Converting a Water Pressurized Network in a Small Town into a Solar Power Water System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Types of Water Pressurized Distribution Networks
2.1.1. Use of PV Arrays in a Standalone System
2.1.2. Use of PV Modules in a Hybrid System
2.1.3. Use of PV Modules in Several Source Supplies
2.2. Monthly and Yearly Variation in Energy Produced in PV Arrays
2.3. Life Cycle Cost of PV Modules
2.4. Calculation Process
3. Case Study
3.1. Input Data
3.1.1. Hydraulic Data
- The calibrated model is presented in Figure 3 (UTMX 754,387 and UTMY 4299526). We can simulate the hydraulic behavior of the WPN. This file must contain the information to perform hydraulic calculations without no error (elevation, base demands in nodes, roughness, diameter and lengths in pipes, pump curves, size of tanks, etc.). We propose Case 0 as the current state in which we supply pumps with electricity grids. The pumps start and stop as controlled by the water level in the tank. The method to carry out simulations is meant to suit the EPANET models for the water table depth (one model for each month) for Case 0.
- Pump ATURIAXRN6B (eight impellers). The curves of the pumps that show the head and pump efficiency variation with flow rates are depicted in Equations (3) and (4):
- Water demand change per month (K). We calculate this variable by dividing each monthly water consumption into the average water demand. Their values are shown in Table 1.
- Consumption of the municipality: monthly volumes and “instant” flows (average flow every 30 min. This is necessary to calculate the average monthly consumption and daily patterns (Table 1).
- Water depths: Average of the dynamic level each month to calculate the pump head (Table 1).
- When the WPN operates as a SPWS, it requires pump SP-125-5-A (Grundfos). The curves of the pumps are shown Equations (5) and (6):
3.1.2. Irradiance Data
3.1.3. Economic Data
- Equivalent continuous discount rate (r = 2%).
- Investment (I0). We can calculate this amount for the option studied. PV modules, batteries, and pumps costs (service life 25, 5 and 7 years individually) and some other costs are displayed in Table 2. These costs are identical for every option planned (to allow for a comparison).
- Economic savings (Si) in contrast to the present situation (Case 0). To determine energy expenditure costs, we have followed the Spanish tariff (which means determining power, energy, and reactive energy with hourly and seasonal variation). We calculated the hydraulics and the electricity bill.
3.2. Case Simulation
3.2.1. The Current State, Case 0
3.2.2. Case I: Standalone Solar Water Pressurized Networks. Storage of Energy in the Head Tank
3.2.3. Case II: Hybrid System Supplied by Solar and Grid Electricity Consumption
3.2.4. Case III: Standalone Solar Water Pressurized Networks Selling the Surplus of Energy
4. Results
4.1. Monthly Energy Consumption
4.2. Calculation of the Yearly Electricity Cost
4.3. Sale of Surplus Energy
4.4. Calculation of the Investments and Savings
4.5. Life Cycle Cost Calculations
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- UNESCO-WWAP Facts and Figures from the United Nations World Water Development Report 4 (WWDR4); UNESCO: Paris, France, 2012.
- UN World Water Development Report; 2019.
- Burek, P.; Satoh, Y.; Fischer, G.; Kahil, M.T.; Scherzer, A.; Tramberend, S.; Nava, L.F.; Wada, Y.; Eisner, S.; Flörke, M.; et al. Water futures and solution-fast track initiative. In IIASA Working Paper; IIASA: Laxenburg, Austria, 2016. [Google Scholar]
- Ram, M.; Bogdanov, D.; Aghahosseini, A.; Oyewo, S.; Gulagi, A.; Child, M.; Fell, H.-J.; Breyer, C. Global Energy System Based on 100% Renewable Energy—Power Sector; Lappeenranta University of Technology and Energy Watch Group: Lappeenranta, Finland, 2017. [Google Scholar]
- IEA. World Energy Outlook 2019; IEA: París, France, 2019. [Google Scholar]
- IEA. Water-Energy Nexus; IEA: París, France, 2017. [Google Scholar]
- Bijl, D.L.; Bogaart, P.W.; Kram, T.; de Vries, B.J.M.; van Vuuren, D.P. Long-term water demand for electricity, industry and households. Environ. Sci. Policy 2016, 55, 75–86. [Google Scholar] [CrossRef]
- Hardy, L.; Garrido, A.; Juana, L. Evaluation of Spain’s Water-Energy Nexus. Int. J. Water Resour. Dev. 2012, 28, 151–170. [Google Scholar] [CrossRef] [Green Version]
- IDAE. Consumo Energético en el Sector del Agua; IDAE: Madrid, Spain, 2010. [Google Scholar]
- Jäger-Waldau, A. PV Status Report 2019, EUR 29938 EN; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Goodrich, A.C.; Powell, D.M.; James, T.L.; Woodhouse, M.; Buonassisi, T. Assessing the drivers of regional trends in solar photovoltaic manufacturing. Energy Environ. Sci. 2013, 6, 2811–2821. [Google Scholar] [CrossRef] [Green Version]
- REN 21 Renewables Now. Renewables Global Status Report 2019; REN21: Paris, France, 2019; ISBN 9783981891140. [Google Scholar]
- Gorjian, S.; Zadeh, B.N.; Eltrop, L.; Shamshiri, R.R.; Amanlou, Y. Solar photovoltaic power generation in Iran: Development, policies, and barriers. Renew. Sustain. Energy Rev. 2019, 106, 110–123. [Google Scholar] [CrossRef]
- Chazarra-Zapata, J.; Molina-Martínez, J.M.; Cruz, F.-J.P.D.L.; Parras-Burgos, D.; Ruíz Canales, A. How to Reduce the Carbon Footprint of an Irrigation Community in the South-East of Spain by Use of Solar Energy. Energies 2020, 13, 2848. [Google Scholar] [CrossRef]
- Cimorelli, L.; Covelli, C.; Molino, B.; Pianese, D. Optimal Regulation of Pumping Station in Water Distribution Networks Using Constant and Variable Speed Pumps: A Technical and Economical Comparison. Energies 2020, 13, 2530. [Google Scholar] [CrossRef]
- EC. Communication from the Commission to the European Parliament, the European Council, the European Economic and Social Committee, the Committee of the Regions and the European Investment Bank. A Clean Planet for all A European Strategic Long-Term Vision for; EC: Brussels, Belgium, 2018. [Google Scholar]
- Closas, A.; Rap, E. Solar-based groundwater pumping for irrigation: Sustainability, policies, and limitations. Energy Policy 2017, 104, 33–37. [Google Scholar] [CrossRef]
- Mincotur. Precio neto de la electricidad para uso doméstico y uso industrial Euros/kWh. Available online: https://www.mincotur.gob.es/es-ES/IndicadoresyEstadisticas/DatosEstadisticos/IV.Energíayemisiones/IV_12.pdf (accessed on 20 September 2004).
- Muhsen, D.H.; Khatib, T.; Abdulabbas, T.E. Sizing of a standalone photovoltaic water pumping system using hybrid multi-criteria decision making methods. Sol. Energy 2018, 159, 1003–1015. [Google Scholar] [CrossRef]
- Khatib, T.; Ibrahim, I.A.; Mohamed, A. A review on sizing methodologies of photovoltaic array and storage battery in a standalone photovoltaic system. Energy Convers. Manag. 2016, 120, 430–448. [Google Scholar] [CrossRef]
- AlSkaif, T.; Dev, S.; Visser, L.; Hossari, M.; van Sark, W. A systematic analysis of meteorological variables for PV output power estimation. Renew. Energy 2020, 153, 12–22. [Google Scholar] [CrossRef]
- González, L.G.; Chacon, R.; Delgado, B.; Benavides, D.; Espinoza, J. Study of Energy Compensation Techniques in Photovoltaic Solar Systems with the Use of Supercapacitors in Low-Voltage Networks. Energies 2020, 13, 3755. [Google Scholar] [CrossRef]
- Järvelä, M.; Valkealahti, S. Operation of a PV Power Plant during Overpower Events Caused by the Cloud Enhancement Phenomenon. Energies 2020, 13, 2185. [Google Scholar] [CrossRef]
- Corizzo, R.; Ceci, M.; Japkowicz, N. Anomaly Detection and Repair for Accurate Predictions in Geo-distributed Big Data. Big Data Res. 2019, 16, 18–35. [Google Scholar] [CrossRef]
- Behera, M.K.; Majumder, I.; Nayak, N. Solar photovoltaic power forecasting using optimized modified extreme learning machine technique. Eng. Sci. Technol. Int. J. 2018, 21, 428–438. [Google Scholar] [CrossRef]
- Sobri, S.; Koohi-Kamali, S.; Rahim, N.A. Solar photovoltaic generation forecasting methods: A review. Energy Convers. Manag. 2018, 156, 459–497. [Google Scholar] [CrossRef]
- Ceci, M.; Corizzo, R.; Malerba, D.; Rashkovska, A. Spatial autocorrelation and entropy for renewable energy forecasting. Data Min. Knowl. Discov. 2019, 33, 698–729. [Google Scholar] [CrossRef]
- Jane, R.; Parker, G.; Vaucher, G.; Berman, M. Characterizing meteorological forecast impact on microgrid optimization performance and design. Energies 2020, 13, 577. [Google Scholar] [CrossRef] [Green Version]
- Bakelli, Y.; Arab, A.H.; Azoui, B. Optimal sizing of photovoltaic pumping system with water tank storage using LPSP concept. Sol. Energy 2011, 85, 288–294. [Google Scholar] [CrossRef]
- Mwanza, M.; Kaoma, M.; Bowa, C.K.; Çetin, N.S.; Ülgen, K. The potential of solar energy for sustainable water resource development and averting national social burden in rural areas of Zambia. Period. Eng. Nat. Sci. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Arab, A.H.; Chenlo, F.; Mukadam, K.; Balenzategui, J.L. Performance of PV water pumping systems. Renew. Energy 1999, 18, 191–204. [Google Scholar] [CrossRef]
- Narvarte, L.; Almeida, R.H.; Carrêlo, I.B.; Rodríguez, L.; Carrasco, L.M.; Martinez-Moreno, F. On the number of PV modules in series for large-power irrigation systems. Energy Convers. Manag. 2019, 186, 516–525. [Google Scholar] [CrossRef]
- Aliyu, M.; Hassan, G.; Said, S.A.; Siddiqui, M.U.; Alawami, A.T.; Elamin, I.M. A review of solar-powered water pumping systems. Renew. Sustain. Energy Rev. 2018, 87, 61–76. [Google Scholar] [CrossRef]
- Pande, P.C.; Singh, A.K.; Ansari, S.; Vyas, S.K.; Dave, B.K. Design development and testing of a solar PV pump based drip system for orchards. Renew. Energy 2003, 28, 385–396. [Google Scholar] [CrossRef]
- Linssen, J.; Stenzel, P.; Fleer, J. Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles. Appl. Energy 2017, 185, 2019–2025. [Google Scholar] [CrossRef]
- Beck, T.; Kondziella, H.; Huard, G.; Bruckner, T. Assessing the influence of the temporal resolution of electrical load and PV generation profiles on self-consumption and sizing of PV-battery systems. Appl. Energy 2016. [Google Scholar] [CrossRef]
- Tsuanyo, D.; Azoumah, Y.; Aussel, D.; Neveu, P. Modeling and optimization of batteryless hybrid PV (photovoltaic)/Diesel systems for off-grid applications. Energy 2015. [Google Scholar] [CrossRef]
- Yu, C.; Khoo, Y.S.; Chai, J.; Han, S.; Yao, J. Optimal orientation and tilt angle for maximizing in-plane solar irradiation for PV applications in Japan. Sustainability 2019, 11, 2016. [Google Scholar] [CrossRef] [Green Version]
- Hailu, G.; Fung, A.S. Optimum Tilt Angle and Orientation of Photovoltaic Thermal System for Application in Greater Toronto Area, Canada. Sustainability 2019, 11, 6443. [Google Scholar] [CrossRef] [Green Version]
- Kacira, M.; Simsek, M.; Babur, Y.; Demirkol, S. Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey. Renew. Energy 2004, 29, 1265–1275. [Google Scholar] [CrossRef]
- Khatib, T.; Mohamed, A.; Sopian, K. Optimization of a PV/wind micro-grid for rural housing electrification using a hybrid iterative/genetic algorithm: Case study of Kuala Terengganu, Malaysia. Energy Build. 2012, 47, 321–331. [Google Scholar] [CrossRef]
- Narvarte, L.; Fernández-Ramos, J.; Martínez-Moreno, F.; Carrasco, L.M.; Almeida, R.H.; Carrêlo, I.B. Solutions for adapting photovoltaics to large power irrigation systems for agriculture. Sustain. Energy Technol. Assess. 2018, 29, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Dorado, E.; Suárez-García, A.; Carrillo, C.; Cidrás, J. Influence of the shadows in photovoltaic systems with different configurations of bypass diodes. In Proceedings of the SPEEDAM 2010—International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Pisa, Italy, 14–16 June 2010. [Google Scholar]
- Rydh, C.J.; Sandén, B.A. Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements. Energy Convers. Manag. 2005, 46, 1957–1979. [Google Scholar] [CrossRef]
- Moharram, K.A.; Abd-Elhady, M.S.; Kandil, H.A.; El-Sherif, H. Influence of cleaning using water and surfactants on the performance of photovoltaic panels. Energy Convers. Manag. 2013, 68, 266–272. [Google Scholar] [CrossRef]
- Wagner, L. Overview of Energy Storage Technologies. In Future Energy Improved, Sustainable and Clean Options for our Planet; Elsevier: Amsterdam, The Netherlands, 2013; pp. 613–631. [Google Scholar] [CrossRef]
- Jossen, A.; Garche, J.; Sauer, D.U. Operation conditions of batteries in PV applications. Sol. Energy 2004, 76, 759–769. [Google Scholar] [CrossRef]
- Bendary, A.F.; Ismail, M.M. Battery charge management for hybrid PV/wind/fuel cell with storage battery. Proc. Energy Procedia 2019. [Google Scholar] [CrossRef]
- Mulder, G.; Six, D.; Claessens, B.; Broes, T.; Omar, N.; Mierlo, J. Van The dimensioning of PV-battery systems depending on the incentive and selling price conditions. Appl. Energy 2013, 111, 1126–1135. [Google Scholar] [CrossRef]
- Jadhav, S.; Devdas, N.; Nisar, S.; Bajpai, V. Bidirectional DC-DC converter in Solar PV System for Battery Charging Application. In Proceedings of the 2018 International Conference on Smart City and Emerging Technology, ICSCET 2018, Mumbai, India, 5 January 2018; Institute of Electrical and Electronics Engineers Inc.: Mumbai, India, 2018. [Google Scholar]
- Pardo, M.Á.; Juárez, J.M.; García-Márquez, D. Energy consumption optimization in irrigation networks supplied by a standalone direct pumping photovoltaic system. Sustainability 2018, 10, 4203. [Google Scholar] [CrossRef] [Green Version]
- Mérida García, A.; Fernández García, I.; Camacho Poyato, E.; MontesinosBarrios, P.; Rodríguez Díaz, J.A. Coupling irrigation scheduling with solar energy production in a smart irrigation management system. J. Clean. Prod. 2018, 175, 670–682. [Google Scholar] [CrossRef]
- Üçtug, F.G.; Azapagic, A. Environmental impacts of small-scale hybrid energy systems: Coupling solar photovoltaics and lithium-ion batteries. Sci. Total Environ. 2018, 643, 1579–1589. [Google Scholar] [CrossRef] [Green Version]
- Betka, A.; Attali, A. Optimization of a photovoltaic pumping system based on the optimal control theory. Sol. Energy 2010, 84, 1273–1283. [Google Scholar] [CrossRef]
- Elkholy, M.M.; Fathy, A. Optimization of a PV fed water pumping system without storage based on teaching-learning-based optimization algorithm and artificial neural network. Sol. Energy 2016, 139, 199–212. [Google Scholar] [CrossRef]
- Mohanty, A.; Ray, P.K.; Viswavandya, M.; Mohanty, S.; Mohanty, P.P. Experimental analysis of a standalone solar photo voltaic cell for improved power quality. Optik (Stuttgart) 2018, 171, 876–885. [Google Scholar] [CrossRef]
- Ru, Y.; Kleissl, J.; Martinez, S. Storage size determination for grid-connected photovoltaic systems. IEEE Trans. Sustain. Energy 2013, 4, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Lu, L.; Yang, H. Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renew. Sustain. Energy Rev. 2013, 19, 255–274. [Google Scholar] [CrossRef]
- Todde, G.; Murgia, L.; Carrelo, I.; Hogan, R.; Pazzona, A.; Ledda, L.; Narvarte, L. Embodied Energy and Environmental Impact of Large-Power Stand-Alone Photovoltaic Irrigation Systems. Energies 2018, 11, 2110. [Google Scholar] [CrossRef] [Green Version]
- Pardo, M.A.; Manzano, J.; Valdés-Abellán, J.; Cobacho, R. Standalone direct pumping photovoltaic system or energy storage in batteries for supplying irrigation networks. Cost analysis. Sci. Total Environ. 2019, 673, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Kaldellis, J.K.; Zafirakis, D.; Kondili, E. Energy pay-back period analysis of stand-alone photovoltaic systems. Renew. Energy 2010, 35, 1444–1454. [Google Scholar] [CrossRef]
- Skoczek, A.; Sample, T.; Dunlop, E.D. The results of performance measurements of field-aged crystalline silicon photovoltaic modules. Prog. Photovolt. Res. Appl. 2009, 17, 227–240. [Google Scholar] [CrossRef]
- Li, C.H.; Zhu, X.J.; Cao, G.Y.; Sui, S.; Hu, M.R. Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology. Renew. Energy 2009, 34, 815–826. [Google Scholar] [CrossRef]
- Sani Hassan, A.; Cipcigan, L.; Jenkins, N. Optimal battery storage operation for PV systems with tariff incentives. Appl. Energy 2017, 203, 422–441. [Google Scholar] [CrossRef]
- Spiers, D. Chapter IIB-2—Batteries in PV Systems. In Practical Handbook of Photovoltaics, 2nd ed.; McEvoy, A., Markvart, T., Castañer, L.B.T.-P.H., Eds.; Academic Press: Boston, MA, USA, 2012; pp. 721–776. ISBN 978-0-12-385934-1. [Google Scholar]
- Ghoneim, A.A. Design optimization of photovoltaic powered water pumping systems. Energy Convers. Manag. 2006, 47, 1449–1463. [Google Scholar] [CrossRef]
- Hugues, K.W.; Daniel Chowdhury, S.P. An African solution for water and electricity supply, using a standalone photovoltaic based Quasi Z Source Inverter. In Proceedings of the IEEE PES PowerAfrica Conference, PowerAfrica 2016, Livingstone, Zambia, 28 June–3 July 2016. [Google Scholar]
- Todde, G.; Murgia, L.; Deligios, P.A.; Hogan, R.; Carrelo, I.; Moreira, M.; Pazzona, A.; Ledda, L.; Narvarte, L. Energy and environmental performances of hybrid photovoltaic irrigation systems in Mediterranean intensive and super-intensive olive orchards. Sci. Total Environ. 2019, 651, 2514–2523. [Google Scholar] [CrossRef]
- Wong, J.; Lim, Y.S.; Tang, J.H.; Morris, E. Grid-connected photovoltaic system in Malaysia: A review on voltage issues. Renew. Sustain. Energy Rev. 2014, 29, 535–545. [Google Scholar] [CrossRef]
- Tsagas, I. Spain Approves ‘Sun Tax’, Discrimiates Against Solar PV. Renew. Energy World 2015. [Google Scholar]
- Pardo, M.Á.; Cobacho, R.; Bañón, L. Standalone Photovoltaic Direct Pumping in Urban Water Pressurized Networks with Energy Storage in Tanks or Batteries. Sustainability 2020, 12, 738. [Google Scholar] [CrossRef] [Green Version]
- Reddy, P.P.K.K.; Reddy, J.N. Photovoltaic energy conversion system for water pumping application. Int. J. Emerg. Trends Electr. Electron. 2014, 10, 22–29. [Google Scholar]
- Vindel, J.M.; Polo, J.; Zarzalejo, L.F. Modeling monthly mean variation of the solar global irradiation. J. Atmos. Solar-Terrestrial Phys. 2015, 122, 108–118. [Google Scholar] [CrossRef]
- Rehman, S.; Bader, M.A.; Al-Moallem, S.A. Cost of solar energy generated using PV panels. Renew. Sustain. Energy Rev. 2007, 11, 1843–1857. [Google Scholar] [CrossRef]
- Hamidat, A.; Benyoucef, B. Systematic procedures for sizing photovoltaic pumping system, using water tank storage. Energy Policy 2009, 37, 1489–1501. [Google Scholar] [CrossRef]
- Nabila, L.; Khaldi, F.; Aksas, M. Design of photo voltaic pumping system using water tank storage for a remote area in Algeria. In Proceedings of the IREC 2014—5th International Renewable Energy Congress, Hammamet, Tunisia, 25–27 March 2014. [Google Scholar]
- Gómez, E.; Cabrera, E.; Balaguer, M.; Soriano, J. Direct and Indirect Water Supply: An Energy Assessment. Procedia Eng. 2015, 119, 1088–1097. [Google Scholar] [CrossRef] [Green Version]
- Rossman, L.A. EPANET 2: Users Manual; Environmental Protection Agency (US): Washington, DC, USA, 2000.
- Pardo, M.A.; Riquelme, A.; Melgarejo, J. A tool for calculating energy audits in water pressurized networks. AIMS Environ. Sci. 2019, 6, 94–108. [Google Scholar]
- Valdes-Abellan, J.; Pardo, M.A.; Jodar-Abellan, A.; Pla, C.; Fernandez-Mejuto, M. Climate change impact on karstic aquifer hydrodynamics in southern Europe semi-arid region using the KAGIS model. Sci. Total Environ. 2020, 723, 138110. [Google Scholar] [CrossRef]
- Osinowo, A.A.; Okogbue, E.C.; Ogungbenro, S.B.; Fashanu, O. Analysis of Global Solar Irradiance over Climatic Zones in Nigeria for Solar Energy Applications. J. Sol. Energy 2015, 2015, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bou-Rabee, M.A.; Sulaiman, S.A. On seasonal variation of solar irradiation in Kuwait. Int. J. Renew. Energy Res. 2015, 5, 367–372. [Google Scholar]
- Maghami, M.R.; Hizam, H.; Gomes, C.; Radzi, M.A.; Rezadad, M.I.; Hajighorbani, S. Power loss due to soiling on solar panel: A review. Renew. Sustain. Energy Rev. 2016, 59, 1307–1316. [Google Scholar] [CrossRef] [Green Version]
- Hajighorbani, S.; Radzi, M.A.M.; Ab Kadir, M.Z.A.; Shafie, S.; Khanaki, R.; Maghami, M.R. Evaluation of fuzzy logic subsets effects on maximum power point tracking for photovoltaic system. Int. J. Photoenergy 2014, 2014, 719126. [Google Scholar] [CrossRef]
- Vaillon, R.; Dupré, O.; Cal, R.B.; Calaf, M. Pathways for mitigating thermal losses in solar photovoltaics. Sci. Rep. 2018, 8, 1–9. [Google Scholar]
- Lima, F.J.L.D.; Martins, F.R.; Costa, R.S.; Gonçalves, A.R.; dos Santos, A.P.P.; Pereira, E.B. The seasonal variability and trends for the surface solar irradiation in northeastern region of Brazil. Sustain. Energy Technol. Assess. 2019, 35, 335–346. [Google Scholar] [CrossRef]
- Zhou, Y.; Meng, X.; Belle, J.H.; Zhang, H.; Kennedy, C.; Al-Hamdan, M.Z.; Wang, J.; Liu, Y. Compilation and spatio-temporal analysis of publicly available total solar and UV irradiance data in the contiguous United States. Environ. Pollut. 2019, 253, 130–140. [Google Scholar] [CrossRef]
- Sauri, D. The decline of water consumption in Spanish cities: Structural and contingent factors. Int. J. Water Resour. Dev. 2019. [Google Scholar] [CrossRef]
- Kleiner, Y.; Rajani, B. Comprehensive review of structural deterioration of water mains: Statistical models. Urban Water 2001, 3, 131–150. [Google Scholar] [CrossRef] [Green Version]
- Pardo, M.Á.; Riquelme, A.J.; Jodar-Abellan, A.; Melgarejo, J. Water and Energy Demand Management in Pressurized Irrigation Networks. Water 2020, 12, 1878. [Google Scholar] [CrossRef]
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Water table depth (m) | 52.76 | 51.79 | 49.44 | 58.13 | 58.21 | 57.17 | 56.27 | 55.35 | 57.84 | 57.95 | 57.63 | 59.08 |
Volume (m3/day) | 866 | 876 | 892 | 902 | 916 | 1007 | 1105 | 1047 | 956 | 891 | 840 | 830 |
Average T (ª) | 12.62 | 13.25 | 15.26 | 15.45 | 19.01 | 22.98 | 27.18 | 26.72 | 24.31 | 22.79 | 16.30 | 14.86 |
K parameter | 0.93 | 0.94 | 0.96 | 0.97 | 0.99 | 1.09 | 1.19 | 1.13 | 1.03 | 0.96 | 0.91 | 0.90 |
Components | Investment |
---|---|
PV array | 0.29 (EUR/Peak Power) |
Support structure | 0.31 (EUR/Peak Power) |
Control system with safety cabinet | 4252.67 (EUR) |
Assembly and commissioning | 0.21 (EUR/Peak Power) |
Legalization process | 1650 (EUR) |
Material transport | 0.05 (EUR/Peak Power) |
Oversizing tank | 100 (EUR/m3) |
New pump | 12,900 EUR |
Battery | 4330.58 EUR |
Case 0 and II | Cases I and III | ||||
---|---|---|---|---|---|
Month | V Cons(m3) | Energy Pump (kWh/Month) | Electricity Consumption (kWh/Month) | Energy Pump (kWh/Month) | Electricity Consumption (kWh/Month) |
Jan | 26,815.34 | 4326.10 | 6010.18 | 5010.13 | 8692.32 |
Feb | 24,548.24 | 3792.40 | 5421.72 | 3957.85 | 7590.35 |
Mar | 27,570.35 | 4186.42 | 5947.15 | 5261.56 | 8799.37 |
Apr | 27,004.40 | 4100.16 | 6000.56 | 4633.22 | 8362.75 |
May | 28,331.28 | 4464.27 | 6354.66 | 5266.42 | 8263.84 |
Jun | 30,229.41 | 5024.67 | 7000.89 | 6035.93 | 10,502.33 |
Jul | 34,203.82 | 5842.62 | 8008.63 | 6383.65 | 11,151.94 |
Aug | 31,447.66 | 5751.03 | 8054.08 | 6489.61 | 10,483.40 |
Sep | 27,679.97 | 5348.40 | 7396.64 | 5502.19 | 9574.05 |
Oct | 27,581.85 | 5266.46 | 7038.41 | 5537.66 | 9282.07 |
Nov | 25,186.92 | 4604.14 | 6222.95 | 4703.62 | 8420.10 |
Dec | 25,715.41 | 4625.13 | 6269.17 | 5173.66 | 8471.47 |
Month | Case 0 | Case I | Case II 18 × 12 | Case II 18 × 10 | Case II 18 × 8 | Case II 18 × 6 | Case III |
---|---|---|---|---|---|---|---|
Jan | 1512.32 | 0 | 292.54 | 315.23 | 315.23 | 450.92 | −337.38 |
Feb | 1427.10 | 0 | 315.23 | 292.54 | 292.54 | 393.66 | −370.83 |
Mar | 1572.53 | 0 | 307.67 | 315.23 | 315.23 | 315.23 | −618.24 |
Apr | 1527.44 | 0 | 315.23 | 307.67 | 307.67 | 307.67 | −691.72 |
May | 1597.31 | 0 | 307.67 | 315.23 | 315.23 | 315.23 | −789.28 |
Jun | 1631.39 | 0 | 315.23 | 307.67 | 307.67 | 337.56 | −646.64 |
Jul | 1797.60 | 0 | 315.23 | 315.23 | 315.23 | 408.90 | −692.52 |
Aug | 1774.27 | 0 | 307.67 | 315.23 | 315.23 | 436.11 | −704.79 |
Sep | 1646.58 | 0 | 315.23 | 307.67 | 307.67 | 463.22 | −551.18 |
Oct | 1722.51 | 0 | 307.67 | 315.23 | 328.75 | 520.15 | −381.70 |
Nov | 1575.15 | 0 | 315.23 | 307.67 | 332.58 | 498.57 | −292.52 |
Dec | 1587.88 | 0 | 80.84 | 315.23 | 362.74 | 524.35 | −258.93 |
Month | Energy Production (kWh/Month) | Energy Consumption (kWh/Month) | Energy Surplus (kWh/Month) |
---|---|---|---|
Jan | 12,758.31 | 8692.32 | 4065.98 |
Feb | 12,022.02 | 7590.35 | 4431.67 |
Mar | 15,935.36 | 8799.37 | 7135.99 |
Apr | 16,301.94 | 8362.75 | 7939.19 |
May | 17,269.45 | 8263.84 | 9005.61 |
Jun | 17,948.85 | 10,502.33 | 7446.51 |
Jul | 19,099.92 | 11,151.94 | 7947.98 |
Aug | 18,565.52 | 10,483.40 | 8082.12 |
Sep | 15,977.04 | 9574.05 | 6402.99 |
Oct | 13,832.53 | 9282.07 | 4550.46 |
Nov | 11,995.81 | 8420.10 | 3575.71 |
Dec | 11,680.01 | 8471.47 | 3208.54 |
Case II | |||||
---|---|---|---|---|---|
Components | Case I and III | 18 × 12 | 18 × 10 | 18 × 8 | 18 × 6 |
PV array | 27,561.60 | 20671.2 | 17226 | 13,780.80 | 10,335.60 |
Support structure | 29,462.40 | 22,096.80 | 18414 | 14,731.20 | 11,048.40 |
Control with safety cabinet | 4252.67 | 4252.67 | 4252.67 | 4252.67 | 4252.67 |
Assembly and commissioning | 19,958.4 | 14,968.80 | 12474 | 9979.20 | 7484.4 |
Legalization process | 1650 | 1650 | 1650 | 1650 | 1650 |
Material transport | 4752 | 3564 | 2970 | 2376 | 1782 |
Oversizing tank | 72,570.79 | ||||
New pump | 32,675.01 | 32,675.01 | 32,675.01 | 32,675.01 | 32,675.01 |
Battery | 17,905.67 | 17,905.67 | 17,905.67 | 17,905.67 | |
TOTAL | 192,882.87 | 117,784.15 | 107,567.35 | 97,350.55 | 87,133.75 |
Investments (EUR) | Savings (EUR) | Payback Period (Years) | Net Present Value (EUR) | |
---|---|---|---|---|
Case I | 192,882.87 | 19,372.08 | 11.10 | 192,056.97 |
Case II 18 × 12 | 117,784.15 | 15,876.66 | 8.03 | 197,698.61 |
Case II 18 × 10 | 107,567.35 | 15,642.27 | 7.26 | 208,741.96 |
Case II 18 × 8 | 97,350.55 | 15,556.33 | 7.21 | 173,283.95 |
Case II 18 × 6 | 87,133.75 | 14,400.51 | 7.71 | 133,893.43 |
Case III | 192,882.87 | 25,707.81 | 8.13 | 317,953.36 |
Case II | ||||||
---|---|---|---|---|---|---|
Month | Case I | 18 × 12 | 18 × 10 | 18 × 8 | 18 × 6 | Case III |
January | 1512.32 | 1512.32 | 1219.78 | 1197.09 | 1197.09 | 1512.32 |
February | 1427.10 | 1427.1 | 1111.87 | 1134.56 | 1134.56 | 1427.10 |
March | 1572.53 | 1572.53 | 1264.86 | 1257.30 | 1257.30 | 1572.53 |
April | 1527.44 | 1527.44 | 1212.21 | 1219.77 | 1219.77 | 1527.44 |
May | 1597.31 | 1597.31 | 1289.64 | 1282.08 | 1282.08 | 1597.31 |
June | 1631.39 | 1631.39 | 1316.16 | 1323.72 | 1323.72 | 1631.39 |
July | 1797.60 | 1797.6 | 1482.37 | 1482.37 | 1482.37 | 1797.60 |
August | 1774.27 | 1774.27 | 1466.60 | 1459.04 | 1459.04 | 1774.27 |
September | 1646.58 | 1646.58 | 1331.35 | 1338.91 | 1338.91 | 1646.58 |
October | 1722.51 | 1722.51 | 1414.84 | 1407.28 | 1393.76 | 1722.51 |
November | 1575.15 | 1575.15 | 1259.92 | 1267.48 | 1242.57 | 1575.15 |
December | 1587.88 | 1587.88 | 1507.04 | 1272.65 | 1225.14 | 1587.88 |
Power fixed term | 0 | −415.2 | ||||
Electricity Sale | 0 | 0 | 0 | 0 | 0 | 6750.93 |
TOTAL | 19,372.08 | 15,876.66 | 15,642.27 | 155,556.33 | 14,400.51 | 25,707.81 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardo, M.Á.; Fernández, H.; Jodar-Abellan, A. Converting a Water Pressurized Network in a Small Town into a Solar Power Water System. Energies 2020, 13, 4013. https://doi.org/10.3390/en13154013
Pardo MÁ, Fernández H, Jodar-Abellan A. Converting a Water Pressurized Network in a Small Town into a Solar Power Water System. Energies. 2020; 13(15):4013. https://doi.org/10.3390/en13154013
Chicago/Turabian StylePardo, Miguel Ángel, Héctor Fernández, and Antonio Jodar-Abellan. 2020. "Converting a Water Pressurized Network in a Small Town into a Solar Power Water System" Energies 13, no. 15: 4013. https://doi.org/10.3390/en13154013
APA StylePardo, M. Á., Fernández, H., & Jodar-Abellan, A. (2020). Converting a Water Pressurized Network in a Small Town into a Solar Power Water System. Energies, 13(15), 4013. https://doi.org/10.3390/en13154013