Economic Determinants of Low-Carbon Development in the Visegrad Group Countries
Abstract
:1. Introduction
2. Air Pollution in the Visegrad Group Countries
- Industry;
- Waste management;
- Agriculture;
- Burning fossil fuels during electricity generation and heat;
- Transport and households.
3. Economic Development Versus Energy Consumption and Emission Level
4. Prospects for Low-Carbon Development in the Visegrad Group Countries
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Truong, A.; Piera, P.; Leduc, S.; Kraxner, F.; Ha-Duong, M. Reducing emissions of the fast growing Vietnamese coal sector: The chances offered by biomass co-firing. J. Clean. Prod. 2019, 215, 1301–1311. [Google Scholar] [CrossRef]
- Guo, R.; Zhao, Y.; Shi, Y.; Li, F.; Hu, J.; Yang, H. Low carbon development and local sustainability from a carbon balance perspective. Resour. Conserv. Recycl. 2017, 122, 270–279. [Google Scholar] [CrossRef]
- Kozłowski, K.; Pietrzykowski, M.; Czekała, W.; Dach, J.; Kowalczyk-Juśko, A.; Jóźwiakowski, K.; Brzoski, M. Energetic and economic analysis of biogas plant with using the dairy industry waste. Energy 2019, 183, 1023–1031. [Google Scholar] [CrossRef]
- Bedir, S.; Yilmaz, V.M. CO2 emissions and human development in OECD countries: Granger causality analysis with a panel data approach. Eurasian Econ. Rev. 2016, 6, 97–110. [Google Scholar] [CrossRef]
- Jeżowski, P. O niektórych problemach gospodarki niskoemisyjnej. Studia Polityki Publicznej 2017, 13, 45–64. (In Polish) [Google Scholar] [CrossRef] [Green Version]
- Chariri, A.; Nasir, M.; Januarti, I.; Daljono, D. Determinants and consequences of environmental investment: An empirical study of Indonesian firms. J. Asia Bus. Stud. 2019, 13, 433–449. [Google Scholar] [CrossRef]
- Sacio-Szymańska, A.; Kononiuk, A.; Tommei, S.; Valenta, O.; Hideg, E.; Gáspár, J.; Markovič, P.; Gubová, K.; Boorová, B. The future of business in Visegrad region. Eur. J. Futures Res. 2016, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Czyżewski, B.; Trojanek, R.; Dzikuć, M.; Czyżewski, A. Cost-effectiveness of the common agricultural policy and environmental policy in country districts: Spatial spillovers of pollution, bio-uniformity and green schemes in Poland. Sci. Total Environ. 2020, 726, 138254. [Google Scholar] [CrossRef]
- Klemeš, J.J.; Varbanov, P.S. Heat transfer improvement, energy saving, management and pollution reduction. Energy 2018, 162, 267–271. [Google Scholar] [CrossRef]
- Yuan, H.; Zhou, P.; Zhou, D. What is Low-Carbon Development? A Conceptual Analysis. Energy Procedia 2011, 5, 1706–1712. [Google Scholar] [CrossRef] [Green Version]
- Wójcik, A.; Wąsowicz, J. Greenhouse gas emissions as regards the sectors in the European Union countries. Public Policy Adm. 2017, 16, 672–685. [Google Scholar] [CrossRef]
- Sun, P.; Li, L.; Zhou, K. Carbon Emission and Endogenous Growth between Two Economic Systems. Front. Energy Res. 2021, 9, 652832. [Google Scholar] [CrossRef]
- Barbier, E.B. Is green growth relevant for poor economies? Resour. Energy Econ. 2016, 45, 178–191. [Google Scholar] [CrossRef] [Green Version]
- Piwowar, A.; Dzikuć, M. Poverty and Social Exclusion: Is this a Problem in Rural Areas in the Visegrad Group Countries? Eur. Res. Stud. J. 2020, 23, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Klemeš, J.J.; Dong, X.; Fan, W.; Xu, Z.; Wang, Y.; Varbanov, P.S. Air pollution terrain nexus: A review considering energy generation and consumption. Renew. Sustain. Energy Rev. 2019, 105, 71–85. [Google Scholar] [CrossRef]
- Bell, A.; Bunning, J.; Genxing, P.; Ishwaran, N.; Yi, Z. Low carbon land development: Is there a future for integration across sectors? Environ. Dev. 2019, 11, 175–189. [Google Scholar] [CrossRef]
- Czyżewski, B.; Matuszczak, A.; Kryszak, Ł.; Czyżewski, A. Efficiency of the EU Environmental Policy in Struggling with Fine Particulate Matter (PM2.5): How Agriculture Makes a Difference? Sustainability 2019, 11, 4984. [Google Scholar] [CrossRef] [Green Version]
- Dzikuć, M.; Dzikuć, M. Ekonomiczne determinanty ograniczenia emisji benzo[a]pirenu na obszarze Środkowego Nadodrza. Przemysł Chem. 2019, 98, 600–603. (In Polish) [Google Scholar] [CrossRef]
- Balmes, J.R. Household air pollution from domestic combustion of solid fuels and health. J. Allergy Clin. Immunol. 2019, 143, 1979–1987. [Google Scholar] [CrossRef]
- Air Quality in Europe—2020 Report; European Environment Agency, Publications Office of the European Union: Luxembourg, 2020; Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report (accessed on 10 May 2021).
- Zhang, Y.; Zhang, J. Estimating the impacts of emissions trading scheme on low-carbon development. J. Clean. Prod. 2019, 238, 117913. [Google Scholar] [CrossRef]
- Adamczyk, J.; Piwowar, A.; Dzikuć, M. Air protection programmes in Poland in the context of the low emission. Environ. Sci. Pollut. Res. 2017, 24, 16316–16327. [Google Scholar] [CrossRef] [PubMed]
- Kopczyński, M.; Lasek, J.; Iluk, A.; Zuwała, J. The co-combustion of hard coal with raw and torrefied biomasses (willow (Salix viminalis), olive oil residue and waste wood from furniture manufacturing). Energy 2017, 140, 1316–1325. [Google Scholar] [CrossRef]
- Du, H.; Chen, Z.; Mao, G.; Li, R.Y.M.; Chai, L. A spatio-temporal analysis of low carbon development in China’s 30 provinces: A perspective on the maximum flux principle. Ecol. Indic. 2018, 90, 54–64. [Google Scholar] [CrossRef]
- Frantál, B.; Nováková, E. A curse of coal? Exploring unintended regional consequences of coal energy in the Czechia. Morav. Geogr. Rep. 2014, 22, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Szatyłowicz, E.; Skoczko, I. Evaluation of the PAH Content in Soot from Solid Fuels Combustion in Low Power Boilers. Energies 2019, 12, 4254. [Google Scholar] [CrossRef] [Green Version]
- Czekała, W.; Bartnikowska, S.; Dach, J.; Janczak, D.; Smurzyńska, A.; Kozłowski, K.; Bugała, A.; Lewicki, A.; Cieślik, M.; Typańska, D.; et al. The energy value and economic efficiency of solid biofuels produced from digestate and sawdust. Energy 2018, 159, 1118–1122. [Google Scholar] [CrossRef]
- Tucki, K.; Mruk, R.; Orynycz, O.; Wasiak, A.; Botwińska, K.; Gola, A. Simulation of the Operation of a Spark Ignition Engine Fueled with Various Biofuels and Its Contribution to Technology Management. Sustainability 2019, 11, 2799. [Google Scholar] [CrossRef] [Green Version]
- Deja, J.; Uliasz-Bochenczyk, A.; Mokrzycki, E. CO2 emissions from Polish cement industry. Int. J. Greenh. Gas Control 2010, 4, 583–588. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.; Zhang, Q.; Tian, X.; Shi, S. Uncovering the impacts of industrial transformation on low-carbon development in the Yangtze River Delta. Resour. Conserv. Recycl. 2019, 150, 104442. [Google Scholar] [CrossRef]
- Kozłowski, K.; Dach, J.; Lewicki, A.; Malińska, K.; do Carmo, I.E.P.; Czekała, W. Potential of biogas production from animal manure in Poland. Arch. Environ. Prot. 2019, 45, 99–108. [Google Scholar] [CrossRef]
- European Commission. Available online: https://ec.europa.eu/ (accessed on 4 May 2021).
- Skjærseth, J.B. Implementing EU climate and energy policies in Poland: Policy feedback and reform. Environ. Politics 2019, 27, 498–518. [Google Scholar] [CrossRef]
- Kruszelnicka, W. Study of Physical Properties of Rice and Corn Used for Energy Purposes. In Renewable Energy Sources: Engineering, Technology, Innovation; Springer: Cham, Switzerland, 2020; pp. 149–162. [Google Scholar]
- Gavurova, B.; Perzelova, I.; Bencoova, B. Economic aspects of renewable energy use—Application of support schemes based on a particular biogas plant in Slovakia. Acta Montan. Slovaca 2016, 21, 217–228. [Google Scholar]
- Kalinichenko, A.; Havrysh, V. Feasibility study of biogas project development: Technology maturity, feedstock, and utilization pathway. Arch. Environ. Prot. 2019, 45, 68–83. [Google Scholar] [CrossRef]
- Eurostat. Available online: https://ec.europa.eu/eurostat (accessed on 10 May 2021).
- Koryś, K.A.; Latawiec, A.E.; Grotkiewicz, K.; Kuboń, M. The Review of Biomass Potential for Agricultural Biogas Production in Poland. Sustainability 2019, 11, 6515. [Google Scholar] [CrossRef] [Green Version]
- Krajowy Plan na Rzecz Energii i Klimatu na Lata 2021–2030—National Energy and Climate Plan for 2021–2030, Ministerstwo Aktywów Państwowych—Ministry of State Assets. 2019. Available online: https://www.gov.pl/ (accessed on 27 March 2021). (In Polish).
- Supreme Audit Office of the Slovak Republic. Available online: https://www.nku.gov.sk/aktuality/-/asset_publisher/9A3u/content/hrozi-ze-slovensko-nesplni-europske-zavazky-v-oblasti-zmeny-klimy-a-energetiky/pop_up?_101_INSTANCE_9A3u_viewMode=print (accessed on 13 May 2021). (In Slovak)
- Frankowski, J. Attention: Smog alert! Citizen engagement for clean air and its consequences for fuel poverty in Poland. Energy Build. 2020, 207, 109525. [Google Scholar] [CrossRef]
- Lieskovský, M.; Trenčiansky, M.; Majlingová, S.; Jankovský, J. Energy Resources, Load Coverage of the Electricity System and Environmental Consequences of the Energy Sources Operation in the Slovak Republic-An Overview. Energies 2019, 12, 1701. [Google Scholar] [CrossRef] [Green Version]
- Dzikuć, M.; Dzikuć, M.; Sinicakova, M. The social aspects of low emission management in the Nowa Sol district. Manag. Pol. 2017, 21, 237–249. [Google Scholar] [CrossRef] [Green Version]
- Dzikuć, M.; Kułyk, P.; Dzikuć, M.; Urban, S.; Piwowar, A. Outline of Ecological and Economic Problems Associated with the Low Emission Reductions in the Lubuskie Voivodeship (Poland). Pol. J. Environ. Stud. 2019, 28, 65–72. [Google Scholar] [CrossRef]
- Adamczyk, J.; Graczyk, M. Green certificates as an instrument to support renewable energy in Poland-strengths and weaknesses. Environ. Sci. Pollut. Res. 2019, 27, 6577–6588. [Google Scholar] [CrossRef]
- Forbes. Available online: https://www.forbes.com/sites/davekeating/2019/12/13/eu-leaders-agree-2050-climate-targetwithout-poland/#219268fafa4e (accessed on 12 May 2021).
- Rusin, M.; Dziubanek, G.; Marchwińska-Wyrwał, E.; Ćwieląg-Drabek, M.; Razzaghi, M.; Piekut, A. PCDDs, PCDFs and PCBs in locally produced foods as health risk factors in Silesia Province, Poland. Ecotoxicol. Environ. Saf. 2019, 172, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Feng, J.C. Visual special issue: Low carbon development and transformation of cities. Appl. Energy 2018, 231, a1–a3. [Google Scholar] [CrossRef]
- Uribe-Toril, J.; Ruiz-Real, J.L.; Milán-García, J.; de Pablo Valenciano, J. Energy. Economy, and Environment: A Worldwide Research Update. Energies 2019, 12, 1120. [Google Scholar] [CrossRef] [Green Version]
- Fitch-Roy, O.; Benson, D.; Monciardini, D. Going around in circles? Conceptual recycling, patching and policy layering in the EU circular economy package. Environ. Politics 2019, 29, 983–1003. [Google Scholar] [CrossRef] [Green Version]
- Romanowska-Duda, Z.; Piotrowski, K.; Wolska, B.; Dębowski, M.; Zieliński, M.; Dziugan, P.; Szufa, S. Stimulating effect of ash from Sorghum on the growth of Lemnaceae A New Source of Energy Biomass. In Renewable Energy Sources: Engineering, Technology, Innovation; Wróbel, M., Jewiarz, M., Szlęk, A., Eds.; Springer Proceedings in Energy: Cham, Switzerland, 2020; pp. 341–349. [Google Scholar]
- Vershinina, K.Y.; Kuznetsov, G.V.; Strizhak, P.A. Ignition Characteristics of Coal-Water Slurry Containing Petrochemicals Based on Coal of Varying Degrees of Metamorphism. Energy Fuels 2016, 30, 6808–6816. [Google Scholar] [CrossRef]
- Löschel, A.; Lutz, B.J.; Managi, S. The impacts of the EU ETS on efficiency and economic performance—An empirical analyses for German manufacturing firms. Resour. Energy Econ. 2019, 56, 71–95. [Google Scholar] [CrossRef]
- Cutz, L.; Berndes, G.; Johnsson, F. A techno-economic assessment of biomass co-firing in Czechia, France, Germany and Poland. Biofuels Bioprod. Biorefining 2019, 13, 1289–1305. [Google Scholar] [CrossRef]
- Dzikuć, M.; Kuryło, P.; Dudziak, R.; Szufa, S.; Dzikuć, M.; Godzisz, K. Selected Aspects of Combustion Optimization of Coal in Power Plants. Energies 2020, 13, 2208. [Google Scholar] [CrossRef]
- Adamczyk, J.; Dylewski, R. Analysis of the sensitivity of the ecological effects for the investment based on the thermal insulation of the building: A Polish case study. J. Clean. Prod. 2017, 162, 856–864. [Google Scholar] [CrossRef]
- Jiang, P.; Chen, Y.; Dong, W.; Huang, B. Promoting low carbon sustainability through benchmarking the energy performance in public buildings in China. Urban Clim. 2014, 10, 92–104. [Google Scholar] [CrossRef]
- Yu, T.; Wang, K.; Li, Y.; Zhao, Z.; Wang, X.; Yang, N.; Yu, S.; Wang, Y.; Huang, Z. Full Life Cycle Management of Power System Integrated with Renewable Energy: Concepts, Developments and Perspectives. Front. Energy Res. 2021, 9, 680355. [Google Scholar] [CrossRef]
- deLlano-Paz, F.; Calvo-Silvosa, A.; Iglesias Antelo, S.; Soares, I. Power generation and pollutant emissions in the European Union: A mean-variance model. J. Clean. Prod. 2018, 181, 123–135. [Google Scholar] [CrossRef]
- Burchart-Korol, D.; Korol, J.; Czaplicka-Kolarz, K. Life cycle assessment of heat production from underground coal gasification. Int. J. Life Cycle Assess. 2016, 21, 1391–1403. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, J.; Pactwa, K. Possibilities for using mine waters in the context of the construction of heat energy clusters in Poland. Energy Sustain. Soc. 2019, 9, 13. [Google Scholar] [CrossRef]
- Ingaro, C.; Bacenetti, J.; Adamczyk, J.; Ferrante, V.; Messineo, A.; Huisingh, D. Investigating energy and environmental issues of agro-biogas derived energy systems: A comprehensive review of Life Cycle Assessments. Renew. Energy 2019, 136, 296–307. [Google Scholar] [CrossRef]
- Bogacki, M.; Bździuch, P. Predicting the spatial distribution of emissions from urban buses based on previously measured data and scenarios for their modernization in the future. Case study: Krakow, Poland. Atmos. Environ. 2019, 199, 1–14. [Google Scholar] [CrossRef]
- Burchart-Korol, D.; Pustejovska, P.; Blaut, A.; Jursova, S.; Korol, J. Comparative life cycle assessment of current and future electricity generation systems in the Czechia and Poland. Int. J. Life Cycle Assess. 2018, 21, 1391–1403. [Google Scholar] [CrossRef] [Green Version]
- ISO 14040:2006. Environmental Management. Life Cycle Assessment-Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- ISO 14044:2006+A1:2018. Environmental Management. Life Cycle Assessment-Requirements and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Weldu, Y.W.; Assefa, G.; Jolliet, O. Life cycle human health and ecotoxicological impacts assessment of electricity production from wood biomass compared to coal fuel. Appl. Energy 2017, 187, 564–574. [Google Scholar] [CrossRef]
- Zarębska, J.; Dzikuć, M. Determining the environmental benefits of life cycle assessment (LCA) on example of the power industry. Sci. J. Marit. Univ. Szczec. 2013, 34, 97–102. [Google Scholar]
- Olszowski, T. Influence of Individual Household Heating on PM2.5 Concentration in a Rural Settlement. Atmosphere 2019, 10, 782. [Google Scholar] [CrossRef] [Green Version]
- Bienias, K.; Kowalska-Pyzalska, A.; Ramsey, D. What do people think about electric vehicles? An initial study of the opinions of car purchasers in Poland. Energy Rep. 2020, 6, 267–273. [Google Scholar] [CrossRef]
- Tucki, K.; Orynycz, O.; Wasiak, A.; Świć, A.; Dybaś, W. Capacity Market Implementation in Poland: Analysis of a Survey on Consequences for the Electricity Market and for Energy Management. Energies 2019, 12, 839. [Google Scholar] [CrossRef] [Green Version]
- Adamiec, E.; Dajda, J.; Gruszecka-Kosowska, A.; Helios-Rybicka, E.; Kisiel-Dorohinicki, M.; Klimek, R.; Pałka, D.; Wąs, J. Using Medium-Cost Sensors to Estimate Air Quality in Remote Locations. Case Study of Niedzica, Southern Poland. Atmosphere 2019, 10, 393. [Google Scholar] [CrossRef] [Green Version]
- Centrum Informacji o Rynku Energii. Available online: https://www.cire.pl/ (accessed on 16 June 2021). (In Polish).
Specification | 2004 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Target for 2020 | 2019 Minus 2020 |
---|---|---|---|---|---|---|---|---|---|
% | p.p. | ||||||||
EU-27 | 9.6 | 17.5 | 17.8 | 18.0 | 18.5 | 18.9 | 19.7 | 20 | −0.3 |
EU-28 | 8.6 | 16.2 | 16.7 | 17.0 | 17.5 | 18.0 | 18.9 | 20 | −1.1 |
Belgium | 1.9 | 8.0 | 8.0 | 8.8 | 9.1 | 9.8 | 9.9 | 13 | −3.1 |
Bulgaria | 9.2 | 18.0 | 18.3 | 18.8 | 18.7 | 20.6 | 21.6 | 16 | 5.6 |
Czechia | 6.8 | 15.1 | 15.1 | 14.9 | 14.8 | 15.1 | 16.2 | 13 | 3.2 |
Denmark | 14.8 | 29.3 | 30.9 | 32.1 | 34.7 | 35.4 | 37.2 | 30 | 7.2 |
Germany | 6.2 | 14.4 | 14.9 | 14.9 | 15.5 | 16.7 | 17.4 | 18 | −0.6 |
Estonia | 18.4 | 26.1 | 28.5 | 28.7 | 29.2 | 30.0 | 31.9 | 25 | 6.9 |
Ireland | 2.4 | 8.6 | 9.0 | 9.2 | 10.5 | 10.9 | 12.0 | 16 | −4.0 |
Greece | 7.2 | 15.7 | 15.7 | 15.4 | 17.3 | 18.1 | 19.7 | 18 | 1.7 |
Spain | 8.3 | 16.2 | 16.3 | 17.4 | 17.6 | 17.5 | 18.4 | 20 | −1.6 |
France | 9.5 | 14.9 | 15.5 | 15.9 | 16.3 | 16.4 | 17.2 | 23 | −5.8 |
Croatia | 23.4 | 27.8 | 29.0 | 28.3 | 27.3 | 28.0 | 28.5 | 20 | 8.5 |
Italy | 6.3 | 17.1 | 17.5 | 17.4 | 18.3 | 17.8 | 18.2 | 17 | 1.2 |
Cyprus | 3.1 | 9.2 | 9.9 | 9.9 | 10.5 | 13.9 | 13.8 | 13 | 0.8 |
Latvia | 32.8 | 38.6 | 37.5 | 37.1 | 39.0 | 40.0 | 41.0 | 40 | 1.0 |
Lithuania | 17.2 | 23.6 | 25.7 | 25.6 | 26.0 | 24.7 | 25.5 | 23 | 2.5 |
Luxembourg | 0.9 | 4.5 | 5.0 | 5.4 | 6.2 | 9.0 | 7.0 | 11 | −4.0 |
Hungary | 4.4 | 14.5 | 14.4 | 14.3 | 13.5 | 12.5 | 12.6 | 13 | −0.4 |
Malta | 0.1 | 4.7 | 5.1 | 6.2 | 7.2 | 8.0 | 8.5 | 10 | −1.5 |
Netherlands | 2.0 | 5.4 | 5.7 | 5.8 | 6.5 | 7.3 | 8.8 | 14 | −5.2 |
Austria | 22.6 | 33.6 | 33.5 | 33.4 | 33.1 | 33.8 | 33.6 | 34 | −0.4 |
Poland | 6.9 | 11.6 | 11.9 | 11.4 | 11.1 | 11.5 | 12.2 | 15 | −2.8 |
Portugal | 19.2 | 29.5 | 30.5 | 30.9 | 30.6 | 30.2 | 30.6 | 31 | −0.4 |
Romania | 16.8 | 24.8 | 24.8 | 25.0 | 24.5 | 23.9 | 24.3 | 24 | 0.3 |
Slovenia | 18.4 | 22.1 | 22.4 | 21.5 | 21.1 | 20.9 | 21.7 | 25 | −3.3 |
Slovakia | 6.4 | 11.7 | 12.9 | 12.0 | 11.5 | 11.9 | 16.9 | 14 | 2.9 |
Finland | 29.2 | 38.8 | 39.3 | 39.0 | 40.9 | 41.2 | 43.1 | 38 | 3 |
Sweden | 38.7 | 51.8 | 52.9 | 53.3 | 54.2 | 54.7 | 56.4 | 49 | 7.4 |
United Kingdom | 1.1 | 6.7 | 8.4 | 9.0 | 9.9 | 11.1 | 12.3 | 15 | −2.7 |
Specification | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2020/2010 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Real GDP Per Capita (%) | p.p. | |||||||||||
Czechia | 2.2 | 2.0 | −0.9 | −0.1 | 2.1 | 5.2 | 2.3 | 4.9 | 2.8 | 1.9 | −5.8 | −8.0 |
Poland | 3.6 | 4.7 | 1.3 | 1.2 | 3.4 | 4.3 | 3.2 | 4.8 | 5.4 | 4.6 | −2.6 | −6.2 |
Slovakia | 5.6 | 3.5 | 1.7 | 0.5 | 2.5 | 4.7 | 2.0 | 2.9 | 3.6 | 2.2 | −5.3 | −10.9 |
Hungary | 1.4 | 2.2 | −0.9 | 2.1 | 4.5 | 4.1 | 2.4 | 4.6 | 5.5 | 4.6 | −4.8 | 6.2 |
EU 28 | 1.9 | 1.5 | −0.7 | 0.1 | 1.5 | 2.0 | 1.6 | 2.4 | 1.8 | 1.3 | - | - |
EU 27 | 2.0 | 1.7 | −0.9 | −0.2 | 1.4 | 2.1 | 1.8 | 2.6 | 1.9 | 1.3 | −6.3 | −8.3 |
Real GDP per capita (EUR thousand) | % | |||||||||||
Czechia | 15.02 | 15.31 | 15.17 | 15.16 | 15.48 | 16.29 | 17.67 | 17.49 | 17.99 | 18.33 | 17.26 | 14.91 |
Poland | 9.40 | 9.85 | 9.98 | 10.10 | 10.44 | 10.89 | 11.24 | 11.79 | 12.42 | 13.00 | 12.66 | 34.68 |
Slovakia | 12.56 | 12.99 | 13.22 | 13.29 | 13.63 | 14.27 | 14.55 | 14.98 | 15.52 | 15.86 | 15.01 | 19.51 |
Hungary | 9.96 | 10.18 | 10.09 | 10.31 | 10.77 | 11.21 | 11.48 | 12.01 | 12.68 | 13.26 | 12.63 | 26.81 |
EU 28 | 25.51 | 25.90 | 25.73 | 25.75 | 26.15 | 26.67 | 27.11 | 27.77 | 28.25 | 28.61 | - | - |
EU 27 | 24.89 | 25.32 | 25.08 | 25.04 | 25.39 | 25.92 | 26.38 | 27.08 | 27.60 | 27.97 | 26.22 | 5.34 |
Specification | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|---|
% | ||||||||||
Czechia | 84 | 84 | 84 | 86 | 88 | 89 | 89 | 91 | 92 | 93 |
Poland | 66 | 67 | 67 | 67 | 68 | 69 | 69 | 70 | 71 | 73 |
Slovakia | 76 | 76 | 77 | 78 | 78 | 78 | 73 | 71 | 71 | 70 |
Hungary | 66 | 67 | 67 | 68 | 69 | 70 | 69 | 69 | 71 | 73 |
EU 27 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
EU 19 (EUR) | 109 | 109 | 108 | 108 | 108 | 108 | 107 | 107 | 107 | 106 |
Specification | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2019/2009 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Final Energy Consumption in Households Per Capita (in Kilograms of Oil Equivalent) | % | |||||||||||
Czechia | 623 | 627 | 638 | 711 | 654 | 677 | 690 | 622 | 641 | 670 | 678 | 8.83 |
Poland | 524 | 578 | 529 | 547 | 539 | 501 | 501 | 524 | 528 | 512 | 479 | −8.59 |
Slovakia | 399 | 429 | 393 | 383 | 397 | 360 | 366 | 374 | 388 | 378 | 485 | 21.55 |
Hungary | 630 | 665 | 659 | 643 | 628 | 556 | 607 | 629 | 643 | 595 | 581 | −7.78 |
EU 27 | 595 | 632 | 572 | 597 | 603 | 530 | 552 | 566 | 565 | 553 | 551 | −7.39 |
EU 19 (EUR) | 611 | 645 | 577 | 606 | 617 | 534 | 558 | 572 | 569 | 558 | 560 | −8.35 |
Specification | Greenhouse gas emissions per capita (in Mg of CO2 equivalent per capita) | % | ||||||||||
2018/2009 | ||||||||||||
Czechia | 13.3 | 13.5 | 13.4 | 12.9 | 12.4 | 12.2 | 12.3 | 12.5 | 12.4 | 12.2 | - | −8.27 |
Poland | 10.4 | 10.9 | 10.9 | 10.7 | 10.6 | 10.3 | 10.4 | 10.6 | 11.0 | 11.0 | - | 5.77 |
Slovakia | 8.5 | 8.6 | 8.5 | 8.0 | 7.9 | 7.6 | 7.7 | 7.8 | 8.0 | 8.0 | - | −5.88 |
Hungary | 6.5 | 6.6 | 6.4 | 6.1 | 5.8 | 5.9 | 6.2 | 6.3 | 6.6 | 6.6 | - | 1.54 |
EU 27 | 9.5 | 9.7 | 9.5 | 9.3 | 9.1 | 8.8 | 8.9 | 8.9 | 8.9 | 8.7 | - | −8.42 |
Specification | Population (1000) | PM2.5 | NO2 | O3 | |||
---|---|---|---|---|---|---|---|
Annual Average (a) | Premature Deaths (b) | Annual Average (a) | Premature Deaths (b) | SOMO35 (a) | Premature Deaths (b) | ||
Czechia | 10,512 | 17.3 | 11,970 | 17.1 | 1210 | 3620 | 350 |
Hungary | 9877 | 18.9 | 12,800 | 18.0 | 1300 | 5550 | 530 |
Poland | 38,018 | 23.0 | 46,020 | 15.1 | 1700 | 3425 | 970 |
Slovakia | 5416 | 19.1 | 5160 | 15.2 | 100 | 4344 | 160 |
EU 28 | 502,351 | 14.0 | 399,000 | 18.7 | 75,000 | 3507 | 13,600 |
Specification | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2019/2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
EUR/kgoe | % | |||||||||||
Czechia | 3.60 | 3.47 | 3.68 | 3.69 | 3.67 | 3.88 | 4.08 | 4.23 | 4.26 | 4.39 | 4.55 | 26.39 |
Poland | 3.69 | 3.56 | 3.73 | 3.93 | 3.94 | 4.23 | 4.36 | 4.29 | 4.29 | 4.45 | 4.79 | 29.81 |
Slovakia | 3.86 | 3.85 | 4.08 | 4.32 | 4.29 | 4.69 | 4.76 | 4.84 | 4.72 | 4.96 | 5.08 | 31.61 |
Hungary | 3.81 | 3.75 | 3.90 | 4.04 | 4.26 | 4.46 | 4.38 | 4.42 | 4.41 | 4.64 | 4.85 | 27.30 |
EU 27 | 6.95 | 6.84 | 7.17 | 7.21 | 7.29 | 7.67 | 7.74 | 7.83 | 7.88 | 8.10 | 8.36 | 20.29 |
EU 19 (EUR) | 7.45 | 7.35 | 7.74 | 7.76 | 7.81 | 8.23 | 8.27 | 8.38 | 8.46 | 8.71 | 8.95 | 20.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzikuć, M.; Wyrobek, J.; Popławski, Ł. Economic Determinants of Low-Carbon Development in the Visegrad Group Countries. Energies 2021, 14, 3823. https://doi.org/10.3390/en14133823
Dzikuć M, Wyrobek J, Popławski Ł. Economic Determinants of Low-Carbon Development in the Visegrad Group Countries. Energies. 2021; 14(13):3823. https://doi.org/10.3390/en14133823
Chicago/Turabian StyleDzikuć, Maciej, Joanna Wyrobek, and Łukasz Popławski. 2021. "Economic Determinants of Low-Carbon Development in the Visegrad Group Countries" Energies 14, no. 13: 3823. https://doi.org/10.3390/en14133823
APA StyleDzikuć, M., Wyrobek, J., & Popławski, Ł. (2021). Economic Determinants of Low-Carbon Development in the Visegrad Group Countries. Energies, 14(13), 3823. https://doi.org/10.3390/en14133823