Optimization of the Solidification Method of High-Level Waste for Increasing the Thermal Stability of the Magnesium Potassium Phosphate Compound
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Surrogate HLW Solution
2.2. Synthesis and Study of the MPP Compounds
3. Results and Discussion
3.1. Thermal Stability of MPP-FKN-W Compound
3.2. Thermal Stability of MPP-NZ, MPP-MOR, and MPP-STA-NZ Compounds
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Federal Norms and Rules in the Field of Atomic Energy Use. In “Collection, Processing, Storage and Conditioning of Liquid Radioactive Waste. Safety Requirements” (NP-019-15); Rostekhnadzor: Moscow, Russia, 2015; pp. 1–22.
- Wagh, A.S. Chemically Bonded Phosphate Ceramics; Chemically Bonded Phosphate Ceramics: Twenty-First Century Materials with Diverse Applications, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–422. ISBN 978-0-08-100380-0. [Google Scholar]
- Wagh, A.; Strãin, R.; Jeong, S.; Reed, D.; Krause, T.; Singh, D. Stabilization of Rocky Flats Pu-contaminated ash within chemically bonded phosphate ceramics. J. Nucl. Mater. 1999, 265, 295–307. [Google Scholar] [CrossRef]
- Singh, D.; Mandalika, V.; Parulekar, S.J.; Wagh, A. Magnesium potassium phosphate ceramic for 99Tc immobilization. J. Nucl. Mater. 2006, 348, 272–282. [Google Scholar] [CrossRef]
- Vinokurov, S.; Kulyako, Y.; Slyuntchev, O.; Rovny, S.; Myasoedov, B. Low-temperature immobilization of actinides and other components of high-level waste in magnesium potassium phosphate matrices. J. Nucl. Mater. 2009, 385, 189–192. [Google Scholar] [CrossRef]
- Vinokurov, S.E.; Kulikova, S.A.; Myasoedov, B.F. Magnesium Potassium Phosphate Compound for Immobilization of Radioactive Waste Containing Actinide and Rare Earth Elements. Materials 2018, 11, 976. [Google Scholar] [CrossRef] [PubMed]
- Vinokurov, S.E.; Kulikova, S.A.; Myasoedov, B.F. Hydrolytic and thermal stability of magnesium potassium phosphate compound for immobilization of high level waste. J. Radioanal. Nucl. Chem. 2018, 318, 2401–2405. [Google Scholar] [CrossRef]
- Vinokurov, S.E.; Kulikova, S.A.; Myasoedov, B.F. Solidification of high level waste using magnesium potassium phosphate compound. Nucl. Eng. Technol. 2019, 51, 755–760. [Google Scholar] [CrossRef]
- Dmitrieva, A.V.; Kalenova, M.Y.; Kulikova, S.A.; Kuznetsov, I.V.; Koshcheev, A.M.; Vinokurov, S.E. Magnesium-Potassium Phosphate Matrix for Immobilization of 14C. Russ. J. Appl. Chem. 2018, 91, 641–646. [Google Scholar] [CrossRef]
- Kulikova, S.A.; Belova, K.Y.; Tyupina, E.A.; Vinokurov, S.E. Conditioning of Spent Electrolyte Surrogate LiCl-KCl-CsCl Using Magnesium Potassium Phosphate Compound. Energies 2020, 13, 1963. [Google Scholar] [CrossRef]
- Shkuropatenko, V.A. High level wastes immobilization in ceramic and hydrated phosphate matrix. East Eur. J. Phys. 2016, 3, 49–60. [Google Scholar] [CrossRef]
- Zhenyu, L.; Hongtao, W.; Yang, H.; Tao, Y.; Zhongyuan, L.; Shuzhen, L.; Haibin, Z. Rapid solidification of Highly Loaded High-Level Liquid Wastes with magnesium phosphate cement. Ceram. Int. 2019, 45, 5050–5057. [Google Scholar] [CrossRef]
- Tao, Y.; Zhenyu, L.; Chunrong, R.; Yuanyuan, W.; Zhichao, H.; Xin, H.; Jie, W.; Mengliang, L.; Qiubai, D.; Khan, K.; et al. Study on solidification properties of chemically bonded phosphate ceramics for cesium radionuclides. Ceram. Int. 2020, 46, 14964–14971. [Google Scholar] [CrossRef]
- Graeser, S.; Postl, W.; Bojar, H.-P.B.; Armbruster, T.; Raber, T.; Ettinger, K.; Walter, F.; Berlepsch, P. Struvite-(K), KMgPO46H2O, the potassium equivalent of struvite a new mineral. Eur. J. Mineral. 2008, 20, 629–633. [Google Scholar] [CrossRef]
- Shahwan, T.; Akar, D.; Eroglu, A.E. Physicochemical characterization of the retardation of aqueous Cs+ ions by natural kaolinite and clinoptilolite minerals. J. Colloid Interface Sci. 2005, 285, 9–17. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Belousov, P.; Semenkova, A.; Egorova, T.B.; Romanchuk, A.Y.; Zakusin, S.; Dorzhieva, O.; Tyupina, E.; Izosimova, Y.; Tolpeshta, I.; Chernov, M.; et al. Cesium Sorption and Desorption on Glauconite, Bentonite, Zeolite and Diatomite. Minerals 2019, 9, 625. [Google Scholar] [CrossRef]
- Abusafa, A.; Yücel, H. Removal of 137Cs from aqueous solutions using different cationic forms of a natural zeolite: Clinoptilolite. Sep. Purif. Technol. 2002, 28, 103–116. [Google Scholar] [CrossRef]
- Johan, E.; Yamada, T.; Munthali, M.W.; Kabwadza-Corner, P.; Aono, H.; Matsue, N. Natural Zeolites as Potential Materials for Decontamination of Radioactive Cesium. Procedia Environ. Sci. 2015, 28, 52–56. [Google Scholar] [CrossRef]
- Borai, E.H.; Harjula, R.; Malinen, L.; Paajanen, A. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J. Hazard. Mater. 2009, 172, 416–422. [Google Scholar] [CrossRef]
- Aono, H.; Kunimoto, T.; Takahashi, R.; Itagaki, Y.; Johan, E.; Matsue, N. Cs+ decontamination properties of mordenites and composite materials synthesized from coal fly ash and rice husk ash. J. Asian Ceram. Soc. 2018, 6, 213–221. [Google Scholar] [CrossRef]
- Aono, H.; Takeuchi, Y.; Itagaki, Y.; Johan, E. Synthesis of chabazite and merlinoite for Cs+ adsorption and immobilization properties by heat-treatment. Solid State Sci. 2020, 100, 106094. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S.; Liu, Y. Metal hexacyanoferrates-based adsorbents for cesium removal. Coord. Chem. Rev. 2018, 374, 430–438. [Google Scholar] [CrossRef]
- Mimura, H.; Lehto, J.; Harjula, R. Ion Exchange of Cesium on Potassium Nickel Hexacyanoferrate (II)s. J. Nucl. Sci. Technol. 1997, 34, 484–489. [Google Scholar] [CrossRef][Green Version]
- Michel, C.; Barre, Y.; De Dieuleveult, C.; Grandjean, A.; De Windt, L. Cs ion exchange by a potassium nickel hexacyanoferrate loaded on a granular support. Chem. Eng. Sci. 2015, 137, 904–913. [Google Scholar] [CrossRef]
- Tachikawa, H.; Haga, K.; Yamada, K. Mechanism of K+, Cs+ ion exchange in nickel ferrocyanide: A density functional theory study. Comput. Theor. Chem. 2017, 1115, 175–178. [Google Scholar] [CrossRef]
- Martin, I.; Patapy, C.; Boher, C.; Cyr, M. Investigation of caesium retention by potassium nickel hexacyanoferrate (II) in different pH conditions and potential effect on the selection of storage matrix. J. Nucl. Mater. 2019, 526, 151764. [Google Scholar] [CrossRef]
- Avramenko, V.; Bratskaya, S.; Zheleznov, V.; Sheveleva, I.; Voitenko, O.; Sergienko, V. Colloid stable sorbents for cesium removal: Preparation and application of latex particles functionalized with transition metals ferrocyanides. J. Hazard. Mater. 2011, 186, 1343–1350. [Google Scholar] [CrossRef]
- Voronina, A.; Noskova, A.Y.; Semenishchev, V.; Gupta, D. Decontamination of seawater from 137Cs and 90Sr radionuclides using inorganic sorbents. J. Environ. Radioact. 2020, 217, 106210. [Google Scholar] [CrossRef]
- Oh, S.-Y.; Kawai, K.; Kawamura, G.; Muto, H.; Matsuda, A. Characterization of mechanochemically synthesized MHSO4-H4SiW12O40 composites (M = K, NH4, Cs). Mater. Res. Bull. 2012, 47, 2931–2935. [Google Scholar] [CrossRef]
- Pesaresi, L.; Brown, D.; Lee, A.; Montero, J.; Williams, H.; Wilson, K. Cs-doped H4SiW12O40 catalysts for biodiesel applications. Appl. Catal. A Gen. 2009, 360, 50–58. [Google Scholar] [CrossRef]
- Zhu, S.; Gao, X.; Zhu, Y.; Zhu, Y.; Xiang, X.; Hu, C.; Li, Y. Alkaline metals modified Pt-H4SiW12O40ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1,3-propanediol. Appl. Catal. B Environ. 2013, 140, 60–67. [Google Scholar] [CrossRef]
- Sawant, D.P.; Vinu, A.; Mirajkar, S.; Lefebvre, F.; Ariga, K.; Anandan, S.; Mori, T.; Nishimura, C.; Halligudi, S. Silicotungstic acid/zirconia immobilized on SBA-15 for esterifications. J. Mol. Catal. A Chem. 2007, 271, 46–56. [Google Scholar] [CrossRef]
- Haider, M.H.; Dummer, N.F.; Zhang, D.; Miedziak, P.; Davies, T.E.; Taylor, S.H.; Willock, D.J.; Knight, D.W.; Chadwick, D.; Hutchings, G.J. Rubidium-and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein. J. Catal. 2012, 286, 206–213. [Google Scholar] [CrossRef]
- Raveendra, G.; Rajasekhar, A.; Srinivas, M.; Prasad, P.S.S.; Lingaiah, N. Selective etherification of hydroxymethylfurfural to biofuel additives over Cs containing silicotungstic acid catalysts. Appl. Catal. A Gen. 2016, 520, 105–113. [Google Scholar] [CrossRef]
- Sayenko, S.Y.; Shkuropatenko, V.A.; Dikiy, N.P.; Tarasov, R.V.T.; Ulybkina, K.A.; Surkov, O.Y.; Litvinenko, L.M. Clinoptilolite with Cesium Immobilization to Potassium Magnesium Phosphate Matrix. East. Eur. J. Phys. 2017, 4, 37–43. [Google Scholar] [CrossRef][Green Version]
- Kulikova, S.A.; Vinokurov, S.E. The Influence of Zeolite (Sokyrnytsya Deposit) on the Physical and Chemical Resistance of a Magnesium Potassium Phosphate Compound for the Immobilization of High-Level Waste. Molecules 2019, 24, 3421. [Google Scholar] [CrossRef] [PubMed]
- Vinokurov, S.E.; Kulyako, Y.M.; Slyunchev, O.M.; Rovnyi, S.I.; Wagh, A.S.; Maloney, M.D.; Myasoedov, B.F. Magnesium potassium phosphate matrices for immobilization of high-level liquid wastes. Radiochemistry 2009, 51, 65–72. [Google Scholar] [CrossRef]
- Vinokurov, S.E.; Kulikova, S.A.; Krupskaya, V.V.; Myasoedov, B.F. Magnesium Potassium Phosphate Compound for Radioactive Waste Immobilization: Phase Composition, Structure, and Physicochemical and Hydrolytic Durability. Radiochemistry 2018, 60, 70–78. [Google Scholar] [CrossRef]
- Vinokurov, S.E.; Kulikova, S.A.; Krupskaya, V.V.; Tyupina, E.A. Effect of Characteristics of Magnesium Oxide Powder on Composition and Strength of Magnesium Potassium Phosphate Compound for Solidifying Radioactive Waste. Russ. J. Appl. Chem. 2019, 92, 490–497. [Google Scholar] [CrossRef]
- GOST 310.4-81. Cements. Methods of Bending and Compression Strength Determination; Standardinform: Moscow, Russian, 1981; pp. 1–11. [Google Scholar]
- GOST R 52126-2003. Radioactive Waste. Long Time Leach Testing of Solidified Radioactive Waste Forms; Standardinform: Moscow, Russian, 2003; pp. 1–8. [Google Scholar]
- ANSI/ANS-16.1-1986. Measurement of the Leachability of Solidified Low-Level Radiactive Wastes by a Short-Term Test Procedure; American National Society: La Grande Park, IL, USA, 1986; pp. 1–30. [Google Scholar]
- De Groot, G.; Van Der Sloot, H. Determination of Leaching Characteristics of Waste Materials Leading to Environmental Product Certification. In Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes, 2nd ed.; ASTM International: West Conshohocken, PA, USA, 2009; p. 149. [Google Scholar]
- Torras, J.; Buj-Corral, I.; Rovira, M.; De Pablo, J. Semi-dynamic leaching tests of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements. J. Hazard. Mater. 2011, 186, 1954–1960. [Google Scholar] [CrossRef]
- Mimura, H.; Lehto, J.; Harjula, R. Chemical and Thermal Stability of Potassium Nickel Hexacyanoferrate (II). J. Nucl. Sci. Technol. 1997, 34, 582–587. [Google Scholar] [CrossRef]
- Choi, J.; Um, W.; Choung, S. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution. J. Nucl. Mater. 2014, 452, 16–23. [Google Scholar] [CrossRef]
- Kim, M.; Kim, H.G.; Kim, S.; Yoon, J.-H.; Sung, J.Y.; Jin, J.S.; Lee, M.-H.; Kim, C.-W.; Heo, J.; Hong, K.-S. Leaching behaviors and mechanisms of vitrified forms for the low-level radioactive solid wastes. J. Hazard. Mater. 2020, 384, 121296. [Google Scholar] [CrossRef] [PubMed]
Compound | Sorbent (wt %) | Filler (wt %) | Solidified S-HLW (wt %) | Binders (wt %) | |
---|---|---|---|---|---|
MgO | KH2PO4 | ||||
MPP-FKN-W | 1.5 * | 23.3 | 34.0 | 10.3 | 30.9 |
MPP-NZ | 25.1 | - | 32.1 | 10.7 | 32.1 |
MPP-MOR | 25.1 | - | 32.1 | 10.7 | 32.1 |
MPP-STA-NZ | 5.0 | 25.0 | 30.0 | 10.0 | 30.0 |
Sorbent | 137Cs Sorption Degree (%) |
---|---|
FKN | 99.5 |
NZ | 93.0 |
MOR | 98.5 |
STA/NZ | 97.0/99.1 |
Heat Treatment Temperature (°C) | Test Duration (days) | F (%) | D (cm2/s) | L | (L)av |
---|---|---|---|---|---|
180 | 1 | 0.01 | 1.1 × 10−14 | 14.0 | 14.1 |
3 | 0.03 | 4.2 × 10−14 | 13.4 | ||
7 | 0.04 | 1.3 × 10−14 | 13.9 | ||
10 | 0.04 | 1.2 × 10−14 | 13.9 | ||
14 | 0.05 | 8.0 × 10−15 | 14.1 | ||
21 | 0.05 | 2.1 × 10−15 | 14.7 | ||
28 | 0.05 | 2.2 × 10−15 | 14.7 | ||
250 | 1 | 0.18 | 1.4 × 10−12 | 11.8 | 12.4 |
3 | 0.31 | 1.2 × 10−12 | 11.9 | ||
7 | 0.45 | 1.0 × 10−12 | 12.0 | ||
21 | 0.68 | 5.8 × 10−13 | 12.2 | ||
28 | 0.69 | 1.6 × 10−14 | 13.8 | ||
300 | 1 | 1.33 | 7.4 × 10−11 | 10.1 | 10.4 |
3 | 2.06 | 4.2 × 10−11 | 10.4 | ||
7 | 2.98 | 4.2 × 10−11 | 10.4 | ||
21 | 4.27 | 1.9 × 10−11 | 10.7 | ||
28 | 5.10 | 5.8 × 10−11 | 10.2 | ||
350 | 1 | 2.19 | 2.0 × 10−10 | 9.7 | 10.5 |
3 | 2.77 | 2.6 × 10−11 | 10.6 | ||
7 | 3.41 | 2.1 × 10−11 | 10.7 | ||
21 | 4.39 | 1.1 × 10−11 | 11.0 | ||
28 | 5.03 | 3.4 × 10−11 | 10.5 | ||
400 | 1 | 2.63 | 2.9 × 10−10 | 9.5 | 10.7 |
3 | 3.26 | 3.1 × 10−11 | 10.5 | ||
7 | 3.71 | 1.0 × 10−11 | 11.0 | ||
21 | 4.30 | 3.8 × 10−12 | 11.4 | ||
28 | 4.58 | 6.5 × 10−12 | 11.2 | ||
450 | 1 | 2.28 | 2.2 × 10−10 | 9.7 | 10.6 |
3 | 2.84 | 2.4 × 10−11 | 10.6 | ||
7 | 3.33 | 1.2 × 10−11 | 10.9 | ||
21 | 4.17 | 7.9 × 10−12 | 11.1 | ||
28 | 4.59 | 1.4 × 10−11 | 10.8 |
Compound | Heat Treatment Temperature (°C) | Test Duration (Days) | F (%) | D (cm2/s) | L | (L)av |
---|---|---|---|---|---|---|
MPP-NZ | 180 | 1 | 3.48 | 5.1 × 10−10 | 9.3 | 10.3 |
3 | 5.77 | 4.1 × 10−10 | 9.4 | |||
7 | 7.37 | 1.3 × 10−10 | 9.9 | |||
10 | 8.13 | 8.9 × 10−11 | 10.1 | |||
16 | 8.94 | 3.9 × 10−11 | 10.4 | |||
20 | 9.32 | 2.8 × 10−11 | 10.6 | |||
31 | 10.06 | 1.9 × 10−11 | 10.7 | |||
59 | 10.75 | 4.5 × 10−12 | 11.3 | |||
91 | 11.34 | 4.2 × 10−12 | 11.4 | |||
450 | 1 | 9.88 | 4.1 × 10−9 | 8.4 | 10.0 | |
3 | 11.83 | 3.0 × 10−10 | 9.5 | |||
7 | 13.50 | 1.4 × 10−10 | 9.9 | |||
10 | 14.27 | 9.2 × 10−11 | 10.0 | |||
16 | 15.22 | 5.4 × 10−11 | 10.3 | |||
20 | 15.78 | 6.0 × 10−11 | 10.2 | |||
31 | 16.82 | 3.7 × 10−11 | 10.4 | |||
59 | 18.17 | 1.7 × 10−11 | 10.8 | |||
91 | 19.40 | 1.8 × 10−11 | 10.7 | |||
MPP-STA-NZ | 180 | 1 | 4.23 | 7.5 × 10−10 | 9.1 | 10.7 |
3 | 6.22 | 3.1 × 10−10 | 9.5 | |||
7 | 7.17 | 4.5 × 10−11 | 10.3 | |||
10 | 7.56 | 2.5 × 10−11 | 10.6 | |||
15 | 8.02 | 1.8 × 10−11 | 10.8 | |||
28 | 8.71 | 9.8 × 10−12 | 11.0 | |||
59 | 9.08 | 9.8 × 10−13 | 12.0 | |||
91 | 9.35 | 9.0 × 10−13 | 12.0 | |||
450 | 1 | 0.78 | 2.5 × 10−11 | 10.6 | 10.6 | |
3 | 1.88 | 9.5 × 10−11 | 10.0 | |||
7 | 3.13 | 7.7 × 10−11 | 10.1 | |||
10 | 3.72 | 5.6 × 10−11 | 10.3 | |||
15 | 4.49 | 4.8 × 10−11 | 10.3 | |||
28 | 5.49 | 2.1 × 10−11 | 10.7 | |||
59 | 6.35 | 5.3 × 10−12 | 11.3 | |||
91 | 7.03 | 5.6 × 10−12 | 11.3 | |||
MPP-MOR | 180 | 1 | 2.83 | 3.3 × 10−10 | 9.5 | 11.0 |
3 | 4.06 | 1.2 × 10−10 | 9.9 | |||
7 | 4.75 | 2.4 × 10−11 | 10.6 | |||
10 | 5.08 | 1.7 × 10−11 | 10.8 | |||
16 | 5.37 | 5.0 × 10−12 | 11.3 | |||
20 | 5.46 | 1.3 × 10−12 | 11.9 | |||
31 | 5.68 | 1.7 × 10−12 | 11.8 | |||
59 | 6.18 | 2.3 × 10−12 | 11.6 | |||
91 | 6.79 | 4.5 × 10−12 | 11.3 | |||
450 | 1 | 6.25 | 1.6 × 10−9 | 8.8 | 10.8 | |
3 | 7.34 | 9.3 × 10−11 | 10.0 | |||
7 | 7.95 | 1.8 × 10−11 | 10.7 | |||
10 | 8.26 | 1.6 × 10−11 | 10.8 | |||
16 | 8.54 | 4.5 × 10−12 | 11.3 | |||
20 | 8.75 | 8.3 × 10−12 | 11.1 | |||
31 | 9.08 | 3.8 × 10−12 | 11.4 | |||
59 | 9.58 | 2.3 × 10−12 | 11.6 | |||
91 | 10.00 | 2.1 × 10−12 | 11.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulikova, S.A.; Danilov, S.S.; Belova, K.Y.; Rodionova, A.A.; Vinokurov, S.E. Optimization of the Solidification Method of High-Level Waste for Increasing the Thermal Stability of the Magnesium Potassium Phosphate Compound. Energies 2020, 13, 3789. https://doi.org/10.3390/en13153789
Kulikova SA, Danilov SS, Belova KY, Rodionova AA, Vinokurov SE. Optimization of the Solidification Method of High-Level Waste for Increasing the Thermal Stability of the Magnesium Potassium Phosphate Compound. Energies. 2020; 13(15):3789. https://doi.org/10.3390/en13153789
Chicago/Turabian StyleKulikova, Svetlana A., Sergey S. Danilov, Kseniya Yu. Belova, Anastasiya A. Rodionova, and Sergey E. Vinokurov. 2020. "Optimization of the Solidification Method of High-Level Waste for Increasing the Thermal Stability of the Magnesium Potassium Phosphate Compound" Energies 13, no. 15: 3789. https://doi.org/10.3390/en13153789
APA StyleKulikova, S. A., Danilov, S. S., Belova, K. Y., Rodionova, A. A., & Vinokurov, S. E. (2020). Optimization of the Solidification Method of High-Level Waste for Increasing the Thermal Stability of the Magnesium Potassium Phosphate Compound. Energies, 13(15), 3789. https://doi.org/10.3390/en13153789