o .
AND 1027 237 strategies in relation to energy 68
o demand in end-uses and user
“Flexibility”

behaviour.
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In order to obtain the final literature selection, additional criteria have been
introduced and re-sampling of literature has been conducted iteratively until “theoretical
saturation” was reached. Theoretical saturation term indicates “the phase of qualitative
data analysis in which the researcher has continued sampling and analysing data until no
new data appear and all concepts of the theory are well-developed and their linkages to
other concepts are clearly described” [59].The criteria used in re-sampling have been
summarized and motivated in Table 2. They are derived from previous research in the
area of energy modelling [24,60] and consider the general trends towards the use of open
data for energy research [46] and the necessity to increase of transparency in energy
modelling [47]. In other words, the criteria introduced represent, in our opinion, limiting
factors and constraints for the creation of “ecosystems” of models [48], which are briefly
outlined in Section 2.

Table 2. Additional criteria introduced for energy modelling literature selection.

Criteria Description Motivation for Criteria Selection
Based on empirical data, and ~ Reducing risk of investment in energy
Empirical Grounding  tested on a relevant number of transitions and ensure the credibility of

cases. policies by means of evidence.

Avoid redund , multiplicati f

Methodologies in which vold redundancy, mu 14p leation o
. . efforts and unnecessary increase of

redundancies and overlapping

Harmonization . complexity of procedures. Streamline
features are removed, ideally . ]
the implementation of models and
based on protocols and standard.
procedures.
Capability of analysing problems Ability to work coherently and
Scalability at multiple temporal and spatial consistently on multiple temporal and
scales. spatial scales.
Ability to detect rel t -
Ty (,) ¢ e.c r.e evan cause' Physical interpretation can help extract
effect relationship, ideally combing
. L . ; . insights that are fundamental for the
Interpretability statistical analysis techniques with

continuous improvements of processes
physical understanding of P . P
and technologies.
phenomena.

Able to be used in multiple stages
of the building life-cycle, for ~ Creating a certain degree of continuity
Re-configurability =~ example for design and operation, in the data analysis workflow during
sharing similar underlying the life-cycle of projects.
principles.

In Section 4 the results of the review process are presented, structuring them
according to three levels of analysis (related to the domain and keyword chosen, as
explained before in this section) that correspond to the development, by means of iterative
sampling, of the key concepts reported in Table 1. The overall research process is synthe-
sized graphically in Figure 1.
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Domain of
interest

“Building Energy
Performance”

Domain Criteria for Identification of
and keywords literature selection ey
in literature

“Building Energy Performance”
AND

Empiriclgrounding

Concepts
for the integration of

~Building stock” Harmonization energy modeling
and
“Building Energy Performance” Scalabilky dataanalticl proceses
AND
“Uncertainty” Interpretability

“Building Energy Performance”
AND
“Flexibility”

Re-configurability

Figure 1. Diagram synthesizing the research process.

4. Results and Discussion

In this section we discuss how energy modelling and analytical tools could support
energy transition processes for the construction industry, highlighting relevant insights
for research across the three levels of analysis introduced in Section 3. The three levels
proposed are indeed a strategy to perform a decomposition of the problem, going from
general principles to specific issues that are emerging within the research framework. In
Section 4.1 we analyse the topic of building energy performance analysis at multiple scales
and its implications (e.g., in energy and planning policy, utility scale studies, etc.), which
introduces the issues at general level (first level of analysis). In Section 4.2 we present
harmonized methodologies (based on M&V principles and considering possible
extensions) to analyse energy performance in buildings and we synthesize their
characteristics (second level of analysis). Finally, in Section 4.3, we introduce innovative
topics such as energy flexibility (infrastructures’ interaction) and occupant-centric (users’
interaction) energy modelling, which will contribute to redefine how buildings are
actually designed and operated in the future (third level of analysis). Overall, throughout
these three levels we show how many of the ongoing research developments are deeply
related to the fundamental elements that motivate our research and are described in
Section 2.

4.1. Building Energy Performance Analysis at Multiple Scales

Comprehensive reviews of building energy models have been published in recent
years [61-63] and, while energy performance is particularly relevant, more
comprehensive approaches to building performance analysis [64] are crucial for the
evolution of the building sector. As anticipated, the analysis of building energy
performance requires an understanding of both human and technical factors [31], and this
confirms the inherent socio-technical dimension of energy modelling and analytics. It is
therefore necessary to structure energy performance analysis with respect to both human
and technical factors. In turn, this is important, for example, to address properly the gap
between design and measured performance, i.e., the performance gap [36-38], introduced
in Section 2. Further, the concept of statistical “Reference Buildings” [65] (RB) must be
introduced to enable building performance benchmarking at multiple scales. RB models
represent the common typologies, technologies and end-uses in the building stock,
identified through statistical analysis and expert knowledge (e.g., on building
technologies, types of end-uses, user behaviour, etc.) on a large-scale base. Building data
are usually multi-level data, which makes it difficult to access the full information needed
to describe in detail the performance of building stock. However, building energy
modelling data can be organised in a hierarchical and standardized way; examples in this
sense can be found at the EU level in the legislation on the definition of cost-optimal
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performance levels [66] and in EU Building Stock Observatory [67]. Further, in the US,
technical standardisation has been tested with the definition of RB models [68,69],
accounting also for the costs of various technological options [70].The role of energy
modelling cycles and the importance of the level of detail (from conceptual to final design)
are considered by the standard ASHRAE 209 [71]. Additionally, the use of hierarchical
structures in datasets for building energy modelling can be found, for example, in
performance gap studies [37], in the analysis of impact of automation systems [72], and in
occupancy modelling [73].Further, with respect to building energy model calibration on
measured data, we can find examples using multi-level data [74] and exploiting macro-
parameters [75] (i.e., lumped quantities) to facilitate and guide the uncertainty and
sensitivity analysis, together with the use of archetypes [76] (i.e, RB for a certain
construction typology), and of additional information such as monitored internal
temperature profiles [77].At the state of the art, multiple modelling options are available,
depending on the scope of the analysis process, which range from physics based (“law
driven”) “white-box” models to statistics and machine leaning based (“data driven”)
“black-box” models. An analysis of the suitability of the different modelling strategies has
been proposed by Koulamas et. al. [78] and, more specifically for model calibration, by
Manfren et. al. [79]. Indeed, it is possible to use models to simulate performance (forward
modelling) and to estimate model inputs from measured performance (inverse modelling) in
multiple ways. Therefore, using forward and inverse modelling techniques [24] in a synergic
way for calibration purposes is crucial. In this context, advanced techniques such as Bayesian
analysis can help reconstructing built stock data under uncertainty [80-82], using probabilistic
ranges for the model input parameters. The possibility to benchmark building performance
on a large scale base [83,84] can increase the effectiveness of policies and can guarantee better
decision-making processes, not only for policy makers but for multiple stakeholders (e.g.,
designers, energy managers, investors, etc.). In fact, the progressive convergence of bottom-
up and top-down perspectives in energy modelling and planning for building stock [61] can
contribute to the development of “soft-linking” approaches between various types of models
[25] and, consequently, ensure consistency of actions in transition processes at multiple levels.
Overall, a systematic statistical approach to building performance analysis [85] can be crucial
to the evolution of design and operation paradigms for building stock. In recent years we
assisted to an increasing commitment towards energy efficiency in buildings which led to the
definition of paradigms such as Passive House [86], NZEB [87,88], and PEB [89], considering
just the most relevant. Indeed, the possibility to deploy these paradigms at scale is subject to
technical and economic constraints. In this sense, the use of statistical “Reference Buildings”
can support techno-economic optimization studies[65,90], utility scale analysis of design [91]
and operation of buildings [92] and energy planning at national scale [68-70], where
innovative building paradigms are proposed and implemented. In terms of computation, the
necessity of performing parametric (or probabilistic) simulation studies [93-95]is emerging
and the algorithmic definition of simplified building models [96-98]can be exploited for
building stock modelling at city scale [99-101]and regional scale [102]. In Table 3 we
synthesize the outcomes of literature analysis regarding building energy performance analysis
at multiple scales, highlight the main target of the different studies and their scale of analysis,
namely national, regional, urban and stock. The latter indicates, in general, studies that are
proposing building performance analysis on multiple typologies and end-uses.

Table 3. Building energy performance analysis—Target and spatial scale of analysis.

Target of Analysis Spatial Scale of Analysis

Energy  Utility Parametric

Source Year N . . .
Planning Level Building National Regional Urban Stock
and Policy Study  Analysis

Deru etal. [68] 2011 v v

Thornton et al. [70] 2011 v v
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Goel etal. [69] 2011 v v
Ballarini et al. 2017 v v
[102]
Delmastro et al.
elmastroetal. .
[99]
Ghiassi et al. [100] 2017 v
Delmastro et al. 2020 v
[101]
Goeletal. [91] 2018 v
Meng etal. [92] 2017 v
Pernigotto et al.
2014
[96]

Dogan et al. [97] 2016
Dogan et al. [98] 2016
Goel etal. [103] 2016
Badiei et al. [104] 2019

SISIKSIS] S
SISISIST S KIS

The examples reported before are clearly not exhaustive but they are used to illustrate
the potential role of building energy performance analysis at large scale, using modelling
methods that are transparent and reproducible, build upon (or compatible with) technical
standardization. These topics are developed further in Section 4.2, consider two fundamental
dimensions: the quantification of the impact of energy efficiency measures and the ability
model dynamic behaviour (i.e., load profiles). Finally, at the beginning of this Section we
stressed the importance of a precise hierarchy for multi-level building energy modelling data.
Another important aspect is that of “vertical integration” of information in energy modelling,
from user up to infrastructures (e.g., user, individual spaces within the room, individual
rooms, building zones, whole building, meter, energy infrastructure). Examples of research in
this direction can be found in IEA Annexes on “Energy Flexibility in Buildings” [105] and
“Occupant-Centric Building Design and Operation” [106]. These fundamental aspects of
current research are discussed more in detail in Section 4.3.

4.2. Harmonizing Methodologies to Analyse Energy Performance

Appropriate spatial and temporal resolution of data is necessary to track building energy
performance at multiple scales and energy metering data constitute, of course, the basic
information layer. There is the need for harmonized methods that can ensure robust evidence
(empirically grounded and validated) for efficiency measures (not only for research, but also
for policy), by means of reliable statistics regarding the actual impact of efficient technologies
[107,108] and especially by means of performance benchmarking of efficiency measures
[109,110]. The term “harmonized” is used here to indicate, in general, methodologies in which
redundancies and overlapping features are removed; harmonized methods can help
documenting performance transparently, for example by tracking evidence of energy
efficiency savings (and also related carbon and cost savings) in time and detecting the impact
of influencing factors. Measurement and Verification (M&V) protocols [111,112] and methods
represent the backbone in this sense and important research initiatives have been conducted
in recent years to enhance and extend their applicability, such as the Uniform Methods Project
(UMP) and other related projects [109,110,113]. The goal of these projects was harmonising the
methods for the quantification of energy savings for different efficiency measures, both in
residential and commercial buildings. Multiple measures (technologies) are included (HVAC,
HP/chillers, CHP, lighting, envelope, variable-frequency drives, etc.). Another important
project, focused on de-risking investment in energy efficiency, is the Investor Confidence
Project (ICP) [114]. As already mentioned, the methods used in these projects represent an
extension of the ones that can be found in M&V protocols [111,112] and technical standards
[115-117], in which thresholds (expressed as statistical KPIs, representing the “goodness of
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fit”) are given for the acceptability of models as calibrated [118] on measured data. Finally,
open software is available [113,119,120] as a basis for further development that can potentially
be enabled by open science principles (i.e., transparency and reproducibility of results, among
others).

In general, these approaches are based on energy interval data (dependent variable) and
weather data (independent variables) along with other independent variables (e.g., dummy
variables for models of various occupancy and operational regimes) which can be derived
from contextual knowledge and information. Instead of using energy data directly, it is
possible to use the energy signature [115], which is the average power over the number of
hours of operation in the interval considered. The most important independent variable for
weather normalization of energy consumption is outdoor air temperature [121,122] and these
methods are affine to variable-base degree days methods [92,123]. Temperature response
methods are reviewed by Fazeli et al. [124]. Conceptual simplicity is one of their advantages
(among others), compared to other meta-modelling techniques [125,126]. Automated model
selection techniques [119,127] can be applied as well to compare the performance of multiple
modelling options, using statistical KPIs representing their “goodness of fit”. From an
analytical perspective, it is important to be able to connect both the design and the operation
phase analysis [128,129] in order to ensure consistency in the use of energy performance
analysis techniques over the different phases of the life cycle [130]. In this way reliable limits
for performance measured or estimated [131] can be produced and used against benchmarks,
allowing a continuous improvement process (i.e, Plan Do Check Act is one of the key
principles of Energy Management Systems [132]).

Far from being merely instruments for weather normalisation of energy use (i.e., outdoor
temperature dependence), harmonised approaches can also help modelling dynamic loads
(e.g., demand response) [109], ideally clustering operating conditions for typical profiles [133—
135] to obtain specific insights on recurrent operating schedules (e.g., depending on the type
of end-use).

In reality, understanding load dynamics at multiple scales is crucial for providing
accurate estimates of the impact of flexibility measures that can inform policy [136] by creating
a “soft link” between modelling approaches. Load modelling techniques can be used to
complement “traditional” optimization approaches in cases where they are no longer
sufficient and several operational configurations need to be studied [137]. Furthermore, the
possibility of evaluating the thermal, electrical and fuel requirements with harmonised
methods can extend further the principle of “soft-linking” of energy models in multi-
commodity systems [138-142]. In this sense, harmonised methods should complement (in
terms of general principles) open science-based approaches to energy research [16] because of
their transparency. In addition, they may help to address related issues such as energy
demand forecasts in future climate change scenarios [143-145] and definition of load profiles
evolution due to efficiency measures and behavioural change, which are fundamental for
optimizing decentralised energy systems in buildings [146] and communities [138,147,148].

In short, harmonised approaches can be used to discuss two main aspects of energy
modelling research in a rigorous and transparent manner: the quantification of the effect of
energy efficiency measures and the reconstruction of dynamic behaviour (i.e., time series
modelling), such as load profiles analysis. Table 4 below provides a comparison of the main
features of regression-based modelling methods that can meet the constraints set out in
Section 3. We consider different types of end-uses, namely residential and non-residential, and
different types of energy services, namely heating, cooling, domestic hot water (DHW), and
appliances. First of all, the selected and reviewed literature reflects, in large part, empirically
based studies in which the authors used operation phase data. The research is performed in
all cases using regression-based (interpretable) methods that are significantly consistent with
the harmonisation and standardisation principles outlined in this section. In terms of temporal
scalability, the papers are categorised with respect to monthly, daily and hourly data. In
certain cases, sub-hourly data are used, but we classify them as hourly data since this is the
highest resolution considered by the model calibration thresholds proposed in the standards
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and protocols [118]; in any case, this resolution is adequate to capture the essence of building
dynamic energy behaviour. In terms of spatial scalability, we consider building subsystems
(building fabric and technological systems), building as a whole, building stock, and
community and city scale. For the latter, the term design corresponds substantially to
planning; the operational phase data are used as a basis for making accurate forecasts for the
future. In addition, whole building energy balance is used in most situations, although in some
cases (e.g., evaluation of building fabric characteristics) the energy balance at the zone or room
level is used. Finally, with the term approximate physical approximation, we suggest the
possibility of using regression coefficients to estimate physical quantities. Overall, the table
illustrates how harmonized/standardized regression-based methods can cover several
temporal and spatial scales of analysis and how they can theoretically combine design and
operational phase performance analysis into the same analytical workflow (thereby satisfying
re-configurability criteria, reported in Table 2). Finally, regression models can be used for both
residential and non-residential end-uses to study energy services (heating, cooling, DHW,
appliances) in multiple ways and can provide insights up to building system level when sub-
metering data (e.g., thermal, electric) are available, while enabling, at the same time, the
aggregation of results on a large scale base for building stock modelling.
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Table 4. Harmonized regression-based modelling approaches for building performance analysis.

Tempor Interp
End-Use Energy Services al Scale Spatial Scale ret:ltlo Phase

E g él) 4 L]
Source Year & = 3 5 s = 5 & £ & g
E 2 £ f=z £ xS fE % 3 0% SEBS
(7] o s 5 T < -E,: = B o g k] ° b= g B g 7 c
S @ b5 8 = S Q2 £ S @ ° o >3 0 o
g I £3dF° B P E Rz 4 E E £ELRE
& g < 5 F £ B O a8 ©

P4 /a Z g &
Lammers et al. [149] 2011 v v v v v v
Hallinan et al. [150] 2011 v v v v v v v
Hallinan et al. [151] 2011 v v v Y v v v v v v v v v
Danov et al. [152] 2011 v v v v v v v
Masuda and Claridge[153] 2012 v v Y v v v v v v
Bynum et al. [154] 2012 v v Y v v Vv v v v v
Masuda and Claridge[121] 2014 v v Y v v Vv v v v v v
Paulus et al. [127] 2015 v v v Y v v Vv v v v
Lin and Claridge[122] 2015 v v VY v v v v v
Hitchin and Knight [155] 2016 v v v v v v v
Jalori and Reddy [156] 2015 v v v Y v v vV v v
Paulus [119] 2017 v v v 4 J I VA v v
Abushakra and Paulus [157] 2016 v v v v v v v
Bauwens and Roels[158] 2014 v v v v v v
Erkoreka et al. [159] 2016 v v v v v v
Giraldo-Soto et al. [160] 2018 v v v v v v v
Uriarte et al. [161] 2019 v v v v v v
Busato et al. [162] 2012 v v v v v v v v
Busato et al. [163] 2013 v v v v v v vV
Krese et al. [164] 2018 v v v v v v
Sjogren et al. [165] 2009 v v v VY v v VY v v v v v
Vesterberg et al. [166] 2014 v v v v vV v v v v v
Meng and Mourshed[92] 2017 v v Vv v v v v
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Meng et al. [167] 2020 v v v v v v
Oh et al. [168] 20200 vV v v J v v J v
Westermann et al. [169] 2020 v v v v v v v v
Pasichnyi et al. [170] 2019 v v v v v v v v
Qomi et al. [171] 2016 v v v v v v v v
Afshari et al. [172] 2017 v v v Vv v v v v v v
Afshari et al. [173] 2017 v v v v v Vv v v v v
Allard et al. [129] 2018 v v v v v v
Tronchin et al. [128] 2018 v v v v v Vv v v v
Manfren and Nastasi[131] 2020 v v v Y v v v Vv v v v
Catalina et al. [174] 2008 v v v v Vv v v
Hygh et al. [175] 2012 vV v v v J v v v v
Asadi et al. [176] 2014 v v v Y v v Vv v v
Al Gharably et al. [177] 2016 v v v Y v v v v v
Ipbiiker et al. [178] 2016 v v v Vv v v
Goel et al. [103] 2016 v v v vV v v v v
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The possibility to employ advanced harmonized analytical techniques could, in
principles, contribute to the development of innovative business models built upon
Energy Performance Contracting (EPC) [179] principles, where dynamic operational
conditions are clustered [134] and multiple regression models are combined together [156]
to investigate performance, integrating data at multiple spatial and temporal resolutions,
while retaining an approximated physical interpretation. Further, the graphical
representation of regression-based methods can be combined with other visualization
strategies used for energy (and exergy) flows at multiple scales, from building systems
and sub-systems [180], to networks in multi-energy systems [181]. Physical-statistical (i.e.,
“grey-box”) formulations [158,173,182-185], can extend the inherent capabilities of these
modelling approaches even further and provide additional insights that may be
particularly valuable in a continuous improvement logic, while retaining scalability
[183,184].

Despite the variety of possible model formulations, we believe that data-driven
approaches should use energy modelling definitions and quantities that are consistent
with those proposed in the current technical standardization [186] to improve the
comparability of results and consistency with policy objectives, for which standardisation
plays a key role. For this reason, we report hereafter in Table 5 some experimental
protocols (harmonized or standardized) with examples of applications at component level
and building zone level. Indeed, the table highlights the potential continuity and
integration of these experimental methods to estimate thermo-physical properties of
building components and zones. Ideally, they could partially overlap with methods
presented in Table 4, for example by alternating short-term measurement at higher
frequency with long-term measurement at lower frequency [157] during building life
cycle.

Table 5. Experimental protocols and applications.

T fE i tal
ype 0" Experenta Application Data Acquisition
Protocol
(=2} [Sa] (] —_ Yl 9
Source Year © 2 2 g ° o E ; s =
S gE 2 m 8 & EE  HEEe
o Ys o<« g N B £0 &
Francis et al. [187] 2015 v Subhourly 72h
Rasooli and Ttard[188] 2018 v Subhourly 72h
72 h, multipl
Erkoreka etal. [159] 2016 v Subhourly mutipie
periods
72 h multipl
Uriarte et al. [161] 2019 ¢ Subhourly mupe
periods
Bauwens et al. [158] 2014 v v Daily 2/3 weeks
Jack et al. [107] 2017 v v Daily 2/3 weeks
Alzetto et al. [189] 2018 v v Subhourly 1 night
Meulemans[190] 2018 v v Subhourly 1 night
Ahmad et al. [191] 2019 v v Subhourly 1 night
Rémi et al. [192] 2014 v v Subhourly 5-15 days
Thébault et al. [193] 2018 v v Subhourly 4 days

In QUB and ISABELE methods, the definitions used are in line with current technical
standardisation; the physical parameters are represented by lumped quantities (thus
reducing the number of parameters needed) and the model formulation greatly reduces
the complexity compared to a physical “white-box” model, briefly recalled in Section 4.1.
“White-box” models are detailed models based on physical laws used mainly for
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simulations during the design process and validated in accordance with energy
simulation test standards [194,195].The potential contact point between “white-box”
detailed modelling and “grey-box” (physical-statistical) lumped modelling parameters
can be found in multi-level building energy model calibration [74] where “macro-
parameters” (aggregated, lumped quantities) [75] are used to validate more detailed
models, together with additional information such as internal temperature profiles [77]
and other contextual information.

Indeed, the potential advantages of “grey-box” models are that they can be derived
(and verified) from the basic concepts of energy analysis [196,197], built by using highly
standardised rules [188], and they can employ efficient state-space [198] and analytical
formulations [199]. Examples of validation of “grey-box” models using simulation test
standards at the state of the art have been published by Lundstrom et al. [195] and
Michalak [194,200]; a “grey-box” model for the detection of thermo-physical properties
by inverse modelling has been implemented also in EnergyPlus, a detailed “white-box”
modelling software [201]. Juricic et al. [202] considered the effect of natural weather
variability in the identification of building envelope characteristics using these model
types, showing how approximately two weeks of data are sufficient to achieve adequate
accuracy. Finally, Baasch et al. [203] compared the performance of different “grey-box”
methods in the derivation of thermo-physical properties from smart thermostat data
acquisition (i.e., directly from temperature data instead of energy and temperature data),
showing promising results.

“Grey-box” models can be also converted to “black-box” (i.e., statistical and machine
learning models) for specific applications, for example control [204] or monitoring of
internal conditions [205,206].“Black box” models are computationally efficient but they
need to be trained on data before being deployed. As a result, “grey-box” models can be
viewed as an intermediate stage between “white-box” and “black-box” models, and many
examples of implementations have been found in recent years, ranging from experimental
test facilities for building technologies [207] and construction components [208], to
incorporation into the Building Information Modeling (BIM) workflow [209], and even to
integrated room automation [210].

In addition, regression-based and “grey-box” model capabilities can be used in the
Bayesian analysis framework. Bayesian analysis is suitable, for example, to ‘reconstruct’
building data (by estimating its characteristics) under uncertainty [80-82] or to evaluate
the robustness of “grey-box” model estimates with respect to variable operating
conditions [211] using Monte Carlo simulation methods [212], to reproduce realistically
uncertain operating conditions.

What appears to be important for future research in this area is to increase the
transparency of the modelling process by means of harmonised methodologies (using
uniform rules and interpretable models as shown above) in order to verify and monitor
output efficiently and to boost their level of automation without increasing complexity
unnecessarily. Furthermore, the role of building automation [72,213] and monitoring
systems [214,215] is crucial to understand the real dynamic behaviour of buildings by
means of detailed data that can of course, complement energy metering, which represents
the basic level of knowledge. Surrogate physical-statistical models (i.e.,, “grey-box”
models) can be implemented also as “digital twins” (i.e., digital reproductions of the
dynamic behaviour of their physical counterparts) at the level of construction
technologies [216,217]. As a conclusion, in this Section we highlighted how harmonized
methods for energy performance analysis are essential from multiple stand-points and
how statistical and physical-statistical approaches are crucial for the evolution of energy
research in buildings. Indeed, the methods reported and discussed in this Section can
complement research on energy demand in end-uses based on epidemiology concept
[218,219], providing however robust evidence on the performance of technologies and
systems using empirically grounded methods, based on M&V principles.
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4.3. Energy Flexibility and Occupant-Centric Energy Modelling

Energy flexibility in buildings [105] and occupant-centric energy modelling [106] for
building design and operation are important research topics at present and they are
directly addressing changes in fundamentals components of energy systems, such as users
and energy infrastructures. Therefore, the topics discussed in this Section are
complementing the ones in Section 4.1, focused on the potential of building performance
analysis at scale, and Section 4.2, focused on harmonised methods for energy performance
analysis (static and dynamic), showing how innovative concepts can contribute to reshape
building design and operation strategies in the future. The analysis of the “mismatch”
between building load profiles and on-site generation profiles (e.g., using PV power
generation) has received a great deal of attention in recent years [41], due to the necessity
of managing electric grid with increasing penetration of renewables. In this context, the
concept of energy flexibility has been introduced to account for the dynamic interaction
between end-user and electric infrastructures. Energy flexibility can be defined as the
ability to control demand and supply according to consumer needs, grid conditions and
climate [220]; an extensive review on this concept has been written by Reynders et al. [42].
There exist multiple options for increasing flexibility at the energy system level [136] and
“soft-linking” of modelling approaches is increasingly important for energy planning and
operation purpose [25,137]. More specifically, flexibility in buildings depends on the
ability to use storage resources and to act on devices (including HVAC) after a trigger
(e.g., time, power, energy price, etc.). Heating Ventilation and Air Conditioning
(HVAC)systems are crucial because of their impact on the overall consumption of
buildings and because of the potentially active role in energy infrastructure for demand
response [221] and for absorbing surplus of energy from renewables [222]. From a
technical perspective, energy flexibility in buildings can be exploited to shape building
load profiles or to maximize the amount of energy that is self-consumed on-site [223,224],
thereby increasing the matching between demand and on-site generation. The flexibility
potential can be determined by the thermal inertia of building construction components
(thermal mass) and by the presence of technical systems with storage (thermal and/or
electric). Indeed, the exploitation of on-site renewables in buildings requires the adoption
of technologies such as photovoltaics, heat pumps and energy storage [225]. Further, on
the infrastructure side, flexibility requires an evolution of standardization of
communication protocols to ensure efficient operation [226] and the results in this sense
can determine a relevant change for the electric energy system as a whole [227], which
may be combined with (and pushed forward by) consumer centric innovations in business
models [228]. Specific KPIs [229] are required to describe flexibility potential and a large
part of research at the state of the art concentrates on strategies to unlock it by means of
control strategies [229,230], considering also related topics such as appropriate levels of
modelling complexity and effort for their implementation [231]. In Table 6 we report an
analysis of control strategies aimed at building flexibility for different end-uses and
services using the same abbreviations as in Table 4. In Table 6 we consider the control
objective in relation to flexibility, namely Load Shaping (LS) and On-site Renewable
Maximization (ORM), following the arguments reported above. Additionally, the control
types considered are Rule-Base Control (RBC), Optimal Control (OC) and Model
Predictive Control (MPC). In Rule-Base Control rules are designed to fulfil a certain
control objective but are not designed to achieve optimization of the overall system
behaviour. In Optimal Control the control strategy is defined as an objective function to
be optimized but doesn’t include a prediction for the future. In Model Predictive Control
the strategy is defined by means of an optimization performed with a certain control
horizon (usually 24/48h); a comprehensive review on MPC has been written by Drgona et
al. [232]. Further, we indicate the technical elements on which control strategies are
focused. Also in this case, control strategies can be used for both residential and non-
residential buildings a can exploit flexibility of heating, cooling and DHW demand by
using the thermal storage capabilities of building fabric and technical system (e.g., water
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Table 6. Control strategies aimed at building flexibility for different end-uses and services.

storage tanks). What appears to be fundamental, both in predictive and non-predictive
cases, is the definition of dynamic operating schedules and set-points trajectories that are
constrained by comfort requirements for heating and cooling services. However, the
implementation of a detailed comfort model is challenging, due to the characteristics of
control-oriented modelling approaches, and, for this reason, simplifications are generally
considered when defining operational boundaries (i.e., the constraints for operation).
Finally, the dynamic interaction with the grid is particularly important when dynamic
tariffs are present and optimized control strategies have to consider the cost of imported

and exported energy on a dynamic base.
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De Coninck et al. [233] 2014 v v LSI;/([) R RBC v v v
Klein et al. [234] 2015 v v VY LSI;/([) R RBC v v v
Le Dréau and
Heiselberg [235] 2016 v v LS RBC v v
Dar et al. [236] 2014 v v v Lsﬁ/([)R RBC v v v v
Reynders et al. [237] 2015 v v LS RBC v
Turner et al. [238] 2015 v v LS RBC v v v
. LS,OR
Esfehani et al. [239] 2016 v v v M RBC v v
Alimohammadisagva
nd et al. [240] 2016 v v v LS RBC v v
Salpakari and Lund LS,OR RBC,
[241] 2016 v v v v M OC v v v v v
RBC,
Masy et al. [242] 2015 v v v LS ocC v v v
PS“"}E;;;’S etal o9 v v / v 1S RBC v v v v v
Bee et al. [223] 2019 v v v LS RBC v v v
Oliveira Panao et al. 2019 v v LS RBC v v v
[243]
Vivian et al. [244] 2020 v v LS RBC v v v v
De Coninck and
Helsen [245] 2016 v LS OC v v
Halvgaard etal. [246] 2012 ¢ v LS MPC v v v
Maasoumy Haghighi VARV LS MPC v v Y
[247]
Corbm[gzs] Henze o017 v v v LS MPC v v Y v
Corbin and Henze LS,OR
[249] 2017 v v v M MPC v v v v
Lindelof et al. [250] 2015 v v LS MPC v v
Garnier et al. [251] 2015 v v Y LS MPC v v v
Kandler et al. [252] 2015 v v LSI;/([) R MPC v v v
Blum et al. [253] 2019 v v v LS MPC v v v v
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It is worth noticing that there exists a potential methodological continuity between
M&V practices at the state of the art, presented in Section 4.2, and innovative control
strategies that represent an evolution of weather compensated control. This can be
achieved, for example, using dynamic re-setting of heating and cooling curves [234] and
machine learning algorithms whose performance can be tested and compared
transparently in different weather conditions [250]. In general, by integrating regression
modelling and clustering, it is possible to analyse variations of dynamic operational
trajectories [134,156]. User behaviour has a huge impact on all the building services
reported in Table 3 and, in recent years, an increasing research effort has been put on
“Occupant-Centric Building Design and Operation” [106], as already mentioned before in
the text.In particular, extensive reviews on this broad topic have been published recently
[32], describing tools, methods and applications; more specific reviews have been
dedicated to occupancy and behaviour modelling [254] and to occupant-centric control
strategies [255]. The practical necessity to adapt modelling strategies in response to the
purpose of the specific study (e.g., design, management, etc.) is indicated with the term
“fit-for-purpose” [73]. Considering energy performance in a whole life cycle perspective,
the variability of people behaviour and occupancy patterns has to be considered already
at the early design stage, in particular in high efficiency and Nearly Zero Energy Buildings
(NZEBs) [256]. After that, in the operation stage, occupancy can be measured in different
ways [257] and data can be used to conduct realistic simulations [258]. In any case, as
reported before, modelling occupancy patterns and user behaviour may require strategies
that are customized (i.e., “fit-for-purpose”) for the specific problem to be addressed: one
possible solution is that of generating parametric or probabilistic occupancy profiles and
modelling all the related variables (e.g., internal gains due to people and appliances, air
change rates, etc.) in a transparent way [259,260]. This approach has been used, for
example, to analyse building performance gap [261]. Realistic occupancy profiles are
fundamental to address not only energy services but also to investigate related issues such
as thermal comfort [262], Indoor Environmental Quality (IEQ) [263-265] and electric load
profiles [266], among others.

As a conclusion, what appears to be important for future research in this area is
increasing the transparency of the modelling process and linking it to harmonized
methodologies (presented in Section 4.2) to verify and track performance efficiently
without increasing unnecessarily the complexity of models themselves (i.e., maintaining
an appropriate balance). Further, the role of building automation and monitoring systems
is critical to understand the real dynamic behaviour of buildings. For example, data
collected by monitoring systems [214,215] and/or automation systems[72,213] enable the
performance characterization of envelope [160] and technical systems [267], together with
occupancy patterns [257], already mentioned. Building performance monitoring and
modelling can exploit also advances in IoT technologies [268] and open software [269],
leading to innovative applications for energy and environmental management [270]. The
possibility to rely on a combination of simulation methods and empirically grounded
techniques for M&V can open interesting research opportunities in these areas.

4.4. Summary of Research Findings

In this section we describe the concepts emerging from studies that are in the
intersections of the three levels of analysis presented in Sections 4.1-4.3, respectively. For
this reason, we report in Table 7 the source, the level of analysis and the relevant concepts
for the integration of energy modelling and data analytical processes. First, we can see
how statistical reference buildings and parametric modelling represent the necessary
basis for building energy modelling at multiple scales [80-82,103]. After that, “white-box”
and “grey-box” modelling approaches can be integrated using a hierarchical multi-level
approach [74] where “macro-parameters”[75] (aggregated, lumped quantities) are used
as a mean to validated/calibrate more detailed model [80,118]. In turn, “grey-box” models
based on regression and time series can guarantee empirically grounded “boundaries” for
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the estimation of building performance (providing harmonized methods) that may be
used in multiple applications, while retaining a physical interpretation of the coefficients.
The interpretability of models can provide multiple insights that can be exploited for the
continuous improvement of technologies and practices (i.e., the PDCA approach [132]).
Additionally, by combining regression, time series and clustering [134,156] it could
possible to identify recurrent patterns in user behaviour [73,106] and in infrastructures’
interaction [25,105,136], with a more precise quantification of the actual flexibility
achievable. Both aspects (user behaviour and infrastructures’ interaction) have to be
considered in innovative business models for buildings where traditional Energy
Performance Contracting is combined with innovative features [179] to ensure
competitiveness and adequate level of services. Finally, data from automation and
monitoring systems [72,160,213-215] are necessary to enable in depth analysis of
performance, even though dynamic energy metering can be considered as the
fundamental layer of information [214,215].

Table 7. Articles at the intersection of levels of analysis.

Source Level Year Pattern Identified Paper Title
UK office buildings archetypal model as methodological
Calleja Rodriguez 112 2013 Reference building approach and approach in development of regression models for predicting
et al.[75] parametric modelling building energy consumption from heating and cooling
demands
Goeletal [103]  #1#2 2016 Reference buil(%ing apprf)ach and Streamlining Building Efficiency Ex./aluation with DOE’s Asset
parametric modelling Score Preview
Zhaoetal. [81]  #1#2 2016 Reference buil(%ing apprf)ach and Reconstructing building stock to replicate energy consumption
parametric modelling data
Ref ildi h Revi hasti i hods f ildi
Lim et al. [82] #4001y Reference bui d.mg appr'oac and eview on stochastic modeling 1’1"1615 ods for building stock
parametric modelling energy prediction
A hi hical ian f fi librati icro-level
Boothetal. [80]  #1#2 2013 Multievel calibration ierarchical bayesian rémework or calibrating micro-leve
models with macro-level data
Yang and Becerik- 182 2015 Multi-level calibration A model cahbratlorjl fr.amework for 51mul‘tane0us multi-level
Gerber [74] building energy simulation
Methodologi dad ts in the calibration of
Fabrizio etal. [118] #2#3 2015 Multi-level calibration ethiodologies and advancements I e caiibration o
building energy models
Buildi del calibration: A detailed tudy usi
Guyotetal. [77]  #1#2 2020 Multi-level calibration Hticing energy moce’ catbration: A detared case study using
sub-hourly measured data
Regression-based approaches at . . . . .
A lust thod to identify outl dd 1
Jalorietal. [134]  #2#3 2015 multiple temporal and spatial new CIUSIEHNg MEHOT 10 Identily outiers and ciuma
. schedules from building energy interval data
scale of analysis
Regression-based approaches at A unified inverse modeling framework for whole-building
Jalorietal. [156]  #2#3 2015 multiple temporal and spatial ~ energy interval data: Daily and hourly baseline modeling and
scale of analysis short-term load forecasting
Regression-based approaches at .
E Perf Methodol B
Ligier etal. [179] #2603 2017 multiple temporal and spatial ~ L1c'8Y Performance Contracting Methodology Based upon
. Simulation and Measurement
scale of analysis
Regression-based approaches at Degree-day based non-domestic building energy analytics and
Mengetal. [92]  #1#2 2017 multiple temporal and spatial modelling should use building and type specific base
scale of analysis temperatures
Gaetanietal. [73] #1#3 2016 User behavioural analysis Occupant beha‘vwr in building energy simulation: Towards a
fit-for-purpose modeling strategy
IEA EBC-A! 79- - ic Building Desi
IEA-EBC[106]  #1#3 2017  User behavioural analysis C-Annex 79-Occupant-Centric Building Design and
Operation
Flexibili -
IEA-EBC[105] #1#3 2014 | iexibility and dynamic EBC Annex 67 Energy Flexible Buildings
interaction with infrastructures
Lund etal [136] #1#3 2015 Flexibility and dynamic Review of energy system flexibility measures to enable high

interaction with infrastructures levels of variable renewable electricity
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Dominkovic et al.

Flexibility and dynamic Implementing flexibility into energy planning models: Soft-

# o Ly : )
(25] #1#3 2020 interaction with infrastructures linking of a high-level energy planning model and a short-term
operational model
Ahmad et al. [214] #243 2016 Automation systems, Building energy mete.rmg and e?nvu‘.onmental monitoring—A
measurements, Sensors state-of-the-art review and directions for future research
Asteetal [72] #1243 2017 Automation systems, Building Autolm'fltio.n and Control Systems and Performance
measurements, sensors optimization: A framework for analysis
Carstens et al. Automation systems, Measurement uncertainty in energy monitoring: Present state
#243 2018
[215] measurements, SEensors of the art
Monitori t lysis f luati ilding’
Giraldo-Soto et al. Automation systems, onitoring system analysis for evaluating a.bul ing's
#2#3 2018 envelope energy performance through estimation of its heat
[160] measurements, sensors .
loss coefficient
. Model Predictive Control (MPC) for enhancing building and
Automation systems, .. .
Serale et al. [213]  #2#3 2018 HVAC system energy efficiency: Problem formulation,

measurements, sensors .o s
applications and opportunities

As explained above, energy modelling and data analytical processes can be
integrated in systems of models. Ideally, the creation of systems of standardized or
harmonized “surrogate” physical-statistical models (i.e., “grey-box” models), which can
be implemented in cyber-physical systems could represent a major breakthrough for
energy modelling research. It can guarantee, for example, the possibility to act coherently
at multiple levels in energy systems, using data analytics as a common background, and
to create a certain degree continuity of performance analysis process during building life
cycle, from design to operation phase. As discussed in Section 4.2, this result may be
achieved by means of regression-based modelling approaches that combine conceptual
simplicity and ease of implementation with adequate performance, in terms of analytics.
In the next Section with indicate future research work that can be based on the outcomes
of this research.

5. Further Work

Further research work could focus on knowledge mapping to enhance the integration
and transparency of data within a modelling framework for energy in buildings, able to
act at multiple levels. In Section 4.4 we described the points of contact between the
multiple levels of analysis considered and we indicated how “surrogate” physical-
statistical models (i.e.,, “grey-box” models that can be implemented in cyber-physical
systems) could potentially work in “ecosystems” of applications. “Ecosystems” of models
can address different types of end-uses (i.e., residential and non-residential), technological
domains (i.e., heating, cooling, DHW, appliances) and applications (e.g., energy
management, control, fault detection, environmental monitoring, etc.) while sharing a set
of common underlying principles and rules. In this sense, surrogate models can act as
“digital twins,” that is to say digital reproductions of the dynamic behaviour of their
physical counterparts (or systems). Harmonization and technical standardization play an
essential role to avoid redundancy, multiplication of efforts and unnecessary increase of
complexity of procedures. In fact, this could be the case of technical issues affecting
multiple levels of information in the built environment, such as energy efficiency and
flexibility or behavioural modelling and occupant-centric design and operation, described
in Section 4.3. As mentioned in the introduction, building data interoperability [17] using
common data exchange formats is necessary to increase the digitalisation and automation
of buildings. The use of semantic web technologies [271] and standards based on IFC
could support not only design but also operation (e.g., energy and environmental
monitoring) [272], employing “surrogate” modelling strategies (physical/statistical,
“grey-box”) [209] compatible with the above mentioned principles. Finally, as introduced
in Section 2, the research presented in this paper is part of a broader investigation, focused
on the concept of “Buildings-as-Energy-Service”: new forms of knowledge integration are
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needed to develop innovative services and products that can work as “ecosystems” and
exploit this concept.

6. Conclusions

Energy transitions involve the transformation of the network of players and
organisations that have traditionally worked in the energy sector along with new roles for
customers. Radical innovation in the energy sector will have an impact on multiple
domains in the construction sector (e.g., project, product and service). In this paper, we
reviewed ongoing research on energy modelling and analytical tools that could support
energy transition processes for the construction sector. In particular, we discussed how
harmonised methods for analysing and tracking energy performance (Section 4.2) and
innovative concepts such as flexibility and occupant-centric design and operation (Section
4.3) could contribute to a radical change in the built environment, using similar principles
of analysis for actions that involve multiple scales (Section 4.1).The review process has
been articulated according to three levels of analysis, introduced in Section 3 and reported
in Section 4, ranging from general concepts to specific issues and we provided a summary
of research findings as a set of interrelated concepts (Section 4.4). Overall, we identified
criteria for energy modelling and analytical techniques (i.e.,, empirically grounding,
scalability, harmonization, interpretability and re-configurability), that, in our opinion,
constitute constraints to the creation of “ecosystems” of energy models aimed at
supporting energy transition processes at multiple levels in the built environment.
Regarding the first level of analysis (Section 4.1), systems of models can contribute to the
creation of robust empirically grounded studies regarding efficiency for energy policy and
utility scale actions. With respect to the second level (Section 4.2), they can be used to
integrate data at multiple temporal and spatial scales, streamlining the analytical
workflow (starting from consolidated M&V and M&T practices) and they can provide
approximated physical interpretation of results, thereby increasing the transparency of
modelling. Finally, in the third level (Section 4.3) they can help increasing energy
flexibility in the interaction with infrastructures and improving the level of energy
services in an occupant centric (design and operation) perspective. In all the levels
considered in this review, we stressed the importance of studies that are empirically
grounded and that can provide robust evidence for informing future research and policy.

As discussed in Section 5, these principles can constitute the basis for further research
work, focused on developing specific applications built on top of them. In fact, the
research proposed is part of a broader research activity focused on the “Buildings-as-
Energy-Service” concept and the creation of a Tool Kit for knowledge integration
regarding this topic, with the support of Cognitive Mapping technique. New forms of
knowledge integration are needed to develop innovative services and products and this
Tool Kit may be used to engage multiple users in the process of knowledge creation and
sharing. Conceptualization is fundamental in innovation studies for energy and
sustainability transitions but while general concepts can be clearly understood, what is
still unclear is how these concepts can then translate into specific projects, products and
services for energy transitions in the built environment, using innovative business
models. Tools for knowledge integration can give a contribution in this sense.

Further, the problem of data accessibility has to be considered as well. The lack of
detailed data or inadequate data reliability due to non-standardized collection procedures
can be addressed using harmonized methodologies (described in Section 4.2). At present,
this is causing a knowledge gap that undermines informed policy choices in the energy
transition process (as well as in many other processes). Sensors, the Internet of Things
(IoT), together with processes of automation and digitalisation described in this paper,
could enable access to a greater amount of data for the building stock. In this context, it
will be important to create open data repositories about technology, energy demand for
end uses and weather data. Standardized and up-to-date data could enable transparent
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and consistent modelling processes at multiple scales of analysis, partially reducing the
effort and stimulating the development of innovative energy technologies and services.
As a conclusion, in this paper we proposed a reflection on concepts that can help
structuring future R&D activities and we highlighted a potential way to increase
transparency, robustness and reproducibility in modelling by linking general principles
emerging from the state of the art of research, to specific applications, employing
harmonized methods as the core element. We believe that sharing information and
making it more transparent and easily accessible can support multiple communities
involved in R&Dfor energy transitions overcoming social and technical issues that may
hinder the radical shifts that are necessary for long-term built environment sustainability.
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