Conditioning of Spent Electrolyte Surrogate LiCl-KCl-CsCl Using Magnesium Potassium Phosphate Compound
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Procedures
2.2. Methods
3. Results and Discussion
3.1. Characterization of the MPP Compound Containing Chloride
3.2. Characterization of MPP Compound Containing LiCl-KCl-CsCl and Zeolite
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shadrin, A.Y.; Dvoeglazov, K.N.; Maslennikov, A.G.; Kashcheev, V.A.; Tret’yakova, S.G.; Shmidt, O.V.; Vidanov, V.L.; Ustinov, O.A.; Volk, V.I.; Veselov, S.N.; et al. PH process as a technology for reprocessing mixed uranium-plutonium fuel from BREST-OD-300 reactor. Radiochemistry 2016, 58, 271–279. [Google Scholar] [CrossRef]
- Lizin, A.A.; Tomilin, S.V.; Gnevashov, O.E.; Lukinykh, A.N.; Orlova, A.I. Orthophosphates of langbeinite structure for immobilization of alkali metal cations of salt wastes from pyrochemical processes. Radiochemistry 2012, 54, 542–548. [Google Scholar] [CrossRef]
- Vance, E.R.; Davis, J.; Olufson, K.; Chironi, I.; Karatchevtseva, I.; Farnan, I. Candidate waste forms for immobilisation of waste chloride salt from pyroprocessing of spent nuclear fuel. J. Nucl. Mater. 2012, 420, 396–404. [Google Scholar] [CrossRef]
- Joseph, K.; Asuvathraman, R.; Raja Madhavan, R.; Jena, H.; Govindan Kutty, K.V.; Vasudeva Rao, P.R. Studies on Novel Matrices for High Level Waste from Fast Reactor Fuel Reprocessing. Energy Procedia 2011, 7, 518–524. [Google Scholar] [CrossRef][Green Version]
- Riley, B.J.; Kroll, J.O.; Peterson, J.A.; Pierce, D.A.; Ebert, W.L.; Williams, B.D.; Snyder Michelle, M.V.; Frank, S.M.; George, J.L.; Kruska, K. Assessment of lead tellurite glass for immobilizing electrochemical salt wastes from used nuclear fuel reprocessing. J. Nucl. Mater. 2017, 495, 405–420. [Google Scholar] [CrossRef]
- Choi, J.; Um, W.; Choung, S. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution. J. Nucl. Mater. 2014, 452, 16–23. [Google Scholar] [CrossRef]
- Giacobbo, F.; Da Ros, M.; Macerata, E.; Mariani, M.; Giola, M.; De Angelis, G.; Capone, M.; Fedeli, C. An experimental study on Sodalite and SAP matrices for immobilization of spent chloride salt waste. J. Nucl. Mater. 2018, 499, 512–527. [Google Scholar] [CrossRef]
- Cho, I.-H.; Park, H.-S.; Lee, K.-R.; Choi, J.-H.; Kim, I.-T.; Hur, J.M.; Lee, Y.-S. Treatment of radioactive waste salt by using synthetic silica-based phosphate composite for de-chlorination and solidification. J. Nucl. Mater. 2017, 493, 388–397. [Google Scholar] [CrossRef]
- Leturcq, G.; Grandjean, A.; Rigaud, D.; Perouty, P.; Charlot, M. Immobilization of fission products arising from pyrometallurgical reprocessing in chloride media. J. Nucl. Mater. 2005, 347, 1–11. [Google Scholar] [CrossRef]
- Lepry, W.C.; Riley, B.J.; Crum, J.V.; Rodriguez, C.P.; Pierce, D.A. Solution-based approaches for making high-density sodalite waste forms to immobilize spent electrochemical salts. J. Nucl. Mater. 2013, 442, 350–359. [Google Scholar] [CrossRef]
- Jena, H.; Maji, B.K.; Asuvathraman, R.; Govindan Kutty, K.V. Synthesis and thermal characterization of glass bonded Ca-chloroapatite matrices for pyrochemical chloride waste immobilization. J. Non-Cryst. Solids 2012, 358, 1681–1686. [Google Scholar] [CrossRef]
- Jena, H.; Maji, B.K.; Asuvathraman, R.; Govindan Kutty, K.V. Effect of pyrochemical chloride waste loading on thermo-physical properties of borosilicate glass bonded Sr-chloroapatite composites. Mater. Chem. Phys. 2015, 162, 188–196. [Google Scholar] [CrossRef]
- Poluektov, P.P.; Schmidt, O.V.; Kascheev, V.A.; Ojovan, M.I. Modelling aqueous corrosion of nuclear waste phosphate glass. J. Nucl. Mater. 2017, 484, 357–366. [Google Scholar] [CrossRef]
- Vinokurov, S.E.; Kulyako, Y.M.; Slyunchev, O.M.; Rovny, S.I.; Myasoedov, B.F. Low-temperature immobilization of actinides and other components of high-level waste in magnesium potassium phosphate matrices. J. Nucl. Mater. 2009, 385, 189–192. [Google Scholar] [CrossRef]
- Vinokurov, S.E.; Kulyako, Y.M.; Slyunchev, O.M.; Rovnyi, S.I.; Wagh, A.S.; Maloney, M.D.; Myasoedov, B.F. Magnesium potassium phosphate matrices for immobilization of high-level liquid wastes. Radiochemistry 2009, 51, 65–72. [Google Scholar] [CrossRef]
- Shkuropatenko, V.A. High level wastes immobilization in ceramic and hydrated phosphate matrix. East Eur. J. Phys. 2016, 3, 49–60. [Google Scholar]
- Vinokurov, S.E.; Kulikova, S.A.; Myasoedov, B.F. Magnesium Potassium Phosphate Compound for Immobilization of Radioactive Waste Containing Actinide and Rare Earth Elements. Materials 2018, 11, 976. [Google Scholar] [CrossRef]
- Vinokurov, S.E.; Kulikova, S.A.; Myasoedov, B.F. Hydrolytic and thermal stability of magnesium potassium phosphate compound for immobilization of high level waste. J. Radioanal. Nucl. Chem. 2018, 318, 2401–2405. [Google Scholar] [CrossRef]
- Vinokurov, S.E.; Kulikova, S.A.; Myasoedov, B.F. Solidification of high level waste using magnesium potassium phosphate compound. Nucl. Eng. Technol. 2019, 51, 755–760. [Google Scholar] [CrossRef]
- Vinokurov, S.E.; Kulikova, S.A.; Krupskaya, V.V.; Danilov, S.S.; Gromyak, I.N.; Myasoedov, B.F. Investigation of the leaching behavior of components of the magnesium potassium phosphate matrix after high salt radioactive waste immobilization. J. Radioanal. Nucl. Chem. 2018, 315, 481–486. [Google Scholar] [CrossRef]
- Sayenko, S.Y.; Shkuropatenko, V.A.; Dikiy, N.P.; Tarasov, R.V.; Ulybkina, K.A.; Surkov, O.Y.; Litvinenko, L.M. Clinoptilolite with cesium immobilization to potassium magnesium phosphate matrix. East Eur. J. Phys. 2017, 4, 37–43. [Google Scholar] [CrossRef][Green Version]
- Wagh, A.S.; Sayenko, S.Y.; Shkuropatenko, V.A.; Tarasov, R.V.; Dykiy, M.P.; Svitlychniy, Y.O.; Virych, V.D.; Ulybkina, Е.А. Experimental study on cesium immobilization in struvite structures. J. Hazard. Mater. 2016, 302, 241–249. [Google Scholar] [CrossRef]
- Graeser, S.; Postl, W.; Bojar, H.-P.; Berlepsch, P.; Armbruster, T.; Raber, T.; Ettinger, K.; Walter, F. Struvite-(K), KMgPO4∙6H2O, the potassium equivalent of struvite—A new mineral. Eur. J. Mineral. 2008, 20, 629–633. [Google Scholar] [CrossRef]
- Vinokurov, S.E.; Kulikova, S.A.; Krupskaya, V.V.; Myasoedov, B.F. Magnesium Potassium Phosphate Compound for Radioactive Waste Immobilization: Phase Composition, Structure, and Physicochemical and Hydrolytic Durability. Radiochemistry 2018, 60, 70–78. [Google Scholar] [CrossRef]
- Kulikova, S.A.; Vinokurov, S.E. The Influence of Zeolite (Sokyrnytsya Deposit) on the Physical and Chemical Resistance of a Magnesium Potassium Phosphate Compound for the Immobilization of High-Level Waste. Molecules 2019, 24, 3421. [Google Scholar] [CrossRef]
- KODEKX. Procedure for Measuring the Ultimate Strength of Cement Compounds Incorporating Radioactive Waste Using a Testing Cybertronic Testing Machine. 2013. Available online: http://docs.cntd.ru/document/437125221 (accessed on 10 March 2020).
- Federal Norms and Rules in the Field of Atomic Energy Use. “Collection, Processing, Storage and Conditioning of Liquid Radioactive Waste. Safety Requirements” (NP-019-15); Rostekhnadzor: Moscow, Russia, 2015; pp. 1–22. [Google Scholar]
- GOST R 52126-2003. Radioactive Waste. Long Time Leach Testing of Solidified Radioactive Waste Forms; Gosstandart 305: Moscow, Russian, 2003; pp. 1–8. [Google Scholar]
- ASTM C1285-14. Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT); ASTM International: West Conshohocken, PA, USA, 2014; Available online: www.astm.org (accessed on 20 March 2020). [CrossRef]
- Belousov, P.; Semenkova, A.; Egorova, T.; Romanchuk, A.; Zakusin, S.; Dorzhieva, O.; Tyupina, E.; Izosimova, Y.; Tolpeshta, I.; Chernov, M.; et al. Cesium Sorption and Desorption on Glauconite, Bentonite, Zeolite, and Diatomite. Minerals 2019, 9, 625. [Google Scholar] [CrossRef]
- de Groot, G.J.; van der Sloot, H.A. Determination of leaching characteristics of waste materials leading to environmental product certification. In Stabilization and Solidification of Hazardous, Radioactive and Mixed Wastes; Gilliam, T.M., Wiles, G., Eds.; ASTMSTP 1123; American Society for Testing and Materials: Philadelphia, PA, USA, 1992; Volume 2, pp. 149–170. [Google Scholar] [CrossRef]
- Torras, J.; Buj, I.; Rovira, M.; de Pablo, J. Semi-dynamic leaching tests of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements. J. Hazard. Mater. 2011, 186, 1954–1960. [Google Scholar] [CrossRef]
- Everett, D.H. Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure Appl. Chem. 1972, 31, 577–638. [Google Scholar] [CrossRef]
No. | Content of Elements, at.% | |||||
---|---|---|---|---|---|---|
Mg | K | P | O | Cs | Cl | |
1 | 9.00 ± 1.10 | 9.35 ± 1.50 | 9.50 ± 1.00 | 71.55 ± 8.00 | 0.45 ± 0.15 | 0.15 ± 0.05 |
2 | 1.50 ± 0.40 | 2.60 ± 0.65 | 12.60 ± 1.20 | 48.00 ± 5.50 | 35.00 ± 3.00 | 0.30 ± 0.05 |
Sample | Specific Surface Area SBET, m2/g | Pores Volume, cm3/g/Average Diameter, nm |
---|---|---|
MPPZ | 15.9 | 0.053/5.48 |
MPPZ_180 °C | 9.5 | 0.052/5.68 |
MPPZ_450 °C | 6.4 | 0.031/4.89 |
Compound | LR of Compound Components, g/(cm2∙day) | |||||
---|---|---|---|---|---|---|
Mg | P | K | Cs | Li | ||
Blank MPP matrix | 1.8 × 10−10 | 7.9 × 10−7 | 1.5 × 10−6 | - | - | |
10 wt% LiCl-KCl-CsCl | MPPZ | 6.7 × 10−10 | 4.9 × 10−7 | 1.0 × 10−6 | 9.2 × 10−7 | 2.0 × 10−7 |
MPPZ_180 °C | 1.6 × 10−9 | 7.8 × 10−7 | 1.7 × 10−6 | 1.4 × 10−6 | 2.1 × 10−7 | |
MPPZ_450 °C | 1.2 × 10−9 | 8.3 × 10−7 | 2.2 × 10−6 | 4.2 × 10−7 | 1.2 × 10−7 | |
20 wt% LiCl-KCl-CsCl | MPPZ | 7.6 × 10−10 | 1.6 × 10−7 | 1.6 × 10−6 | 1.9 × 10−6 | 2.6 × 10−8 |
MPPZ_180 °C | 1.3 × 10−9 | 2.6 × 10−7 | 2.6 × 10−6 | 2.9 × 10−6 | 3.3 × 10−7 | |
MPPZ_450 °C | 2.8 × 10−9 | 4.1 × 10−7 | 3.7 × 10−6 | 2.1 × 10−6 | 4.0 × 10−7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulikova, S.A.; Belova, K.Y.; Tyupina, E.A.; Vinokurov, S.E. Conditioning of Spent Electrolyte Surrogate LiCl-KCl-CsCl Using Magnesium Potassium Phosphate Compound. Energies 2020, 13, 1963. https://doi.org/10.3390/en13081963
Kulikova SA, Belova KY, Tyupina EA, Vinokurov SE. Conditioning of Spent Electrolyte Surrogate LiCl-KCl-CsCl Using Magnesium Potassium Phosphate Compound. Energies. 2020; 13(8):1963. https://doi.org/10.3390/en13081963
Chicago/Turabian StyleKulikova, Svetlana A., Kseniya Yu. Belova, Ekaterina A. Tyupina, and Sergey E. Vinokurov. 2020. "Conditioning of Spent Electrolyte Surrogate LiCl-KCl-CsCl Using Magnesium Potassium Phosphate Compound" Energies 13, no. 8: 1963. https://doi.org/10.3390/en13081963
APA StyleKulikova, S. A., Belova, K. Y., Tyupina, E. A., & Vinokurov, S. E. (2020). Conditioning of Spent Electrolyte Surrogate LiCl-KCl-CsCl Using Magnesium Potassium Phosphate Compound. Energies, 13(8), 1963. https://doi.org/10.3390/en13081963