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Abstract: This paper presents a new intelligent islanding detection scheme (IIDS) based on empirical
wavelet transform (EWT) and long short-term memory (LSTM) network to identify islanding events
in microgrids. The concept of EWT is extended to extract features from three-phase signals. First,
the three-phase voltage signals sampled at the terminal of targeted distributed energy resource
(DER) or point of common coupling (PCC) are decomposed into empirical modes/frequency sub-
bands using EWT. Then, instantaneous amplitudes and instantaneous frequencies of the three-
phases at different frequency subbands are combined, and various statistical features are calculated.
Finally, the EWT-based features along with the three-phase voltage signals are input to the LSTM
network to differentiate between non-islanding and islanding events. To assess the efficacy of the
proposed IIDS, extensive simulations are performed on an IEC microgrid and an IEEE 34-node sys-
tem. The simulation results verify the effectiveness of the proposed IIDS in terms of non-detection
zone (NDZ), computational time, detection accuracy, and robustness against noisy measurement.
Furthermore, comparisons with existing intelligent methods and different LSTM architectures
demonstrate that the proposed IIDS offers higher reliability by significantly reducing the NDZ and
stands robust against measurements uncertainty.

Keywords: empirical wavelet transform; islanding detection; long short-term memory network;
non-detection zone

1. Introduction

The integration of distributed energy resources (DERs) into distribution networks
has significantly increased with the growing demand for uninterrupted and clean power
for sustainable energy supply. However, it is imperative to disconnect the DERs from the
rest of the network during an unintentional islanding event owing to (1) safety concerns
for working personnel and DERs, (2) uncoordinated protection, (3) loss of control over
frequency and voltage, and (4) inadequate grounding [1,2]. According to the IEEE stand-
ards, the islanded DER should be disconnected from the rest of the network within 2 s [3].

Several islanding detection methods (IDMs) have been developed, which can be
broadly grouped as centralized and local methods [4]. The centralized IDMs use commu-
nication channels and advanced signal processing techniques to detect islanding events
[5]. The schemes identify the islanding event by using a communication network between
the DERs and the substation. These methods include power line carrier communication
[6], supervisory control and data acquisition systems, wide area phasor estimation, re-
mote-end measurements [7], and transfer trip [8]. The centralized IDMs have a very small
NDZ and hence offer high reliability and security. However, they are not preferred be-
cause of their complex structure, high implementation cost, and possible communication
failure [9].
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The local IDMs monitor the electrical parameters retrieved at the terminal of the tar-
geted DERs or PCC. Variations in the parameters beyond a pre-specified threshold value
depict an islanding event. The local IDMs can be further classified into active and passive
IDMs [9-20]. In active IDMs, a small disturbance is injected into the electrical networks,
and the signal is measured and analyzed at the terminal of DERs or PCC. During normal
operation, the main utility maintains the parameters close to nominal values, and the
small disturbance cannot significantly affect the parameters. However, when islanding
events occur, the injected disturbance has a significant effect on the network parameters
[9]. The active IDMs are relatively slow compared to centralized IDMs owing to the in-
trinsic reaction time of the power system. A few important active IDMs are the active fre-
quency drift (AFD) [10], impedance measurement method [11], and Sandia frequency shift
(SFS) [12]. Various active IDMs are developed for inverter interfaced DERs by modifying
their control system. These IDMs either introduce positive feedback of voltage, increase
reactive and real power references [13,14], or inject d-axis current [1]. The active IDMs
have a very small NDZ. However, they have various drawbacks which include (1) re-
duced power quality, (2) complex controller modifications for inverter interfaced DERs,
(3) unwanted transient behavior, and (4) performance reduction in case of multiple DERs
[2].

Passive IDMs use a fixed or an adaptive threshold value on time and/or frequency
domain signatures to differentiate between islanding and non-islanding events. The
threshold-based time-domain passive IDMs [15,16] are easy to implement and economi-
cal; however, they have a significantly larger NDZ. The frequency-domain passive IDMs
[9,17,18], employ signal processing methods to obtain islanding signatures. The passive
IDMs have convincing performances in the situations of large power mismatches. How-
ever, the performance decreases significantly if the mismatch is small. Moreover, the se-
lection of a threshold value for all operating conditions is a challenging task.

To overcome the issues of passive IDMs, modified passive IDMs have been devel-
oped [18-22]. In these IDMs, firstly, the signal processing schemes are employed to extract
the distinct features from the power system parameters; afterward, artificial intelli-
gence/machine learning techniques are used to differentiate islanding patterns from non-
islanding ones. The methods include random forest [19], probabilistic neural networks
[20], artificial neural networks [21,22], and support vector machine [23].

The above-presented IDMs have tried to improve detection performance from differ-
ent aspects. However, each method has some limitations; centralized IDMs are complex,
uneconomical, and prone to communication failure, whereas active IDMs deteriorate the
power quality. Passive IDMs have low speed and a large NDZ. Besides, some methods
are only applicable to inverter-based DERs. Therefore, it is vital to design a comprehensive
and intelligent islanding detection scheme that upholds its performance for all types of
system operating conditions and DERs.

This paper develops an intelligent islanding detection scheme (IIDS)-based on the
empirical wavelet transform (EWT) and long short-term memory (LSTM) networks. First,
the three-phase voltage signal is retrieved at the terminal of a targeted DER unit or PCC.
Then, the EWT is used to decompose the three-phase voltage signal into empirical modes
(EM). Next, the Hilbert transform is employed to compute the instantaneous amplitudes
and instantaneous frequencies of each phase. Afterward, the joint instantaneous ampli-
tude and frequency are calculated from the amplitudes and frequencies of the three
phases. Later, various statistical features are extracted from the joint instantaneous ampli-
tude and frequency. Finally, the features along with the three-phase voltage signals are
input to the LSTM network to differentiate between islanding and non-islanding events.
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The main contributions of this study are as follows:

(1) Intelligent islanding detection: An IIDS based on EWT and LSTM is proposed. The con-
cept of EWT is extended for islanding detection problems. Unlike existing methods,
the proposed scheme extracts the features using signal-adaptive filter banks;

(2) Long short-term temporal features: The proposed scheme employs an LSTM network
for extracting the long and short-term temporal dependencies from the three-phase
voltage to improve the islanding detection performance;

(3) Comprehensive Islanding Detection Method: Extensive simulations are conducted on
two standard distribution networks, and the results confirm that the proposed IIDS
has a very small NDZ and can differentiate islanding events from non-islanding
event and faults. Furthermore, the proposed IIDS is applicable to both synchronous-
based DERs and inverter-based DERs.

Comparisons with traditional artificial intelligence techniques show that the pro-
posed IIDS has superior performance under perfect as well as noisy measurements. Fur-
thermore, tests on various LSTM network architectures validate that the proposed archi-
tecture offers superior training and testing accuracies.

The rest of the paper is structured as follows: Section 2 introduces background the-
ory. Section 3 provides the details of the proposed IIDS. Section 4 describes the test system
and islanding data generation. Section 5 presents the simulation results. Finally, the paper
is summarized in Section 6.

2. Background Theory
2.1. Empirical Wavelet Transform

An EWT is a recently developed non-stationary transform [24] that decomposes a
signal into different frequency sub-bands by building signal-adaptive wavelet filters
[24,25]. The wavelet-filters are designed based on the Fourier spectrum of the analyzed
signals. The sub-bands signals are called EMs and have a compact-frequency-support. The
EMs are centered on a specific-frequency, hence fulfilling the criteria of intrinsic-mode
function. The process of EWT involves three steps. First, the fast Fourier transform is em-
ployed to calculate the frequency spectrum of the analyzed signal in the frequency range
of [0, r]. Then, the EWT boundary detection method is applied to divide the obtained
spectrum into N contiguous segments. Each segment boundary is represented as wm,
whereas the starting boundary wo is 0 and last boundary wnw is 7. Consequently, the seg-
ments of the Fourier spectrum can be denoted as [0 w1], [w2 w3],...., [wn-17t]. Finally, em-
pirical wavelets are defined as band-pass filters on each adjacent segment. In this study,
Littlewoods-Paley and Meyer’s wavelets have been employed to design the wavelet filter
for each segment.

The empirical scaling ¥;(»w) and empirical wavelet g¢;(w) function can be ex-
pressed as [24]

{ 1 if ol < (1 -
¥, (w) = JCOS(EB(& wn), if (1-8&aw, < ol o
I <A+dHwn,
k 0 Otherwise
1

it (1 + Oom < 0] < (= Hom
cosCB(E Wmer),
@i(w) = if (1-wp <ol <A +Hon, ()
sinC (&, wm),
if 1=-8w,<|o|<A+Hw,
0 Otherwise

where
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B(E, wp) = F(ZE=D2%) @3)

28wm

The parameter & ensures that the empirical wavelet and scaling functions form a com-
pact frame. Therefore, the parameter £ should meet the following criteria.

P Wi+1~Wi
§ <min, (2252), @
where
Fx)={Fx)+F(1-x)=1, Vv x€[01]. G)
1, if x>1

After designing the set of signal-based band-pass filters, the detail and approxima-
tion coefficients are calculated from the inner-product of the input signal with wavelet
and scaling functions. The detail and approximation coefficients are then used to obtain
the empirical modes yy :

Yo(t) = WF(0,1) * ¢y (), (6)
Yie(8) = W (k, t) * Py (). @)

2.2. Long Short-Term Memory Networks

An LSTM recurrent neural network (RNN) is an effective deep learning network that
is used for sequential data modeling. LSTM models prevent the gradient vanishing prob-
lem and enable the network to learn long-term temporal dependencies. They are exten-
sively used in the time-series classification owing to their robustness [26,27].

In LSTM networks, the hidden units of a standard RNN are replaced with memory
units. The memory units have memory cells with self-connections and enable the LSTM
to learn long-range temporal behavior. The structure of a basic LSTM memory unit is
shown in Figure 1; it consists of a memory cell and three gates: (1) a forget gate, (2) an
input gate, and (3) an output gate. The input gate regulates the incoming sequence to up-
date the current state of the memory cell. The forget gate decides about the information to
be discarded from the previous memory. Finally, the output gate controls the information
to be taken out as output from the current state of the memory cell. An LSTM network
maps an input sequence X = {x;,x,...,xr} to an output sequence/vector by calculating
the activation functions of all nodes. The formulations of all nodes are expressed as fol-
lows [26]:

gt = o(W™x, + W/™h,_, + B™), (8)
gl% = oW'9x, + W/9h,_, + BY9), )
g = o(W°x, + W'he_y + B?), (10)

¢ = gf"* ® tanh(Wx, + Wfh,_y + B°), (11)
he = g2 ® tanh(c,), (12)

where subscripts in, o, fg, and ¢ represent the input, output, forget gates, and memory cell,
respectively; @ indicates element-wise multiplication; o represent the sigmoid activation
function; B is the bias vector; and W and W; indicate input weights and recurrent weights,
respectively. Equations (8)—(12) simulate the relationship between output #; and input
x; using the trainable parameters. Supervised learning is used on known input and out-
put datasets to tune the parameters. The tuned parameters are then used to predict the
output values for new inputs.
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Figure 1. Basic structure of an LSTM memory unit.

The LSTM layers are usually followed by fully connected (FC) layers to develop high-
level decision logic. The FC layer consists of many neurons and maps the input #4; to
output y as follows:

y = ®(W/€ « h, + Bf©), (13)

where Wi and B are the learning parameters of the FC layer, while @ (.) is the activation
function.

3. Proposed Intelligent Islanding Detection Scheme

The study develops an IIDS-based on the EWT and LSTM. First, the three-phase volt-
age signal, retrieved at the terminal of a targeted DER unit or PCC, is decomposed into
EMs. Next, the instantaneous amplitudes and instantaneous frequencies of EMs for each
phase is computed by Hilbert transform. Afterward, joint instantaneous amplitude and
frequency are calculated from the amplitudes and frequencies of the three phases. Later,
various statistical features are extracted from the joint instantaneous amplitude and fre-
quency. Finally, the features and the three-phase voltage signals are input into LSTM net-
works to distinguish the islanding events from non-islanding events.

This section first describes the EWT for islanding detection. Then, the structure of the
LSTM network for islanding detection is presented.

3.1. EWT for Islanding Detection

The proposed IIDS uses three-phase voltage signals as the input to detect the island-
ing events. However, the EWT cannot be applied to three-phase signals without some
modifications. Therefore, to extend the idea of EWT for three-phase voltage signals, we
employ the concept of multichannel signals [25]. First, the EMs of each phase voltage sig-
nal are obtained by using EWT. Then, the Hilbert transform is used to calculate the instan-
taneous amplitude and frequency of each phase, which are combined to compute the joint
instantaneous amplitude and frequency at each EM. The criteria of obtaining joint instan-
taneous amplitude and frequency are that the frequencies of the EMs falling in the same
frequency level for each individual phase must be very close to each other. Therefore, the
critical task is to find the matched EMs for the three-voltage signals. The three-phase volt-
age signal at the terminals of a DER can be represented as

Va(t)
v(t) = [Ub(t)];
ve(t)

where v, (1), v(t) and v.(r) represent the voltages of phase 4, b, and c. respectively. As

(14)

EWT constructs signal-adaptive wavelet-filters, the EMs corresponding to different
phases may differ in number and frequency range. This creates problems in obtaining
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joint instantaneous amplitude and frequency. To overcome this issue, we used the mean
spectrum magnitude of the three-phase voltage, which can be obtained as follows [25]:

V(@) =3 e V@), (15)

where Vi (w) is the Fourier spectrum of voltage for phase k and 7 (w) is the mean spec-
trum. The mean spectrum is then used to design the adaptive wavelet filters. The means
spectrum ensures that each phase has an equal number of EMs and same frequency range
within an EM. Once the mean spectrum is obtained, the wavelet filters are designed to
decompose the voltage signal of each phase into EMs.

The first three EMs contains most of the signal information, so this study uses only
the first three modes for islanding detection. The decomposed three-phase voltage signal
v(t) can be represented as follows:

Vam1(t) Vamz(t) Vaums(t)
v(t) = [Vomr(t) Vpm2(t) Vemz (D), (16)
Vem1 () Vemz(t)  Vems(t)
where vy 3s, show the Mx empirical mode of phase k. Once the signal is decomposed into

narrow frequency modes, then Hilbert transform is applied to obtain the instantaneous
amplitude and frequency of each EM. The instantaneous amplitude 4 (1) of an EM

Mox of phase k is given as

A (0) = [ Wi, ()% + (H (Wi, ()%, (17)

where H represents the Hilbert transform operator. The instantaneous phase ¢y, (¢)

and instantaneous frequency f; s, (r) can be obtained from Equations (18) and (19), re-

spectively:
_ H (Ve (D)))
¢ m, (t) = arctan [—%MX o | (18)
Firy () = [bra, (O] (19)

The instantaneous amplitude A(t) and instantaneous frequency f{f) of the three-phase
voltage signal v(t) can be described as follows:

Aam, () Agm, (@) Agm, (B)
A(t) = |Apm, (@) Apu, () Apu, (D)), (20)
AC,M1 (t) AC,MZ (t) AC,M3 (t)

fam, (O fapm, (O famy ()
f@©) = fom, (O fom,©  fom, (O] (21)
fem () fem,(8)  fems (8)
The columns of Equations (20) and (21) represent the instantaneous amplitudes and
frequencies at different oscillatory levels, respectively.
Finally, the instantaneous amplitudes and frequencies of all the three phases are com-
bined to calculate joint instantaneous amplitude and frequency [25]:

A ) = Jzkzarb'c[Ak,M,,(t)]z, @)

D e MM O e

2
D A O]

NGE (23)
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The first three modes of the three-phase voltage signal under different switching and
islanding events are shown in Figure 2. All the events are simulated at 0.5 s. It can be seen
from the figure that the EMs obtained during an islanding event have different frequency
ranges than the capacitor switching and fault cases. Therefore, the EWT provides an intu-
itive way to decompose the three-phase voltage signal for islanding detection.
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Figure 2. Three-phase voltage signal and its EMs during: (a) Islanding event. (b) Capacitor switching. (c) AG fault.

3.2. Feature Extraction

Once the joint instantaneous amplitudes and frequencies of the first three EMs of the
three-phase voltage are obtained, the next step is to extract the suitable features. In the
proposed IIDS, we extract a series of statistical features from the joint instantaneous am-
plitude and phase of the first three EMs to develop the input feature vector for the LSTM
network. Precisely, this study extracts the following features from the joint instantaneous

amplitudes of EMs.

The skewness.
The kurtosis.

The energy of each oscillatory level.
standard deviation

The coefficient of variation: cov = p—
The mean monotonic absolute amplitude change, which can be obtained as fol-

joint
dA]MX ®

1
= B e

v=o |dt. (24)
T

The variance of monotonic amplitude change, which can be calculated as
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joint

1 X
o= ;f(“:i—t“) —v)?dt. (25)
T

Similarly, to include the information about the frequency components, the following
features are obtained from the joint instantaneous phase:

J The mean value of the joint instantaneous phase.

. The skewness of the joint instantaneous phase.

These features are extracted from the first three EMs; therefore, for each cycle of the
three-phase voltage signal 3 (EMs) x 8 (features) = 24 features are calculated. These gener-
ated features are later input into the LSTM network to distinguish the islanding events
from the non-islanding ones.

3.3. LSTM Structure for Islanding Detection

LSTMs are a type of RNN with multiple memory units between the input and output.
They are extensively employed for time series modeling and classification. The implemen-
tation of LSTMs only involves simple algebraic equations, providing a fast computation
speed. This feature makes LSTMs capable of handling data in real-time.

The proposed IIDS is developed based on the assumption that the three-phase volt-
age measurements can immediately indicate the occurrence of islanding events in the sys-
tem. This assumption is extensively accepted in the literature [9-20]. The proposed IIDS
is developed using one cycle of three-phase voltage measurement and the EWT-based
extracted features.

The proposed IIDS is constructed using LSTM memory units and FC layers. The
structure of the network used in this study is shown in Figure 3. In the network, we use
three LSTM layers, and three FC layers to process the three-phase voltage signals and
EWT features. The first LSTM layer maps the three-phase voltage sequence to a higher
dimension space, the next LSTM unit is employed to extract the short and long-term tem-
poral dependencies from the input sequence, and the last LSTM layer converts the de-
pendencies to single dimension vector. Afterward, a depth concatenation layer combines
the EWT based features with the output of the last LSTM layer. The first two FC layers
abstract the features, and the last one outputs whether or not the islanding event occurs
in the power system. The use of FC layers increases the risk of over-fitting. Therefore, a
dropout layer is used in the structure, which discards some features (30% in this study).
The discarded features do not participate in the result computation process.
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Fully connected layer-2

Figure 3. Flow chart of the proposed IIDS.

4. Test System and Islanding Data Generation

To validate the effectiveness of the proposed IIDS, various non-islanding and island-
ing events are analyzed on two standard test systems. The single line diagrams of the test
systems along with the possible islanding zones are shown in Figure 4. The first test sys-
tem contains two inverters based DERs and two synchronous machines based DERs. The
detailed information of the first test system has been obtained from [2]. The other system
is the modified IEEE 34-node radial distribution system with three DERs, which have been
used in [15]. The test systems were implemented in MATLAB/SIMULINK, and the pro-
posed LSTM network was constructed in python.
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Several islanding scenarios were simulated by varying the active and reactive power
demand and load types of each islanded zone. The islanding events within a zone were
generated by opening the circuit breaker that connects the zone to the rest of the network.
Similarly, the non-islanding conditions were generated by simulating: load and capacitor
bank switching, induction motor starting, and distribution line switching. Moreover, to
distinguish the islanding events from fault events, permanent faults were simulated at
various points on the network under different fault impedances from 0 to 100 Q. A de-
scription of all the simulated events are provided in Table 1. A total of 1764 islanding and
399 non-islanding events were generated for the first test system, whereas 1650 islanding
and 847 non-islanding events were generated for the IEEE-34 node test system.

The generated data of each test system was randomly divided into testing and train-
ing datasets in the ratio of 1:3. The training dataset was used to train the weights and
biases of the LSTM network, and the testing cases were employed to evaluate the perfor-

mance of the trained network.
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Table 1. Simulation scenarios of the test system.
Number of Events
T f Disturb -
ype of Disturbance IEC Microgrid IEEE-34 Node
System
Islanding by opening one of the circuit breaker from 1704 1600
CB1 to CB4 (AP: -50% to 50%, AQ: —25% to 25%)

Islanding (CB1 opening) with short-circuit power of

the substation as 400 MV A (AP: -50% to 50%, AQ: - 50

-25% to 25%)
All types of short-circuit fault with/without some 264 120

DERs and line out of service (Rf: 0.1-100 Q)
Load change and some DERs or lines out of service 60 400
Capacitor switching with/without some line out of 60 312
service

Induction motor starting (150-1000 HP) 15 15

5. Simulation Results and Discussion

To evaluate the efficiency of the proposed IIDS, the above-generated datasets were
employed to train and test the LSTM network structure. In the training phase, 70% of the
data were used. To remove the bias in the data, the non-islanding data samples were du-
plicated. The training was accomplished using the Adam optimization algorithm with a
mini-batch size of 64.

After obtaining the three-phase voltage signals, the continuous signal was sampled
at 3840 Hz. The IIDS was then employed to detect the islanding events in the network.
The performance of the proposed IIDS was validated by using three different indices: ac-
curacy, recall, and precision. These indices are obtained as follows:

cDIS
Recall = o (26)
. . cDIs
Precision = CDIS+NDAI’ 27)
NDAI+IDAN
Accuracy =1 — —ns (28)

where CDIS is the number of correctly detected islanding samples; TIS is the total number
of available islanding samples; NDAI is the number of non-islanding cases detected as
islanding cases; IDAN is the number of islanding cases detected as non-islanding; and
TNS is the total number of samples.

To validate the effectiveness, we compared the results obtained from the proposed
IIDS with the support vector machine (SVM), artificial neural networks (ANN), and Ran-
dom Forests (RF). The features extracted through the EWT were used as input to these
classifiers. The proposed IIDS and the other three intelligent classifiers were constructed
with Keras (a Python Toolbox). The following subsection presents various kind of simu-
lation results for the test systems given in the previous section.

5.1. Performance on IEC Microgrid

The performance of the proposed IIDS along with those of the SVM, RF, and ANN
for the IEC microgrid is shown in Figure 5. The results show that the precision of the
proposed IIDS is 100%, i.e., none of the non-islanding events were miss-detected as is-
landing events, whereas the ANN, SVM, and RF had precisions of 92.2%, 95.4%, and
93.7%, respectively. The recall of the proposed scheme was 98.9%. The recall index shows
the ability of a method to detect islanding events. Although the recalls of the SVM and RF
is very close to the proposed IIDS, the accuracies and precisions of these methods were
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much smaller. This means that the SVM and RF had the ability to detect the islanding
events correctly, but they could not differentiate between the switching/fault events and
islanding events. The overall performance of the methods can be depicted in terms of ac-
curacy. The accuracy of the proposed IIDS was 99.30%, whereas the ANN, RF, and SVM
had accuracies of 94.4%, 96.3%, and 95.1%, respectively. Therefore, it can be concluded
that the proposed IIDS has a better performance than the ANN, SVM, and RF. The im-
provement in the performance is due to the addition of LSTM layers to the network, which
extract the temporal dependencies of the three-phase voltage signal. In summary, the pro-
posed IIDS not only detects the islanding events successfully but also can differentiate the
islanding events from the switching events and short-circuit faults.
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Figure 5. Performance of the proposed IIDS on the IEC microgrid.

5.2. Effect of Noise

The impact of noise on the performance of the proposed IIDS was also investigated.
To simulate the effect of noise, we added white Gaussian noise to the three-phase voltage
measurement. Specifically, the simulations were performed with signal-to-noise ratios of
30-, 35-, and 40-dB. The proposed LSTM network and the other three networks were
trained with the noisy data. The performance of the proposed IIDS along with the com-
parison is shown in Figure 6.
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Figure 6. Effect of noisy measurement on islanding detection performance.

The simulation results show that the proposed IIDS has better performance than the
SVM, RF, and ANN for the noisy three-phase voltage signal. In the worst-case scenario
(30-dB), the performance indices of the proposed IIDS are higher than 95%. In contrast,
the noisy voltage measurement has a significant impact on the performance of the SVM,
ANN, and RF. In summary, the proposed scheme can detect the islanding events under
measurement uncertainties.
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5.3. LSTM Network Structure

This study uses the LSTM network, which comprises of three LSTM layers and three
FC layers for islanding detection. The number of layers is an important parameter that
significantly affects the performance of a network structure. In this study, various network
structures were designed by changing the number of LSTMs layers and FC layers to in-
spect the relationship between islanding detection accuracy and LSTM network structure.
The simulation parameters and training data were kept the same for all the structures. The
accuracy of the structures for islanding detection is presented in Table 2. It can be ob-
served from the table that three LSTM layers with three FC layers provide the most accu-
rate results on the testing dataset. Although the increase in the number of LSTMs layers
yields better training accuracy, the additional layers may introduce an over-fitting prob-
lem to the structure, worsening the performance on the testing dataset.

Table 2. Performance of the Proposed IIDS with Different Number of LSTM and FC Layers.

Number of LSTM Number of Fully Connected Layers
Layers 1 2 3 4
1 Training 93.51% 96.88% 97.54% 98.06%
Testing 92.14% 95.27% 97.04% 96.19%
5 Training 94.23% 97.77% 99.59% 98.29%
Testing 94.01% 97.91% 99.01% 96.17%
3 Training 96.45% 99.05% 99.85% 99.45%
Testing 96.06% 99.86% 99.15% 95.61%
1 Training 96.78% 99.78% 99.99% 99.26%
Testing 96.23% 98.71% 97.36% 95.23%

5.4. Non-Detection Zone

The NDZ is an important index for assessing the performance of an IDM. The NDZ
is the area in the AP-AQ plan in which an IDM fails to identify the islanding events. There-
fore, to determine the NDZ of the proposed 1IDS for synchronous based DERs, 441 power
mismatch events on the IEC test systems were simulated. The results obtained from the
proposed IIDS are shown in Figure 7a. The symbols “+” characterize the correctly identi-
fied islanding events (432 cases) and the dots “+” indicate the islanding events that are not
correctly detected by the proposed IIDS. Only eight (8) islanding events out of 441 were
undetected. Similarly, the NDZ of the proposed IIDS for inverter-based DERs is shown in
Figure 7b. In this case, 345 power mismatch events were simulated, and all the events
were successfully detected by the proposed scheme. Therefore, it can be concluded that
the proposed IIDS has a very small NDZ and can successfully detect islanding events un-

der small power mismatch conditions.
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Figure 7. NDZ of the proposed IIDS for (a) synchronous based DERs. (b) inverter based DERs.
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5.5. Performance on Modified IEEE-34 Node System

To evaluate the generality of the proposed IIDS, a modified IEEE 34-node system was
also simulated. Using a procedure similar to the one that was performed on the IEC mi-
crogrid, the islanding data, which was generated according to Table 1, was divided into
training and testing datasets. The performance indices are shown in Figure 8. It can be
observed from the results that the proposed IIDS provides a better performance than the
ANN, SVM, and RF for perfect as well as noisy three-phase voltage measurement.
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Figure 8. Performance of the proposed IIDS on modified IEEE-34 node test system.

It can be concluded from the results that the proposed IIDS can be used for any smart
distribution network for islanding detection.

6. Conclusions

In this paper, a new intelligent islanding detection scheme was developed to detect the
islanding events in microgrids. The proposed IIDS was developed based on the EWT and the
LSTM network. The concept of EWT was extended to extract features from the three-phase
voltage signals. The proposed IIDS employed the LSTM network to extract long and short-
term temporal features from the three-phase voltage signal to enhance its effectiveness. One
cycle of a three-phase voltage signal sampled at the terminal of a targeted DER or PCC was
used as the input to the proposed IIDS to differentiate between islanding and non-islanding
events. The developed strategy was tested and validated on two different standard test sys-
tems. All the simulation results confirmed that the proposed IIDS has the ability to differenti-
ate islanding events from non-islanding and faults events with a significantly small non-de-
tection zone for both inverter-based DERs and synchronous-based DERs. The measurement
uncertainty tests proved that the scheme can also work in a noisy environment. In summary,
the proposed IIDS can be employed to detect the islanding events in MGs containing both
inverter-based DERs and synchronous-based DERs.
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