Mechanisms of Rock Burst in Horizontal Section Mining of a Steeply Inclined Extra-Thick Coal Seam and Prevention Technology
Abstract
:1. Introduction
2. Description of the Study Site
2.1. Geological and Mining Conditions
2.2. The “3.24” Rock Burst in 5521-20 Working Face
3. Numerical Simulation Using Discrete Element Methods
3.1. UDEC Trigon Method
3.2. Model Configuration
3.3. Calibration of the Simulation Parameters
3.3.1. Rock Mass Properties
3.3.2. Contact Micro-Parameters
3.4. In Situ Stresses and Modelling Sequence
4. Modelling Results and Field Observations
4.1. Evolution of the Structures in Roof
4.2. Distribution of Stress
4.3. Micro-Seismic Monitoring in SIETCS
4.4. Mechanisms of Rock Burst in Horizontal Section Mining of SIETCS
5. Technical Scheme of Rock Bursts Prevention and Its Effects
5.1. Principles of Rock Bursts Prevention
5.2. Technical Scheme in Field
5.3. Analysis of Prevention Effects
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Srinivasan, C.; Arora, S.K.; Yaji, R.K. Use of mining and seismological parameters as premonitors of rockbursts. Int. J. Rock Mech. Min. Sci. 1997, 34, 1001–1008. [Google Scholar] [CrossRef]
- Iannacchione, A.T.; Zelanko, J.C. Occurrence and Remediation of Coal Mine Bursts: A Historical Review; Special Publication; US Department of the Interior; U.S. Bureau of Mines: Washington, DC, USA, 1995; pp. 27–68.
- Mark, C. Coal bursts in the deep longwall mines of the united states. Int. J. Coal Sci. Technol. 2016, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ortlepp, W.D. Rasim comes of age—A review of the contribution to the understanding and control of mine rockbursts. In Proceedings of the Sixth International Symposium on Rockburst and Seismicity in Mines, Perth, Australia, 9–11 March 2005; pp. 9–11. [Google Scholar]
- Hebblewhite, B.; Galvin, J. A review of the geomechanics aspects of a double fatality coal burst at Austar Colliery in NSW, Australia in April 2014. Int. J. Coal Sci. Technol. 2017, 27, 3–7. [Google Scholar] [CrossRef]
- Mohammad, J.; Rabindra, K. Design of rhombus coal pillars and support for Roadway Stability and mechanizing loading of face coal using SDLs in a steeply inclined thin coal seam—A technical feasibility study. Arab. J. Geosci. 2018, 11, 415. [Google Scholar]
- Li, X.; Wang, Z.; Zhang, J. Stability of roof structure and its control in steeply inclined coal seams. Int. J. Min. Sci. Technol. 2017, 27, 359–364. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Liu, M.; Jiao, J.; Luo, S. Roof-breaking mechanism and stress-evolution characteristics in partial backfill mining of steeply inclined seams. Geomat. Nat. Hazards Risk 2020, 11, 2006–2035. [Google Scholar] [CrossRef]
- Cui, F.; Lei, Z.; Chen, J.; Chang, B.; Yang, Y.; Li, C.; Jia, C. Research on Reducing Mining-Induced Disasters by Filling in Steeply Inclined Thick Coal Seams. Sustainability 2010, 11, 5802. [Google Scholar]
- Yang, S.; Li, L.; Deng, X. Disaster-causing mechanism of roof “toppling–slumping” failure in a horizontal sublevel top-coal caving face Stability of roof structure and its control in steeply inclined coal seams. Nat. Hazards 2020, 100, 757–780. [Google Scholar] [CrossRef]
- Wu, G.; Chen, W.; Jia, S.; Tan, X.; Zheng, P.; Tian, H.; Rong, C. Deformation characteristics of a roadway in steeply inclined formations and its improved support. Int. J. Rock Mech. Min. Sci. 2020, 130, 104324. [Google Scholar] [CrossRef]
- Yang, Y.; Lai, X.; Shan, P.; Cui, F. Comprehensive analysis of dynamic instability characteristics of steeply inclined coal-rock mass. Arab. J. Geosci. 2020, 13, 241. [Google Scholar] [CrossRef]
- Xie, P.; Luo, Y.; Wu, Y.; Cao, X.; Luo, S.; Zeng, Y. Roof Deformation Associated with Mining of Two Panels in Steeply Dipping Coal Seam Using Subsurface Subsidence Prediction Model and Physical Simulation Experiment. Metall. Explor. 2020, 37, 581–591. [Google Scholar] [CrossRef]
- Wang, S.; Dou, L.; Mu, Z.; Cao, J.; Li, X. Study on Roof Breakage-Induced Roadway Coal Burst in an Extrathick Steeply Inclined Coal Seam. Shock Vib. 2019, 2019, 2969483. [Google Scholar] [CrossRef]
- He, S.; Song, D.; He, X.; Chen, J.; Ren, T.; Li, Z.; Qiu, L. Coupled mechanism of compression and prying-induced rock burst in steeply inclined coal seams and principles for its prevention. Tunn. Undergr. Space Technol. 2020, 98, 103327. [Google Scholar] [CrossRef]
- He, S.; Song, D.; Li, Z.; He, X.; Chen, J.; Li, D.; Tian, X. Precursor of Spatio-temporal Evolution Law of MS and AE Activities for Rock Burst Warning in Steeply Inclined and Extremely Thick Coal Seams Under Caving Mining Conditions. Rock Mech. Rock Eng. 2019, 52, 2415–2435. [Google Scholar] [CrossRef]
- Wang, Z.; Dou, L.; Wang, G. Coal Burst Induced by Horizontal Section Mining of a Steeply Inclined, Extra-Thick Coal Seam and Its Prevention: A Case Study from Yaojie No. 3 Coal Mine, China. Shock Vib. 2019, 2019, 8469019. [Google Scholar] [CrossRef]
- He, J.; Dou, L.; Gong, S.; Li, J.; Ma, Z. Rock burst assessment and prediction by dynamic and static stress analysis based on micro-seismic monitoring. Int. J. Rock Mech. Min. Sci. 2017, 93, 46–53. [Google Scholar] [CrossRef]
- Qian, M.; Shi, P.; Xu, J. Mining Pressure and Strata Control; China University of Mining and Technology Press: Xuzhou, China, 2010. (In Chinese) [Google Scholar]
- ITASCA. UDEC (Universal Distinct Element Code); Version 6.0; Itasca Consulting Group Inc.: Minneapolis, MN, USA, 2014. [Google Scholar]
- Gao, F.; Stead, D. The application of a modified Voronoi logic to brittle fracture modelling at the laboratory and field scale. Int. J. Rock Mech. Min. Sci. 2014, 68, 1–14. [Google Scholar] [CrossRef]
- Gao, F.; Stead, D.; Kang, H. Numerical Simulation of Squeezing Failure in a Coal Mine Roadway due to Mining-Induced Stresses. Rock Mech. Rock Eng. 2015, 48, 1635–1645. [Google Scholar] [CrossRef]
- Wu, W.; Bai, J.; Wang, X.; Yan, S.; Wu, S. Numerical Study of Failure Mechanisms and Control Techniques for a Gob-Side Yield Pillar in the Sijiazhuang Coal Mine, China. Rock Mech. Rock Eng. 2019, 52, 1231–1245. [Google Scholar] [CrossRef]
- Zhang, L.; Einstein, H.H. Using RQD to estimate the deformation modulus of rock masses. Int. J. Rock Mech. Min. Sci. 2004, 41, 337–341. [Google Scholar] [CrossRef]
- Singh, M.; Rao, K.S. Empirical methods to estimate the strength of jointed rock masses. Eng. Geol. 2005, 41, 127–137. [Google Scholar] [CrossRef]
- Ge, M. Efficient mine microseismic monitoring. Int. J. Coal Geol. 2005, 64, 44–56. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, T.; Zhang, P.; Zhou, J.; Yu, Q.; Deng, W. The analysis of rock damage process based on the microseismic monitoring and numerical simulations. Tunn. Undergr. Space Technol. 2017, 69, 1–17. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C.F. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 1944, 34, 185–188. [Google Scholar]
- Cai, W.; Dou, L.; Zhang, M.; Cao, W.; Shi, J.; Feng, L. A fuzzy comprehensive evaluation methodology for rock burst forecasting using microseismic monitoring. Tunn. Undergr. Space Technol. 2018, 80, 232–245. [Google Scholar] [CrossRef]
Rock Strata | Intact Rock | RQD | Rock Mass | |||
---|---|---|---|---|---|---|
Oil shale | 10.40 | 36.6 | 86 | 5.09 | 23.3 | 2.3 |
Siltstone | 9.39 | 41.4 | 90 | 5.45 | 29.4 | 3.0 |
Aluminous mudstone | 5.52 | 21.4 | 84 | 2.48 | 12.9 | 1.3 |
Fine sandstone | 7.79 | 60.6 | 92 | 4.93 | 45.4 | 4.5 |
Coal | 1.08 | 7.0 | 75 | 0.33 | 3.32 | 0.3 |
Coarse sandstone | 7.99 | 40.3 | 90 | 4.64 | 28.6 | 2.9 |
Rock Strata | Matrix Properties | Contact Properties | ||||||
---|---|---|---|---|---|---|---|---|
Density (kg/m3) | Poisson’s Ratio | Cohesion (MPa) | Friction Angle (°) (Peak/Residual) | Tensile Strength (MPa) | ||||
Oil shale | 2500 | 5.09 | 0.28 | 651 | 130 | 8.70 | 38/31 | 2.3 |
Siltstone | 2670 | 5.45 | 0.28 | 697 | 139 | 10.80 | 39/32 | 3.0 |
Aluminous mudstone | 2890 | 2.48 | 0.27 | 310 | 62 | 4.95 | 37/31 | 3.0 |
Fine sandstone | 2980 | 4.93 | 0.28 | 630 | 126 | 14.50 | 41/33 | 4.5 |
Coal | 1300 | 0.33 | 0.26 | 81 | 16 | 1.38 | 34/29 | 0.3 |
Coarse sandstone | 2890 | 4.64 | 0.27 | 580 | 116 | 11.30 | 38/31 | 2.9 |
Rock Strata | Young’s Modulus (GPa) | Compressive Strength (MPa) | ||||
---|---|---|---|---|---|---|
Target | Calibrated | Error (%) | Target | Calibrated | Error (%) | |
Oil shale | 5.09 | 5.15 | 1.2 | 23.3 | 22.9 | −1.7 |
Siltstone | 5.45 | 5.52 | 1.3 | 29.4 | 28.8 | −2.0 |
Aluminous mudstone | 2.48 | 2.48 | 0.0 | 12.9 | 12.9 | 0.0 |
Fine sandstone | 4.93 | 4.99 | 1.2 | 45.4 | 44.9 | −1.1 |
Coal | 0.33 | 0.32 | -3.0 | 3.3 | 3.3 | 0.0 |
Coarse sandstone | 4.64 | 4.71 | 1.5 | 28.6 | 29.2 | 2.1 |
Number | Angle (°) | Distance between Boreholes (m) | Diameter of Borehole (mm) | Length of Borehole (m) | Explosive Charge Length (m) | Stemming Length (m) | Explosive Charge Weight (kg) |
---|---|---|---|---|---|---|---|
1 | 20 | 10 | 75 | 40 | 15 | 25 | 45 |
2 | 30 | 10 | 75 | 30 | 13 | 17 | 39 |
3 | 45 | 10 | 75 | 25 | 10 | 15 | 30 |
4 | 90 | 5 | 75 | 6 | 3.5 | 2.5 | 4 |
5 | 0 | 5 | 110 | 15 | / | / | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Dou, L.; Zhu, G.; He, J.; Wang, S.; Zhou, K. Mechanisms of Rock Burst in Horizontal Section Mining of a Steeply Inclined Extra-Thick Coal Seam and Prevention Technology. Energies 2020, 13, 6043. https://doi.org/10.3390/en13226043
Cao J, Dou L, Zhu G, He J, Wang S, Zhou K. Mechanisms of Rock Burst in Horizontal Section Mining of a Steeply Inclined Extra-Thick Coal Seam and Prevention Technology. Energies. 2020; 13(22):6043. https://doi.org/10.3390/en13226043
Chicago/Turabian StyleCao, Jinrong, Linming Dou, Guangan Zhu, Jiang He, Shengchuan Wang, and Kunyou Zhou. 2020. "Mechanisms of Rock Burst in Horizontal Section Mining of a Steeply Inclined Extra-Thick Coal Seam and Prevention Technology" Energies 13, no. 22: 6043. https://doi.org/10.3390/en13226043
APA StyleCao, J., Dou, L., Zhu, G., He, J., Wang, S., & Zhou, K. (2020). Mechanisms of Rock Burst in Horizontal Section Mining of a Steeply Inclined Extra-Thick Coal Seam and Prevention Technology. Energies, 13(22), 6043. https://doi.org/10.3390/en13226043