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Abstract: Linear generator utilization in a wave energy converter (WEC) is an attractive alternative
to a rotary generator. This paper presents the design of a permanent magnet linear machine (PMLM)
for WEC applications in low wave power areas. In this paper, the wave height and vertical speed
of Malaysian water is used for the simulation and design. Two design variants are introduced
which are tubular PMLM with no spacer (TPMLM-NS) and tubular PMLM with spacer (TPMLM-S).
Finite element analysis (FEA) has been conducted to investigate the performance and to refine the
main dimensions of the design in terms of split ratio, pitch ratio and tooth width. The FEA results are
then validated using an analytical method which is established according to the design’s magnetic
field distribution. Based on main dimension refinement, it can be deduced that both the split ratio
and the pitch ratio have a significant influence on the airgap flux density and back EMF of the design.
The obtained FEA results also reveal that the TPMLM-NS variant is capable of producing 240 V back
EMF, 1 kW output power with satisfactory efficiency. Consequently, this indicates the capability of the
design to convert wave energy with good performance. Additionally, good agreement between the
analytical predictions and FEA results was obtained with a low percentage of error, thus providing
concrete assurance of the accuracy of the design.

Keywords: wave energy converter; direct drive linear generator; permanent magnet linear machine;
finite element analysis; analytical method

1. Introduction

Electricity generation from renewable energy (RE) resources is one of the alternatives to attain
energy sustainability and security as the demand for electricity grows. In Malaysia, hydro energy is
the dominant RE source for electricity generation, contributing 10.8% of the production [1]. Other RE
sources being utilized in Malaysia are solar energy and biomass. In addition to these major RE
sources in Malaysia, the potential for wave energy utilization in electricity generation has also been
investigated. Nasir et al. [2] stated that 48% of Malaysian waters are suitable for power generation and
the average potential power from local waves is around 2.8–8.6 kW/m. This value is also supported
by a study by Samrat et al. [3]. It is also reported that the ocean in the South China Sea areas such
as offshore from Sabah, Sarawak and Terengganu has higher wave availability than West Peninsular
Malaysia [2–5]. Therefore, even though the wave power value in Malaysia is low, there is still potential
for the development of wave energy extraction [6]. Similarly, other areas with low wave power areas as
Malaysia also have potential for wave power extraction with suitable usage of technology and system
design. With the current technology of WEC and further research, the efficiency of the conversion from
small input power can be increased [4]. Several works have been conducted on wave energy converter
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(WEC) development in Malaysia. Yaakob et al. [7] proposed a device based on oscillating water
column (OWC) technology, while Ahmad et al. [8] presented a floating oscillating body technology for
application at shoreline areas.

In addition to the WEC devices developed by Yaakob et al. [7] and Ahmad et al. [8], which convert
the energy into electricity by mean of rotary generators, another alternative to convert wave energy into
electricity via a direct drive linear generator is also possible. Unlike rotary generators which require a
transmission system such as the turbine system used by Yaakob et al. [7] and hydraulic transfer as
employed by Ahmad et al. [8], linear generators are able to directly drove the heaving motion of wave
energy. This feature of linear generator in a WEC is advantageous as it can result in higher device
efficiency and a simpler design concept [9,10]. Therefore, direct drive linear generator utilization in
extracting wave energy from low wave power area is very attractive.

A WEC system consists of several sub-systems or conversion stages, as illustrated in Figure 1.
From the figure, the direct drive linear generator conversion method requires a primary interface and
also an electrical generator. Typically, floating buoy or point absorber technology is used as the primary
interface to capture the motion of sea wave as depicted by Zhang et al. [11], Hodgins et al. [12] and
Franzitta et al. [13]. As for linear generators, various specifications and topologies based on operating
speed and applications have been proposed in the previous literature. In this paper, the focus is mainly
to study the design of a linear generator to be used in a direct drive WEC system at low wave power
areas such as Malaysia.
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Tubular linear generator design structures have been extensively employed in previous
works [11,15–21]. A tubular permanent magnet linear machine (PMLM) design with an air-cored
winding for small scale WEC applications has been introduced by Kim et al. [19] with a rated stroke
and speed of 100 mm and 0.3 m/s, respectively. The design yields an output voltage of 3.5 V at the
rated output power of 3 W [19]. Likewise, a PMLM design by Zhang et al. [11] also employed a
tubular structure for application at 0.4 m/s speed. The novelty of this design is the asymmetric slot
structure which is reported to be able to reduce detent force and enhance the airgap flux density in the
design [11]. A tubular switched reluctance linear machine (SRLM) has been proposed and analysed by
Mendes et al. [20] using FEA, mathematical modelling and experiments. The SRLM design is found to
perform effectively under condition of 1.3 m/s velocity with a maximum translation of 4.4 m.

In contrast, planar or flat structure designs have also been reported [22–24]. Kim et al. [23]
proposed four-sided planar linear generator with an operating velocity of 0.7 m/s and an output voltage
of 300 V. Each side of the four-sided structure is expected to give an output of 2 kW [23]. A PMLM
design with a planar structure for application with a rated stroke and speed of 90 mm and 1 m/s,
respectively, has been presented by Ibrahim et al. [22]. Additionally, the study added variations to the
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design in terms of the number of planar sides and position of the translator. Based on the analysis
conducted on the design, the design variation with a three-sided and exterior translator produced the
best output voltage of 199 V [22].

In addition to the structure topologies of the design, design variation in term of magnet
configuration can also be observed in the previous designs. One of the most common magnet
configurations used is radial magnetization, which has been implemented in [16,24,25]. Prudell et al. [25]
presented a PMLM design with radial magnets for a 0.76 m/s velocity application with 1 kW output
power. Few novelties were proposed in the design which are a seawater airgap for lubrication,
cogging force reduction techniques (i.e., fractional pitch winding and shaped stator tooth) and radially
oriented lamination to reduce core loss [25]. Similarly, Kumar et al. [24] also employed 6-pole radial
magnets to yield sufficient flux in a single-phase PMLM design in producing a peak voltage of 150 V.

As opposed to the radial magnet configuration, the axial magnet configuration has also been
reported in PMLM designs by Busa et al. [15] and Kim et al. [19]. In the work by Busa et al. [15],
axial magnets are used for application in The Philippines. The design is capable of providing a peak
voltage output of 9.819 V at a wave height of 0.3 m and velocity of 0.061 m/s [15].

In addition to radial and axial magnet configurations, a number of previous works have also
employed Halbach magnets in their linear generator designs [11,17,18,22]. A Halbach magnet
configuration was used by Si et al. [17] in their design in which the magnet assembly consists of both
surface-mounted and interior magnets. FEA has been conducted on the design and the results show
that the design is capable of improving the sinusoidal characteristics of the airgap flux density and
increasing the efficiency as compared to conventional surface-mounted magnet designs [17].

From the presented previous works, it can be deduced that various linear generator designs
have been proposed with various topologies and performances. It is also noted that linear generator
performance is related to the application parameters such as the operating speed and translation
limit of the design. Hence, it is very significant for this research to be conducted in proposing linear
generator designs for WEC systems that consider the wave characteristics in low wave power areas.

This paper presents the details on a proposed linear generator which is designed by considering
the wave characteristics of wave energy in low wave power areas, particularly Malaysia, to be used in
direct drive point absorber WEC technology. The analysis in this paper consists of a finite element
analysis (FEA) which is then validated using analytical methods based on Maxwell’s equations and
Fourier series analysis of the proposed design.

2. Linear Generator Proposed Design

The proposed linear generator design considered the wave characteristics in the South China
Sea around Malaysia as tabulated in Table 1. The average wave height and vertical wave speed was
used to determine the translational limit and speed of the proposed translator, respectively. Therefore,
the general specifications of the generator are as given in Table 2.

Table 1. Wave Characteristics in South China Sea, Malaysia [5].

Wave Characteristics Value

Wave Height (min. value–max. value) 0.7–1.1 m

Vertical Speed (average value) 0.6 m/s

Table 2. Specification of the Generator.

Specification Value

Translational Distance Limit (upward/downward stroke) 0.45 m

Translational speed 0.6 m/s

Targeted Output 1.0 kW, 240 V single phase
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Due to the low wave power density in Malaysia waters, significant factors that are affecting the
efficiency of the generator were prioritized in selecting the suitable topology of the proposed design,
which are higher flux density and reduced power losses. In terms of machine type, a permanent magnet
linear machine (PMLM) was deduced to be advantageous for this application due to its compact size,
ability to provide adequate forces in low speed applications and high efficiency [26–28]. Additionally,
the tubular configuration has high potential to be used in the proposed design predominantly due
to the higher force density and efficiency of the configuration [19,29]. Similarly, slotted iron-cored
topology was chosen due to the higher power density and efficiency offered by these configurations
as opposed to slotless air-cored topology [30,31]. The conceptual proposed design is as shown in
Figure 2. Radial magnetized magnets were employed in the design due to the simple configuration
and installation of the magnets.
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Figure 2. 3-dimension TPMLM Conceptual Design: (a) Full Design; (b) Cross Section.

The slow motion of ocean waves leads to the requirement of a larger size linear generator
in producing a specific output power compared to rotary generators [9,21,32–34]. As the result,
the material cost and weight of the system is also increased. Thus, a design alternative to the linear
generator design was also introduced in order to reduce the total material cost as well as weight of
the system at very minimal reduction of the performance of the generator which is the utilization of
aluminium spacers as part of the magnet assembly.

As the size of machine increases, the number of magnets used will also increase. Permanent magnets,
especially the neodymium (NdFeB) magnets that are mostly applied in present electrical machine designs
are expensive and an increase in the number used will affect the material cost greatly, especially in long
translator designs which use more magnets [25,35]. Aluminium spacers were proposed to replace some
parts of the magnet as they are cheaper and less dense than permanent magnets. Spacers are usually
used with axial magnet arrangements to assemble the same polarity magnet next to each other [36,37].

Therefore, two variants of the proposed design were introduced which are tubular PMLM
(TPMLM) with no spacer (TPMLM-NS) and TPMLM with spacer (TPMLM-S). These variants are as
shown in Figures 3 and 4, respectively. The dimensions of the proposed designs are as presented in
Table 3.
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Table 3. Dimensions of the Proposed Design.

Dimension Value

Length of stator, ls 400 mm

Length of translator, lt 1300 mm

Height of magnet, hm 7 mm

Outer radius of stator, Re 140 mm

Magnet pole pitch, τp 40 mm

Airgap length, g 4 mm

Slot depression width, wd 5 mm

Slot width, ws 23 mm

3. Methods

The method used to analyse the linear generator is based on a numerical and analytical method.
The numerical finite element analysis (FEA) method as provided in the Ansys Maxwell software was
used. The design was solved using a 2-dimensional transient magnetic solution. Three setups were
applied to the design for the analysis which are generator static no-load setup, generator moving
no-load setup and motor static setup.

In the generator static no-load setup, no motion was induced on the design and the setup aims to
acquire the open-circuit flux distribution and airgap flux density result. For the generator moving
no-load setup, motion was introduced at the translator of the design with translation limit of 0.45 m
and speed of 0.6 m/s (as in Table 2). From this setup, the open-circuit flux linkage and back EMF results
can be obtained. Lastly, to compute the losses of the design, a motor static setup was applied. As the
generator and motor can work interchangeably, the design was simulated to work as a motor and
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injected with current while monitoring the force induced at the translator. From the computed losses,
the efficiency, η, of the design can be calculated as follows:

η =
Pout

Pout + Pcopper + Pcore
× 100% (1)

where Pout is the power output, Pcopper is the copper loss and Pcore is the core loss.
Main dimension refinement of the design was also conducted using FEA. Main dimension

refinement was conducted to investigate the influence of the dimensions on the performance of the
proposed design and consequently ensure that the particular dimension is optimized to produce the
optimal output. Main dimension refinement was done on four parameters which are the split ratio,
pitch ratio, stator back-iron height and tooth width. Split ratio is the ratio of magnet radius, Rm over
outer stator radius, Re. Pitch ratio is the ratio of magnet width, τm to pole pitch, τp.

Refinement on the split ratio was conducted to find the optimal balance between the magnetic
loading and the electrical loading of the design. The magnetic loading is represented by Rm,
while electrical loading is represented by the total height of the stator core (i.e., summation of
hs and hbi) as shown in Figure 5. The refinement was done by varying the Rm value while maintaining
the value of Re. The effect of the variation was then analyzed in terms of airgap flux density and losses.
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Figure 5. Split Ratio, Rm/Re Refinement.

Pitch ratio refinement was executed to investigate the influence of the magnet width over pole-pitch
ratio on the design. In this refinement, the width of the magnet, τm, was varied while maintaining
the pole-pitch, τp, value as shown in Figure 6. For TPMLM-NS, the width of north-polarity magnet,
τmn was varied by altering the width of the south-polarity magnet, τms at the same time, while for
TPMLM-S, the width of τmn and τms were varied against the width of the aluminum spacer, τas.
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Lastly, refinement of the magnet tooth width, Tw was done in order to find the optimal Tw value
that produces the optimal flux density at the stator core while balancing the changes in copper loss due
to change in slot area. Tw and ws values of the design were varied while maintaining the dimension of
stator length, ls as illustrated in Figure 7.

Energies 2020, 13, x FOR PEER REVIEW 7 of 26 

 

loss due to change in slot area. 𝑇𝑤 and 𝑤𝑠 values of the design were varied while maintaining the 

dimension of stator length, 𝑙𝑠 as illustrated in Figure 7. 

 

Figure 7. Tooth Width, Tw Variation. 

The proposed design was also solved analytically by developing the model to validate the FEA 

results. The analytical method used in this paper is based on Maxwell’s equations and the equations 

were derived and solved according to the open-circuit magnetic field distribution of the design. This 

method is based on the analytical method proposed by [38] with several amendments in term of the 

coefficients for the solution as suggested by [39,40] and the Fourier series representation of magnetic 

distribution, 𝑀𝑟𝑛 of the design which need to be derived according to the magnet configurations. 

The analytical model was used to compute the flux density, flux linkage and back EMF of the design 

is as explained in Section 3.1. 

3.1. Analytical Model Development and Computation 

3.1.1. Open-Circuit Magnetic Field Distribution 

The following assumptions were taken into account to establish the analytical model of the 

designs [39,40]: 

(1) Slotless machine topology with infinite permeability of the iron is considered. Slotting effects of 

the design is added by utilizing Carter’s coefficient [38] as calculated in: 

𝐾𝑐 = 
𝜏𝑠𝑝

𝜏𝑠𝑝 − 𝛾𝑔
′
 (2) 

where g’ = g + hm/𝜇𝑟, 𝜏𝑠𝑝 is the stator slot-pitch, and 𝛾 is the slotting factor which can be defined as: 

𝛾 =  
4

𝜋
((

𝑏0
2𝑔′

) tan −1 (
𝑏0
2𝑔′

) − ln√1 + (
𝑏0
2𝑔′

)
2

) (3) 

where, 𝑏0 is the axial length of slot opening. From Equation (1), the effective airgap length, ge can be 

computed as: 

𝑔𝑒 =  𝑔 + (𝐾𝑐 − 1)𝑔
′ (4) 

From Equation (4), the effective radius of the stator bore is: 

𝑅𝑠𝑒 = 𝑅𝑚 + 𝑔𝑒 (5) 

where 𝑅𝑚 is outer radius of the magnet. 

(2) The axial length of the generator is infinite. The infinitely long translator consists of a series of 

permanent magnet (PM) armatures. The PM armature series are disconnected by the axial 

distance of 𝜏𝑙 as illustrated in Figure 8. 

T
w
 T

wp
 

w
s
 

l
s
 

Figure 7. Tooth Width, Tw Variation.

The proposed design was also solved analytically by developing the model to validate the FEA
results. The analytical method used in this paper is based on Maxwell’s equations and the equations
were derived and solved according to the open-circuit magnetic field distribution of the design.
This method is based on the analytical method proposed by [38] with several amendments in term of
the coefficients for the solution as suggested by [39,40] and the Fourier series representation of magnetic
distribution, Mrn of the design which need to be derived according to the magnet configurations.
The analytical model was used to compute the flux density, flux linkage and back EMF of the design is
as explained in Section 3.1.

3.1. Analytical Model Development and Computation

3.1.1. Open-Circuit Magnetic Field Distribution

The following assumptions were taken into account to establish the analytical model of the
designs [39,40]:

(1) Slotless machine topology with infinite permeability of the iron is considered. Slotting effects of
the design is added by utilizing Carter’s coefficient [38] as calculated in:

Kc =
τsp

τsp − γg′
(2)

where g′ = g + hm/µr, τsp is the stator slot-pitch, and γ is the slotting factor which can be defined as:

γ =
4
π


(

b0

2g′

)
tan−1

(
b0

2g′

)
− ln

√
1 +

(
b0

2g′

)2
 (3)

where, b0 is the axial length of slot opening. From Equation (1), the effective airgap length, ge can
be computed as:

ge = g + (Kc − 1)g′ (4)

From Equation (4), the effective radius of the stator bore is:

Rse = Rm + ge (5)

where Rm is outer radius of the magnet.
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(2) The axial length of the generator is infinite. The infinitely long translator consists of a series
of permanent magnet (PM) armatures. The PM armature series are disconnected by the axial
distance of τl as illustrated in Figure 8.Energies 2020, 13, x FOR PEER REVIEW 8 of 26 
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The magnetic field of the model is analysed based on two regions as also shown in Figure 8. Region I
is the air region with permeability of µ0, while region II is the PM region with the permeability of µ0µr,
where µr is the relative recoil permeability. In term of magnetic vector potential, Aθ, the principal field
equations in cylindrical coordinates are [39,40]:

∇
2A

 ∂
∂z

(
1
r
∂
∂z (rAIθ)

)
+ ∂

∂r

(
1
r
∂
∂r (rAIθ)

)
= 0

{
Region I

}
∂
∂z

(
1
r
∂
∂z (rAIIθ)

)
+ ∂

∂r

(
1
r
∂
∂r (rAIIθ)

)
= −µ0∇×M

{
Region II

} (6)

The magnetization, M is defined as:

M = Mrer + Mzez. (7)

Due to the utilization of radial magnetized magnets in the proposed design, only Mr,
which indicates the components of the magnetization in the r directions, has value. The magnetic field
distribution of the proposed design is as shown in Figure 9. The magnetization Mr of the design is
expressed as:

Mr =
∞∑

n=1

Mrn cos mnz. (8)

Mrn for TPMLM-NS variant can be represented by Fourier series of:

Mrn(A) =
4Brem
µoπn [ 1

2 sin
(
15τp ×mn

)
− sin

(
29τp×mn

2

)
+ sin

(
27τp×mn

2

)
− . . .− sin

(
5τp×mn

2

)
+ sin

(
3τp×mn

2

)
− sin

(
1τp×mn

2

)
.

(9)

As for TPMLM-S, the Mrn can be represented as:

Mrn(B) =
2Brem
µoπn [sin

(
15τp ×mn

)
− sin

(
117τp×mn

8

)
− sin

(
115τp×mn

8

)
+ sin

(
109τp×mn

8

)
+ sin

(
107τp×mn

8

)
− sin

(
101τp×mn

8

)
− sin

(
99τp×mn

8

)
+ sin

(
93τp×mn

8

)
+ . . .+ sin

(
11τp×mn

8

)
− sin

(
5τp×mn

8

)
− sin

(
3τp×mn

8

) (10)
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where mn = 2πn
τlp

, τlp is the fundamental period of the series PM armature defined as τlp = τl + 31
(
τp

)
,

Brem is the remanence of the magnet and τp is the pole-pitch. Hence, combining Equations (6)–(8),
Equation (6) can be rewritten as:

∇
2A


∂
∂z

(
1
r
∂
∂z (rAIθ)

)
+ ∂

∂r

(
1
r
∂
∂r (rAIθ)

)
= 0

∂
∂z

(
1
r
∂
∂z (rAIIθ)

)
+ ∂

∂r

(
1
r
∂
∂r (rAIIθ)

)
=
∞∑

n=1
Pn sin mnz.

(11)
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Pn of the design variants is expressed as:

Pn = Mrn ×mn × µo. (12)

As mentioned in [39] the analytical model has the following boundary conditions that need to be
fulfilled, which are:

BIz
∣∣∣r=Rs = 0; HIIz

∣∣∣r=R0 = 0
BIr

∣∣∣r=Rm = BrII
∣∣∣r=Rm ; HIz

∣∣∣r=Rm = HIIz
∣∣∣
r=Rm

(13)

Solving for Equation (10) by taking into account the boundary conditions in Equation (13),
yields flux density components expressions as follows:

BIr(r, z) = −
∞∑

n=1
[aInBI1(mnr) + bInBK1(mnr)] cos mnz

BIz(r, z) =
∞∑

n=1
[aInBI0(mnr) − bInBK0(mnr)] sin mnz

BIIr(r, z) = −
∞∑

n=1

{
[FAn(mnr) + aIIn]BI1(mnr) + [−FBn(mnr)bIInBK1(mnr)]

}
cos mnz

BIIz(r, z) =
∞∑

n=1

{
[FAn(mnr) + aIIn]BI0(mnr) − [−FBn(mnr)bIInBK0(mnr)]

}
sin mnz

(14)

where BI0(∗) and BI1(∗) are modified Bessel functions of the first kind; BK0(∗) and BK1(∗) are modified
Bessel functions of the second kind, of order 0 and 1, respectively. aIn, aIIn, bIn, bIIn, FAn and FBn are as
given in Appendix A [39].

3.1.2. Flux Linkage and Back EMF

The flux linkage of electrical machine can be computed by integrating the radial flux density
component at effective radius of the stator bore, Rse and thus the total flux linkage can be described as:

ψw =
∞∑

n=1

∅wm cos mnzd (15)

where zd is the translator displacement at z-axis. ∅wm is defined as:

∅wm = 2πNwpKrnKdnKpn/mn (16)

in which Nwp is the number of turns per phase, while Kdn, Kpn and Krn of an iron-cored electrical
machines are expressed as:

Kdpn =
sin mnbo/2

mnbo/2
(17)

Kpn = 1− cos
(
mnTwp

)
(18)

Krn = Rse[alnBI1(mnRse) + blnBK1(mnRse)]. (19)

Induced back EMF of a single-phase stator winding can be acquired by differentiating the flux
linkage over time or can also be described as:

ew = −

 ∞∑
n=1

(
2πNwpKrnKdnKpn

)
sin mnzd

dzd
dt

. (20)
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4. Results and Discussion

4.1. Open-Circuit FEA Results

FEA results of the proposed design are explained in term of flux distribution, airgap flux density,
flux linkage and back EMF.

4.1.1. Flux Distribution

Figure 10 shows the flux distribution of both design variants at different translator’s axial
translation which are at 0 mm, 20 mm and 40 mm. Axial translation of 0 mm signifies the initial position
of the translator, 20 mm implies the movement of the translator at half of the magnet pole-pitch and
40 mm specifies the position at which the translation of the translator equal to one magnet pole-pitch.
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Figure 10. Open-circuit Flux Distribution of (a) Magnetization without Spacer Design at 0 mm Axial
Displacement; (b) Magnetization with Spacer Design at 0 mm Axial Displacement; (c) Magnetization
without Spacer Design at 20 mm Axial Displacement; (d) Magnetization with Spacer Design at
20 mm Axial Displacement; (e) Magnetization without Spacer Design at 40 mm Axial Displacement;
(f) Magnetization with Spacer Design at 40 mm Axial Displacement.

At 0 mm and 40 mm, both variants produced fluxes that flow from one tooth to the adjacent
tooth. This flux distribution is achieved as the magnet pole-pairs are symmetrical with respect to the
stator core and each stator tooth coincides with one magnet polarity only. Consequently, this allows
maximum and symmetrical fluxes to flow from the north-polarity magnet (as indicated by red colour
in Figure 10) to the south-polarity magnet (as indicated by blue colour in Figure 10). As the linkage of
flux in the machine is affected by the behaviour of the flux, it is expected that at 0 mm and 40 mm of
axial translation, the flux linkage value will also be at a maximum. In contrast, a difference between
flux distribution at 0 mm and 40 mm can be pointed out which is the polarity of the flux flow. As can
be seen in Figure 10, the magnet polarity that coincides with a particular tooth at 40 mm is the opposite
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of the magnet polarity at 0 mm. For example, the first tooth is facing the north-polarity magnet during
0 mm, while at 40 mm, the same tooth is facing the south-polarity magnet. This alternate polarity
condition at 0 mm and 40 mm is also predicted to be observed in flux linkage results.

At translation of 20 mm, the symmetrical flux distribution as in 0 mm and 40 mm translation
is absent as the magnet pole-pairs have been shifted at half of the magnet pole-pitch and causing
each stator tooth to coincide with both the north-polarity magnet and south-polarity magnet. In the
TPMLM-NS design variant, it can be clearly seen that some of the fluxes return through the same tooth
and this reduces flux flow at stator back-iron. This flux distribution condition is expected to also cause
reduction in flux linkage at 20 mm of axial translation.

Even though both design variants exhibit similar flux behaviours, one significant distinction that
can be seen is the concentration of flux. Design variant TPMLM-NS has higher flux concentration
at stator core as oppose to TPMLM-S. With the introduction of aluminium spacers in the design,
the magnet volume in TPMLM-S is reduced, causing lesser flux to flow through the airgap and stator
core compared to TPMLM-NS. Due to this condition, more total number of coil turns will be required
in TPMLM-S to yield the same back EMF value as in TPMLM-NS.

4.1.2. Airgap Flux Density

The FEA result of airgap flux density over length of one magnet pole-pair which is equivalent
to 80 mm is as shown in Figure 11. As can be seen from the waveforms, two alternate polarities of
flux density at the airgap is acquired in both variants due to the usage of radial magnetized magnets.
The positive polarity indicates the north-polarity magnet while the negative polarity signifies the
south-polarity magnet. As both design variants utilize the same magnet material which is neodymium
magnets, the maximum peak of both waveform is at similar value which is around 0.6–0.65 T. However,
as the design TPMLM-S variant has aluminium spacers in the design in which aluminium is not a
ferromagnetic material, parts of the axial length of the airgap experience zero flux density. In return,
this reduces the average airgap flux density value of TPMLM-S (i.e., average flux density = 0.34 T) by
46.8% from TPMLM-NS (i.e., average flux density = 0.64 T). This percentage difference of average flux
density in both design variants is slightly smaller than the percentage of magnet volume reduction in
the design which is 50%. For TPMLM-S to produce similar flux linkage and back EMF value, a higher
number of turns is required in the design variant due to the reduction in airgap flux density.
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4.1.3. Flux Linkage and Back EMF

Figures 12 and 13 exhibit FEA results of flux linkage and back EMF of both design variants.
As mentioned in Section 4.1.2, to overcome the decrease in airgap flux density in TPMLM-S, the number
of coil turns used in the variant is doubled of the total used in TPMLM-NS. Thus, similar average flux
linkage and back EMF value can be obtained from the variants.Energies 2020, 13, x FOR PEER REVIEW 13 of 26 
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Figure 13. Back EMF.

The flux linkage waveforms in Figure 12 show cosine waveform characteristics. The cosine
waveform characteristic is the product of the magnets’ position of the design with respect to the stator
teeth. At initial position, the magnets are positioned so that the whole axial length of the tooth tips
coincide with high flux, leading to maximum flux flow at 0 mm. Maximum magnitudes of flux linkage
are acquired at 0 mm and 40 mm with alternate polarity at these two points. These conditions matched
the predictions in Section 4.1.1, in which a maximum flux concentration is observed at the particular
translation points with different direction of flux flow. At 20 mm, the flux linkage is around 0 T and
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this value is expected based on the discussion in Section 4.1.1, in which minimum flux flow at stator
core was observed at this position and in return, causes the linkage of flux with the coil is almost zero.

Based on Figure 13, although the waveforms of the back EMF are not smooth, it can be assumed
that the waveforms follow the trend of negative sine wave with zero value at 0 mm and maximum
magnitude at 20 mm (i.e., quarter of the total axial translation). This sine wave trend is the result of the
relationship of back EMF and flux linkage which can be defined as:

ew =
dψw

dt
(21)

Therefore, as the flux linkage exhibits cosine waveform trends, the differentiation of it is equivalent
to negative sine as being demonstrated in back EMF waveform. Waveform of TPMLM-S has more
distortions that TPMLM-NS due to the presence of aluminium spacers in the design, causing the change
in flux at the stator core to be not smooth. These distortions were computed using total harmonic
distortion (THD) waveform analysis, and the THD percentage in TPMLM-S is higher by 24% than
TPMLM-NS. Nonetheless, as the total number of turn in the design variant has been manipulated,
the average back EMF value of both variants satisfied the design specification which is 240 V.

Based on the FEA results on open-circuit flux distribution and airgap flux density, it can be
deduced that both design variants are justified in term of magnet configuration of the design in which
good agreement between the results and design configuration is achieved. Additionally, the reduction
in flux density of TPMLM-S is also justified based on the reduction in magnet volume in the variant.
Lastly, despite the difference in airgap flux density values of the variants, a consistent back EMF
average value was achieved by varying the total number of coil turns.

4.2. Main Dimension Refinement

4.2.1. Influence of Split Ratio, Rm/Re

The influence of Rm/Re refinement on the airgap flux density of the design variants is as shown in
Figure 14. Both design variants exhibit similar trends due to the variation of Rm/Re refinement. One of
the significant effects is in term magnitude of airgap flux density. Higher magnitude of airgap flux
density is acquired as Rm/Re rises. This is due to the volume of magnet that is also increased as the
magnet radius, Rm increases. Additionally, it can also be pointed out that the shape of waveforms is
kept constant throughout the variation. This condition is due to the configuration of the magnet that is
not changed despite the change in the volume and consequently maintains the other behaviours of the
flux density except for the concentration. The highest value of average flux linkage for TPMLM-NS is
0.561 T, while for TPMLM-S, the highest average value is 0.349 T.

Figure 15 show the effect of Rm/Re refinement on copper loss and core loss of the design. The copper
loss of TPMLM-S shows significant changes throughout the variation. Rm/Re of 0.5 produces the lowest
copper loss for TPMLM-S design variant. Rm/Re values that are smaller than 0.5 experience rise in
copper loss due to the high value of injected current required to produce the constant power output
and the same time to compensate the reduction in airgap flux density with the decrease in magnet
volume. For Rm/Re bigger than 0.5, the slight increase in copper loss is because of the area of the slot
that is reduced to accommodate the increment in Rm. Reduction in area of slot in return increases the
resistance of the winding. The trend of copper loss in TPMLM-NS variants is not as significant as
TPMLM-S. However, slight decrement in copper loss is obtained at Rm/Re of 0.4.
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Figure 14. Influences of Split Ratio, Rm/Re on Airgap Flux Density of (a) TPMLM-NS; (b) TPMLM-S.
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Figure 15. Influence of Split Ratio, Rm/Re on Losses (a) Copper Loss; (b) Core Loss.

In term of core loss, both design variants have decreasing trends of core loss with the increment
in Rm/Re. This trend is produced as the volume of stator core is reduced while Rm value is increased.
The waveform trends in copper loss and core loss of the design variants due to refinement of Rm/Re

agreed will with previous work in [40].
The efficiency of the design variants with variation of Rm/Re is as illustrated in Figure 16.

For TPMLM-S, the evident point of optimization is at 0.5 with percentage of 43.3%. This optimization
is achieved due to the significant dip in the copper loss waveform. Even though in the core loss
result, a lower loss is observed with the increment of Rm/Re, however the increment in copper loss
of the two points of 0.6 and 0.7 is more significant than the reduction in core loss. For TPMLM-NS,
the optimization point is quite ambiguous as the values in Rm/Re of 0.4 and above are almost similar.
Despite the increment in copper loss for points bigger than 0.4, the particular points also experience
reduction in core loss and thus, produces almost similar efficiencies. Nonetheless, Rm/Re of 0.4 is
selected as the optimal point with slight advantage at efficiency of 81%.
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Figure 16. Influences of Split Ratio, Rm/Re on Efficiency.

4.2.2. Influence of Pitch Ratio

The effects of τm/τp variation on the airgap flux density of TPMLM-NS are as shown in Figure 17a.
From the result, it can be seen that the symmetry properties of the waveform as in Figure 14 are
altered as τm/τp varies. The symmetrical waveform is acquired by having same magnet width for
both polarity magnets (i.e., north-polarity magnet and south-polarity magnet). However, as the width
of both polarity magnets is not the same, the waveform also changed. It can be pointed out that,
the area covered by the positive polarity in the waveform is decreased as τm/τp decreases and vice
versa. As mentioned in Section 4.1.2, positive polarity in the waveform represents the North-polarity
magnet. Therefore, this condition is acquired due to the τmn value which is smaller than τms with the
decrement of τm/τp.
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Figure 17. Pitch Ratio, τm/τp Influence on Airgap Flux Density of (a) TPMLM-NS; (b) TPMLM-S.

For TPMLM-S, the airgap flux density trend with variation of τm/τp is as shown in Figure 17b.
It can be observed that the flux density increases as τm/τp increases, with τm/τp of 0.75 having the
highest maximum and minimum point. This trend is obtained as the volume of magnet increases as
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τm/τp increases and thus, producing more flux density at the airgap. Unlike the trend in TPMLM-NS
airgap flux density waveform in Figure 17a, the shape of the waveform for TPMLM-S is consistent
throughout the variation. This is due to the method of τm/τp refinement conducted onto the design
variant in which the τm value is varied against the τas value. Therefore, in all τm/τp refinement points,
the values of τmn and τms are the same resulting in the symmetrical waveforms.

The influence of pitch ratio, τm/τp of the copper loss of the design variants is as shown in Figure 18.
As can be seen, the trends of copper loss for the two design variants are different due to the presence of
aluminium spacer in TPMLM-S design. For TPMLM-S variant, τm/τp refinement was done by varying
the τm value against τas value, while for TPMLM-NS variant, the refinement was completed by varying
the two different polarity magnets against each other.
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Figure 18. Influences of Pitch Ratio, τm/τp on Copper Loss for (a) TPMLM-NS; (b) TPMLM-S.

The lowest copper loss obtained from TPMLM-NS variant is at 1 which is the initial point that
makes the τmn value be the same as τms value. Higher copper losses are produced in all other points
is because of the higher current injected to compensate the reduction in flux density that becomes
unsymmetrical with the change in τm while maintaining τp. For TPMLM-S, a lower copper loss can
be observed as τm/τp decreases. This is due to the increase in the magnet volume as opposed to
the volume of aluminum. Point 0.75 is the limit for the design variant before the dimensions for the
aluminum are too small.

Figure 19 illustrates the trend of core loss due to the variation of τm/τp. A similar trend as in
copper loss results can be observed in the core loss results. For the TPMLM-S variant, a significant
difference in the reduction rate of copper and core loss can be highlighted. Copper loss of the TPMLM-S
variant decreased sharply from τm/τp of 0.375 to 0.5 and marginally dropped from 0.5 to 0.75. However,
for core loss, the decrement rate is almost constant from 0.375 to 0.75. This is due to the high number
of coil turns used in TPMLM-NS that causes the copper loss to increase significantly with an increase
in injected current, while for core loss, the value is not dependent on the number of coil turns in the
design and thus, is not impacted by the parameter.
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Figure 19. Influences of Pitch Ratio, τm/τp on Core Loss for (a) TPMLM-NS; (b) TPMLM-S.

Figure 20 exhibits the efficiency of the design variants with the variation of τm/τp. For TPMLM-NS,
the optimization point is at 1 with efficiency of 81%. The TPMLM-S design variant has increasing
efficiency as τm/τp increases with no apparent optimization point. However, 0.75 is the limit for τm/τp

value as value higher than this lead to manufacturing constraint in fabricating the aluminium with
too small dimension. Therefore, 0.75 is chosen as the best τm/τp value for TPMLM-S with efficiency
of 75%.
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Figure 20. Influences of Pitch Ratio, τm/τp on Efficiency for Design with Spacer, (a) TPMLM-NS;
(b) TPMLM-S.

4.2.3. Influence of Tooth Width

Figure 21 shows the flux density at stator core of TPMLM-NS variants due to tooth width, Tw

refinement. Minor deviations in flux density at the teeth of the stator can be observed. Smaller Tw

variations have higher flux concentration at the teeth area near the tip due to the small flux path.
Conversely, an increment in Tw causes the total area concentrated with flux (i.e., area covered with
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green colour indication) to also increase. This is predictable to impact the core loss of the design
and consequently affect the efficiency. The trends in TPMLM-S flux density at stator core due to Tw

variation are similar to TPMLM-NS.
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Figure 21. Influences of Tw Variation on Flux density at Stator of TPMLM-NS.

Figures 22 and 23 illustrate the trends in copper loss and core loss of the design variants with Tw

refinement respectively. From the copper loss waveform, the smallest value of copper loss for both
design variants is at Tw of 15 mm. A higher Tw value produces a higher copper loss due to the reduction
in slot area and thus, causes the resistance of coil to be increased. In contrast, for Tw with smaller value,
slight increment in copper loss can be observed as more injected current is needed to produce constant
output power. Core loss results show different trends from copper loss, with marginal increment in
core loss value as Tw increases. This is because of the increment in teeth area with concentrated flux as
discussed previously in Figure 21. Even though, smaller Tw values experienced concentrated flux in
area near the tooth tip, however, the effect of increase in teeth area with higher flux concentration is
apparently more significant for the total volume of the stator core.
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Figure 22. Influences of Tw Variation on Copper Loss.
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Figure 23. Influences of Tw Variation on Core Loss.

The efficiency of the design variants due to Tw refinement is as shown in Figure 24. The optimal
efficiency for both design variants are obtained at Tw of 15 mm with 81% and 76% for TPMLM-NS
and TPMLM-S respectively. Tw values that is lower than 15 mm experienced decrement in efficiency
because of the higher copper loss. For higher Tw, lower efficiency is produced due to rise in both
copper loss and core loss.
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4.3. Validation Using Analytical Methods

Comparisons on the analytical prediction and FEA of airgap flux density are as shown in Figure 25.
The average percentage error over a fundamental period, which is approximately 3.1% and 9.3% for
TPMLM-NS and TPMLM-S, respectively, is relatively small. For both variants, good agreement in
terms of the shape waveform can be observed, especially for TPMLM-NS which displays an exact
match between the analytical prediction and FEA. For TPMLM-S, the waveforms show agreement in
terms of frequency but a slight deviation can be seen, especially at the tip of waveforms. The analytical
prediction waveform has a slightly rounded tip while the waveform resulting from FEA imitates a
square shape waveform. This difference is the effect of the slot representation in the analytical prediction
that is not precise. In TPMLM-S, the effect is significant due to the presence of aluminium spacers.
The developed analytical model considered the airgap axial lengths that coincide with aluminium
spacers to have zero flux density, causing a slight decrement in the total flux density value, whereas,
in FEA, the tooth tip at the stator core is taken into account and thus, even though the airgap lengths
are covered by aluminium spacers, due to the presence of tooth tips, some of the fluxes flow through
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the airgap lengths as shown in Figure 26. In TPMLM-NS, the effect ofhe slotted model in analytical
prediction is not that significant because of the consistent flux density throughout the length of the
airgap. Discrepancy in analytical predictions due to slot representation is also mentioned by [38].
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Figure 25. Airgap Flux Density Validation of (a) TPMLM-NS; (b) TPMLM-S.
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Figure 26. Tooth Tip Effect on Airgap Flux Density in FEA.

Figures 27 and 28 illustrate the comparison of analytical predictions and FEA for flux linkage
and back EMF, respectively. The flux linkage waveforms resulting from the analytical predictions
match the result from FEA, in terms of amplitude and frequency. The percentage error calculated
from both waveforms are 0.8% and 0.4% for the respective TPMLM-NS and TPMLM-S variants.
Similarly, the back EMF waveforms produced by both methods show good agreement with each other,
even though there are some discrepancies in the waveforms. For example, the analytical prediction
waveform for TPMLM-NS has a slightly bigger value than the FEA one around the axial displacement
of 0–10 mm. This is again due to the slotted representation used in the analytical model in which
returning fluxes through the same tooth as shown in Figure 29 are not considered. Nevertheless,
the back EMF percentage errors between analytical predications and FEA for both variants, which are
0.8% and 0.4% for TPMLM-NS and TPMLM-S, respectively, are very small. Therefore, as the percentage
errors for the three parameters are less than 10%, it can be concluded that the FEA results are validated
by the analytical predictions and thus, serve as an assurance of the accuracy of the design performance.
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4.4. Power-to-Weight Ratio and Material Cost

Table 4 shows the performance of both design variants in terms of weight, material cost, back EMF
and efficiency. As previously mentioned, the TPMLM-S variant is introduced to cater the big size
and high cost of linear generators in direct drive systems. However, the optimal design of the variant
shows that only the material cost of TMPLM-S variant is advantageous over the conventional design
as in TPMLM-NS variant. The introduction of aluminum spacer as part of magnet assembly reduced
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the material cost as aluminum costs less than NdFeB. In terms of total weight, the TPMLM-S weight
slightly heavier than TPMLM-NS which is contrary to the hypothesis put forth earlier as the variant
requires more back iron at the translator than the TPMLM-NS variant.

Table 4. Performance Comparison of the Optimized Proposed Designs.

Design Variants TPMLM-NS TPMLM-S

Total Material Cost (USD) 1838 1791

Translator Weight (kg) 49.3 60.3

Total Weight (kg) 164.0 166.6

Avg. Back EMF (V) 240 240

Efficiency (%) 81.0 76.0

The power-to-weight ratios (kW/kg) of TPMLM-NS and TPMLM-S are 0.006010 kW/kg and
0.006002 kW/kg, respectively. TPMLM-NS has a better power-to-weight ratio as opposed to TPMLM-S.
Even though TPMLM-NS has a better power-to-weight ratio and efficiency than TPMLM-S, the total
weight of the design is still high due to the heavy weight of the stator mainly caused by the weight of
the slotted back iron.

5. Conclusions

This paper presents a tubular permanent magnet linear machine (TPMLM) design for linear
generators for wave energy conversion systems in low wave power areas which has been designed and
analyzed based on the wave characteristics of Malaysian waves. The generator is designed to be able to
produce 240 V output back EMF. The proposed design, which was divided into two variants, which are
TPMLM-no spacer (TPMLM-NS) and TPMLM-spacer (TPMLM-S), has been analyzed numerically
using the FEA and analytical methods. The open-circuit flux distribution and flux density results from
FEA provide a good representative of the design magnetic configuration. From the main dimension
refinement, it can be deduced that variations of the design’s dimensions affect the flux density behavior
in the design that consequently influences other parameters such as the electrical losses. Therefore,
a detailed refinement of the design dimensions is crucial in order to achieve an optimal performance.
The computed efficiency of the generator considering electrical losses is high, with 81% for TPLMN-NS
and 76% for TPMLM-S. Even though the TPMLM design is simulated based on Malaysian local wave
characteristics, the design can also be used in other locations with similar wave characteristics to
Malaysia in order to obtain an optimal design working efficiency.

Further analysis should be conducted such as detailed core losses and eddy current losses
so a prototype of the design can be fabricated. The fabricated prototype can be used to conduct
in-laboratory experimental testing to validate the simulation and computation results. Additionally,
complete assembly of the linear generator design and wave buoy to capture the motion of wave is to
be deliberated, so that the whole system can be tested in in laboratory wave tanks and open seas.
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Appendix A

The coefficients as in Equation (14) are computed as follows:
Let,

C1n = BI0(mnRs); C2n = BK0(mnRs); C3n = BI1(mnRm);

C4n = BK1(mnRm); C5n = BI0(mnRm); C6n = BK0(mnRm);

C7n = BI1(mnR0); C8n = BK1(mnR0); C9n = BI0(mnR0);

C10n = BK0(mnR0)

FAN(mnr) =
Pn

mn

∫ mnr

mnR0

BK1(x)dx
BI1(x)BK0(x) + BK1(x)BK0(x)

FBN(mnr) =
Pn

mn

∫ mnr

mnR0

BI1(x)dx
BI1(x)BK0(x) + BK1(x)BK0(x)

Let AIn, BIn, AIIn and BIIn to be the solutions for the following linear equation:
1 −

C2n
C4n

C3n
C1n

1

0 0
C3n
C5n

C4n
C10n

C5n
C1n

−
C6n
C4n

0 0

1 −
C6n
µrC10n

−
µrC9n
C5n

1




AIn

BIn

AIIn

BIIn

=


0
C3nFAN(mnRm) −C4nFBN(mnRm)

1
µr
[C5nFAN(mnRm) + C6nFBN(mnRm)] − Bn

µrBn


aIn,bIn,aIIn and bIIn are expressed as:

aIn =
AIn

C1n
; −bIn =

BIn

C4n
; aIIn = −

µrAIIn

C5n
; −bIIn = −

BIIn

C10n
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