Design and Analysis of Tubular Slotted Linear Generators for Direct Drive Wave Energy Conversion Systems
Abstract
:1. Introduction
2. Linear Generator Proposed Design
3. Methods
3.1. Analytical Model Development and Computation
3.1.1. Open-Circuit Magnetic Field Distribution
- (1)
- Slotless machine topology with infinite permeability of the iron is considered. Slotting effects of the design is added by utilizing Carter’s coefficient [38] as calculated in:
- (2)
- The axial length of the generator is infinite. The infinitely long translator consists of a series of permanent magnet (PM) armatures. The PM armature series are disconnected by the axial distance of as illustrated in Figure 8.
3.1.2. Flux Linkage and Back EMF
4. Results and Discussion
4.1. Open-Circuit FEA Results
4.1.1. Flux Distribution
4.1.2. Airgap Flux Density
4.1.3. Flux Linkage and Back EMF
4.2. Main Dimension Refinement
4.2.1. Influence of Split Ratio, /
4.2.2. Influence of Pitch Ratio
4.2.3. Influence of Tooth Width
4.3. Validation Using Analytical Methods
4.4. Power-to-Weight Ratio and Material Cost
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Malaysia Energy Statistics Handbook; Energy Commission: Putrajaya, Malaysia. 2017. Available online: http://meih.st.gov.my/ (accessed on 10 October 2018).
- Nasir, N.A.M.; Maulud, K.N.A. Wave power potential in Malaysian territorial waters. IOP Conf. Ser. Earth Environ. Sci. 2016, 37. Available online: http://stacks.iop.org/1755-1315/37/i=1/a=012018 (accessed on 9 January 2019). [CrossRef] [Green Version]
- Samrat, N.; Ahmad, N.; Choudhury, I.; Taha, Z. Prospect of wave energy in Malaysia. In Proceedings of the 2014 IEEE 8th International Power Engineering and Optimization Conference (PEOCO2014), Kedah, Malaysia, 24–25 March 2014. [Google Scholar] [CrossRef]
- Maulud, K.N.A.; Karim, O.A.; Sopian, K.; Darus, Z.M.; Ramly, E.E.M. Identification a potential wave energy location in Malaysia using GIS. In Proceedings of the 10th WSEAS International Conference on Mathematical Methods, Computational Techniques and Intelligent Systems, Corfu, Greece, 26–28 October 2008; World Scientific and Engineering Academy and Society (WSEAS): Stevens Point, WI, USA, 2008; pp. 426–430. [Google Scholar]
- Chiang, E.P.; Zainal, Z.A.; AswathaNarayana, P.A.; Seetharamu, K.N. Potential of renewable wave and offshore wind energy sources in Malaysia. In Marine Technology 2003 Seminar; Marine Technology Center, Universiti Teknologi Malaysia: Skudai, Johor, Malaysia, 2003. [Google Scholar]
- Muzathik, A.; Nik, W.S.W.; Ibrahim, M.Z.; Samo, K. Wave energy potential of Peninsular Malaysia. ARPN J. Eng. Appl. Sci. 2010, 5, 11–23. [Google Scholar]
- Yaakob, O.B.; Ahmed, Y.M.; Mazlan, M.N.; Jaafar, K.E.; Muda, R.M.R. Model testing of an ocean wave energy system for Malaysian sea. World Appl. Sci. J. 2013, 22, 67–671. [Google Scholar]
- Ahmad, N.H.T.H.; Ibrahim, M.Z.; Rahman, S.J.A.; Albani, A.; Mohad, S. The development of wave energy converter system using hydraulic power take off at Terengganu Shoreline. In Proceedings of the 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), Phuket, Thailand, 24–26 October 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Mueller, M.A.; Polinder, H.; Baker, N. Current and novel electrical generator technology for wave energy converters. In Proceedings of the 2007 IEEE International Electric Machines & Drives Conference, Antalya, Turkey, 3–5 May 2007; Volume 2, pp. 1401–1406. [Google Scholar] [CrossRef] [Green Version]
- Hamim, M.A.F.M.; Ibrahim, T.; Nor, N.M. Modelling and analysis a single-phase halbach magnetized tubular linear permanent magnet generator for wave energy conversion. In Proceedings of the IEEE International Conference on Power Energy, Kuching, Malaysia, 1–3 December 2014. [Google Scholar]
- Zhang, J.; Yu, H.; Shi, Z. Design and experiment analysis of a direct-drive wave energy converter with a linear generator. Energies 2018, 11, 735. [Google Scholar] [CrossRef] [Green Version]
- Hodgins, N.; Keysan, O.; McDonald, A.S.; Mueller, M.A. Design and testing of a linear generator for wave-energy applications. IEEE Trans. Ind. Electron. 2012, 59, 2094–2103. [Google Scholar] [CrossRef]
- Franzitta, V.; Curto, D.; Milone, D.; Rao, D. Assessment of renewable sources for the energy consumption in Malta in the Mediterranean Sea. Energies 2016, 9, 1034. [Google Scholar] [CrossRef] [Green Version]
- Drew, B.; Plummer, A.R.; Sahinkaya, M.N. A review of wave energy converter technology. Proc. Inst. Mech. Eng. Part A 2009, 223, 887–902. [Google Scholar] [CrossRef] [Green Version]
- Busa, M.; Figuracion, E.; Santos, D.A.; Tan, A.R.; Ostia, C., Jr.; Teresa, J. Development of portable axially magnetized generator utilizing shoreline wave energy for electronic charging systems. AIP Conf. Proc. 2018, 2045, 020063-1–020063-5. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, H. Simulation of tubular transverse flux permanent magnet linear generator. In Proceedings of the 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Korea, 7–10 October 2018; pp. 1766–1770. [Google Scholar]
- Si, J.; Feng, H.; Su, P.; Zhang, L. Design and analysis of tubular permanent magnet linear wave generator. Sci. World J. 2014, 2014, 258109. [Google Scholar] [CrossRef]
- Elgebaly, A.; El-Nemr, M. Optimal design of slotless PM halbach array linear generator for wave energy converters at maximum power transfer condition. In Proceedings of the 2018 Twentieth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 18–20 December 2018; pp. 271–276. [Google Scholar] [CrossRef]
- Kim, J.M.; Koo, M.M.; Jeong, J.H.; Hong, K.; Cho, I.H.; Choi, J.Y. Design and analysis of tubular permanent magnet linear generator for small-scale wave energy converter. AIP Adv. 2017, 7, 056630-1–056630-6. [Google Scholar] [CrossRef] [Green Version]
- Mendes, R.P.G.; Calado, M.R.A.; Mariano, S.J.P.S. Electromagnetic design method for a TLSRG with application in ocean wave energy conversion. Electr. Power Energy Syst. 2020, 121, 1–11. [Google Scholar] [CrossRef]
- Xia, T.; Yu, H.; Chen, Z.; Huang, L.; Liu, X.; Hu, M. Design and analysis of a field-modulated tubular linear permanent magnet generator for direct-drive wave energy conversion. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Ibrahim, T.; Hussain, A.; Nallagowden, P.; Abrro, F.R. Design development and modelling of linear permanent magnet generator topologies for wave energy conversion. Int. J. Appl. Eng. Res. 2017, 12, 3329–3336. [Google Scholar]
- Kim, J.S.; Kim, J.Y.; Park, J.B. Design and optimization of a 8kW linear generator for a direct-drive point absorber. In Proceedings of the 2013 OCEANS, San Diego, CA, USA, 23–27 September 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Kumar, M.S.; Krishna, M.; Ranjan, A.; Dubey, M. Permanent magnet linear generator design. IOSR J. Electr. Electron. Eng. 2015, 10, 86–90. [Google Scholar]
- Prudell, J.; Stoddard, M.; Amon, E.; Brekken, T.K.A.; Jouanne, A.V. A permanent-magnet tubular linear generator for ocean wave energy conversion. IEEE Trans. Ind. Appl. 2010, 46, 2392–2400. [Google Scholar] [CrossRef]
- Libert, F.; Soulard, J. Investigation on pole-slot combinations for permanent-magnet machines with concentrated windings. In Procceding of the International Conference on Electrical Machines; Institute of Mechatronics and Information Systems, Technical University of Lodz: Cracow, Poland, 2004; pp. 530–535. [Google Scholar]
- Haring, T.; Forman, K.; Huhtanen, T.; Zawadzki, M. Direct drive-opening a new era in many applications. In Proceedings of the Conference Record of the 2003 Annual Pulp and Paper Industry Technical Conference, Charleston, SC, USA, 16–20 June 2003; pp. 171–179. [Google Scholar] [CrossRef]
- Lu, Q.; Huang, L.; Ye, Y.; Huang, X.; Fang, Y. Design of a novel permanent magnet linear synchronous motor with segmented armature core for ropeless lifter. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2016, 35, 556–571. [Google Scholar] [CrossRef]
- Vermaak, R.; Kamper, M.J. Design aspects of a novel topology air-cored permanent magnet linear generator for direct drive wave energy converters. IEEE Trans. Ind. Electron. 2012, 59, 2104–2115. [Google Scholar] [CrossRef]
- Gieras, J.F.; Piech, Z.J.; Tomczuk, B. Linear Synchronous Motors: Transportation and Automation Systems, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Rucker, J.E. Design and Analysis of a Permanent Magnet Generator for Naval Applications. Master’ Thesis, Science in Electrical Engineering and Computer Science, Department of Ocean Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 2001. [Google Scholar]
- López, I.; Andreu, J.; Ceballos, S.; de Alegría, I.M.; Kortabarria, I. Review of wave energy technologies and the necessary power-equipment. Renew. Sustain. Energy Rev. 2013, 27, 413–434. [Google Scholar] [CrossRef]
- Faiz, J.; Nematsaberi, A. Linear permanent magnet generator concepts for direct-drive wave energy converters: A comprehensive review. In Proceedings of the 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, 18–20 June 2017; pp. 618–623. [Google Scholar] [CrossRef]
- Huang, L.; Chen, M.; Wang, L.; Yue, F.; Guo, R.; Fu, X. Analysis of a hybrid field-modulated linear generator for wave energy conversion. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [Google Scholar] [CrossRef]
- Polinder, H.; Mecrow, B.C.; Jack, A.G.; Dickinson, P.G.; Mueller, M.A. Conventional and TFPM linear generators for direct-drive wave energy conversion. IEEE Trans. Energy Convers. 2005, 20, 260–267. [Google Scholar] [CrossRef]
- Parel, T.; Rotaru, M.D.; Sykulski, J.K.; Hearn, G.E. Optimisation of a tubular linear machine with permanent magnets for wave energy extraction. Int. J. Comput. Math. Electr. Electron. Eng. 2011, 30, 1056–1068, Emerald Group Publishing Limited. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Jewell, G.W.; Howe, D. Design optimisation and comparison of tubular permanent magnet machine topologies. IEE Proc. Electr. Power Appl. 2001, 148, 456–464. [Google Scholar] [CrossRef]
- Jiabin, W.; Jewell, G.W.; Howe, D. A general framework for the analysis and design of tubular linear permanent magnet machines. IEEE Trans. Magn. 1999, 35, 1986–2000. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, I.I.; Ibrahim, T.; Nor, N.M. Analysis of tubular linear motors for different shapes of magnets. IEEE Access 2018, 6, 10297–10310. [Google Scholar] [CrossRef]
- Ibrahim, T. Short-Stroke, Single-Phase Tubular Permanent Magnet Motors for Refrigeration Applications. Ph.D. Thesis, Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK, 2009. [Google Scholar]
Wave Characteristics | Value |
---|---|
Wave Height (min. value–max. value) | 0.7–1.1 m |
Vertical Speed (average value) | 0.6 m/s |
Specification | Value |
---|---|
Translational Distance Limit (upward/downward stroke) | 0.45 m |
Translational speed | 0.6 m/s |
Targeted Output | 1.0 kW, 240 V single phase |
Dimension | Value |
---|---|
Length of stator, | 400 mm |
Length of translator, | 1300 mm |
Height of magnet, | 7 mm |
Outer radius of stator, | 140 mm |
Magnet pole pitch, τp | 40 mm |
Airgap length, g | 4 mm |
Slot depression width, | 5 mm |
Slot width, | 23 mm |
Design Variants | TPMLM-NS | TPMLM-S |
---|---|---|
Total Material Cost (USD) | 1838 | 1791 |
Translator Weight (kg) | 49.3 | 60.3 |
Total Weight (kg) | 164.0 | 166.6 |
Avg. Back EMF (V) | 240 | 240 |
Efficiency (%) | 81.0 | 76.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Zamri, N.A.; Ibrahim, T.; Mohd Nor, N. Design and Analysis of Tubular Slotted Linear Generators for Direct Drive Wave Energy Conversion Systems. Energies 2020, 13, 6171. https://doi.org/10.3390/en13236171
Mohd Zamri NA, Ibrahim T, Mohd Nor N. Design and Analysis of Tubular Slotted Linear Generators for Direct Drive Wave Energy Conversion Systems. Energies. 2020; 13(23):6171. https://doi.org/10.3390/en13236171
Chicago/Turabian StyleMohd Zamri, Naily Akmal, Taib Ibrahim, and Nursyarizal Mohd Nor. 2020. "Design and Analysis of Tubular Slotted Linear Generators for Direct Drive Wave Energy Conversion Systems" Energies 13, no. 23: 6171. https://doi.org/10.3390/en13236171
APA StyleMohd Zamri, N. A., Ibrahim, T., & Mohd Nor, N. (2020). Design and Analysis of Tubular Slotted Linear Generators for Direct Drive Wave Energy Conversion Systems. Energies, 13(23), 6171. https://doi.org/10.3390/en13236171